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Abstract: The direct determination of the steady state response for linear time invariant (LTI) systems
modeled by multibond graphs is presented. Firstly, a multiport junction structure of a multibond
graph in an integral causality assignment (MBGI) to get the state space of the system is introduced.
By assigning a derivative causality to the multiport storage elements, the multibond graph in a
derivative causality (MBGD) is proposed. Based on this MBGD, a theorem to obtain the steady state
response is presented. Two case studies to get the steady state of the state variables are applied.
Both cases are modeled by multibond graphs, and the symbolic determination of the steady state is
obtained. The simulation results using the 20-SIM software are numerically verified.

Keywords: bond graph; multibond graph; steady state; multibody systems

1. Introduction

In the analysis and design of control systems, the most important specifications are:
stability, transient response, and steady state response, considering robust designs, as
well as economic and social aspects [1]. The dynamics of a physical system are linked to
the energy storage elements; when the dynamic performance is over, the steady state is
reached. The steady state response is an important characteristic of a system; for example,
some equipment in electrical machines or in power electrical systems requires to know
the steady state values for calibration. An interesting steady state reference to simulate
groundwater flow in unconfined water can be found in [2]. Furthermore, a modified
polynomial expansion algorithm for solving the steady state Allen–Cahn equation for heat
transfer processes was proposed in [3].

Some of the methodologies in system modeling such as lumped modeling with circuit
elements, finite elements, and bond graphs can be found. The lumped modeling has been
used to represent microsystems, which are very small systems. The characteristics of
circuit analogies also permit efficient modeling of the interaction between the electronic
and non-electronic components of a microsystem. A further advantage of circuit models is
that they are intrinsically correct from an energy point of view [4].

A bond graph model of a system determines the power interactions with connecting
lines, “bonds”, which carry both power variables and causalities between variables. Bond
graph modeling has been applied to various areas, for example: in [5], an uncertain
bond graph based fault detection and isolation and an adaptive enhanced unscented
Kalman filter based fault estimation and sequential prognosis were developed for an
electric scooter with parameter uncertainties. A versatile approach to the synthesis and
design of a bond graph model and a Kalman filter observer for an industrial back-support
exoskeleton was presented in [6]. The modeling of bond graph buck converter systems was
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analyzed in [7]. Bond graph modeling and the kinematic and dynamic characteristics of a
piezoelectric-actuated micro-/nano-compliant platform system were investigated in [8].
In [9], the development of a bond graph model for the simulation of a multi-axis low cost
accelerometer was successful in the forecast of the accuracy of velocity and displacement
reconstruction from imperfect acceleration measurements, as has been corroborated by
experimental results.

Lumped modeling with circuit elements and the bond graph have similar charac-
teristics such as the use of generalized variables and can model systems with different
energy domains. However, the models in the bond graph determine the static and dynamic
relationships in a graphical form that can be linked to the causality of the elements and
that in this paper are used to invert the state matrix and obtain the steady state response.

On the other hand, in the finite element method, a structure is divided into finite
elements of a simple geometry by means of suitable sections. This method can perform the
dynamic analysis as the determination of the motion of the mechanism as a function of
time [10]. The finite element approach to mechanism analysis has shown many advantages
over the others in the aspects of the generality and simplicity in the formulation the
governing equations in [11].

Rather than describe the differences and advantages between the finite element
method and bond graphs, these modeling methodologies can be complementary. A bond
graph modeling approach that is equivalent to a finite element method was formulated
in [12]. This formulation led to a new definition of the generalized displacements for a
continuous system. In [13], it was shown how variables, specifically the temperature at
each point in the deformation zone, can be modeled using a multi-element bond graph
approach. Lumped parameter models cannot sufficiently describe the dynamics of many
distributed systems, such as a continuous rotating shaft with bending. The finite element
method is employed to embed distributed dynamics of rotating shafts with bending into
constitutive laws of bond graphs resulting in a finite element bond graph model [14].

Some papers using bond graphs to obtain the steady state behavior of a system are
cited below. In [15], a bond graph procedure was introduced to obtain whether or not the
equilibrium state or steady state of a system exists. Causality gives a certain propagation
throughout the bond graph, and the bicausal bond graph represents the generalization
of the causality selection [16]. Bicausality decouples effort and flow at a bond so that
they can be assigned independently at each bond [17]. Hence, bicausality was applied to
get the equilibrium state of a mechatronic system in [18]. The steady state of the system
modeled by bond graphs whose storage elements have a derivative causality assignment
was presented in [19]. A new approach to compute the equilibria and the steady states of a
biomolecular system using a bond graph was proposed in [20].

Currently, the analysis of multibody systems has been a challenge in scientific research.
It is common that in rigid bodies with joints that determine their displacements angles in
three dimensions, the kinematic and dynamic relationships can be very complex [21].

The multibond graph representation contains multidimensional bonds that determine
arrays of ordinary bond vectors. Then, the generalized power variables of effort and flow
are represented by vectors. Therefore, multibond graphs result in compact modeling with
great potential in three-dimensional mechanical multibody systems [22,23]. Figure 1 shows
how multibond graphs allow the compaction of graphical and mathematical modeling.

The following papers related to multibond graphs can be cited: The multibond graph
notation becomes a direct way to represent the behavior of energy, power, and other physi-
cal properties of multiport systems, which was introduced in [21]. The causality assignment
of vector bond graphs was proposed in [24]. The bond graph description of rigid body
rotation was described in [25]. Some equivalent procedures for junction structures with gy-
rators were shown in [26]. Multiport resistors, storage elements, transformers, and gyrators
can be decomposed into 1- and 2-port elements, which was proposed in [27]. In [28], it was
proven that a bond graph with the junction structure and the mathematical representation
corresponds to a port-Hamiltonian system. The representation of the real and imaginary
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part of the phasors for electrical circuits using multibond graphs was presented in [29].
The linearization of a class of non-linear systems represented by multibond graphs was
proposed in [30]. In [31], a pseudo bond graph of a greenhouse was elaborated to simulate
temperature and relative humidity inside using multiport (three ports) elements to describe
the state of a two element (dry air and water vapor) fluid.
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Figure 1. Comparison between bond graphs and multibond graphs.

Some recent papers with multibond graphs are as follows: A bond graph model of a
helicopter’ssemi-active suspension and the associated simulations were proposed in [32].
The application of a three-dimensional multi-body bond graph modeling approach for
simulating vibration in a horizontal oil well was presented in [33]. In [34], a method for an
explicit port-Hamiltonian formulation of multibond graphs was introduced.

In this paper, a direct methodology to obtain the steady state of linear time invariant
(LTI) systems modeled by multibond graphs is presented. First, Lemma 1 establishes the
multiport junction structure of a multibond graph in an integral causality assignment
(MBGI) whose multiport storage elements can have integral and derivative causality as-
signments. From this MBGI, the state space of this system is obtained. With the advantages
of the causality of a system in the physical domain, a multibond graph in a derivative
causality assignment (MBGD) is proposed. Based on this MBGD, a theorem to obtain the
steady state of the state variables of the system is proposed.

Classical methods for determining the steady state to determine the start of the
model of the multibody system are described by differential equations [35], state space, or
transfer matrices [36]. However, the methodology proposed in this paper allows modeling
and determining the structural properties of the multibody system without requiring its
mathematical model. Furthermore, the inversion of the state matrix for multiport systems
is carried out with the change of causality.

The main contribution of this paper is to obtain the steady state response of an LTI
stable system when the state matrix (A) is invertible in a multibond graph approach. When
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this system is modeled by an MBGI, the representation in state space (A, B, C, D) can be
calculated, and the dynamic and steady state responses during a simulation process are
shown. The inverse of the state matrix

(
A−1) to get the mathematical description of the

steady state using an MBGI is required. However, if the corresponding MBGD of this
system is obtained, the steady state in a direct way is determined. This result requires
calculating the matrix that relates the inputs of the system with the state variables (B∗) and
the outputs of the system (D∗) where

(
B∗ = −A−1B

)
and

(
D∗ = D− CA−1B

)
. Hence,

the steady state for the state
(
xss
)

and output
(

yss

)
variables is defined by xss = B∗uss and

yss = D∗uss, respectively, where uss is the steady state for the system inputs. Therefore, the
change from integral to derivative causality determines the inversion of the state matrix.

The great advantage of this paper with respect to the traditional algebraic approach
is that the steady state can be obtained without the need for the mathematical model in
the state space of the system. The matrices B∗ and D∗ that determine the steady state are
obtained in a direct way from the MBGD. Furthermore, the inverse of the state matrix is
not required, which is shown in Figure 2.
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Figure 2. Steady state comparison via a multibond graph in an integral causality assignment (MBGI)
and the traditional approach. MBGD, multibond graph in a derivative causality.

References [21–31] used multibond graphs for the modeling and simulation of
systems without requiring the calculation of the steady state response. Furthermore,
References [32,33] modeled and simulated multibody systems using multibond graphs.
However, a comparison of this paper with these references cannot be made. Moreover, the
systems of these references can be case studies for the determination of the steady state
response, as long as these systems have the conditions required by this paper.

Given a system, it is desired that all the storage elements have integral causality
because derivative causality determines linear dependence. However, derivative causality
to obtain the properties of structural controllability and structural observability has been
used. In this paper, determining the steady state behavior is applied. Derivative causality
allows changing the inputs and outputs of the storage elements that result in interesting
properties of the systems. For example, in [37,38], the invertibility of the state matrix of an
LTI system was obtained. In [39], the mixture of the integral and derivative causality for a
singularly perturbed LTI system determined the quasi-steady state model.

The advantage of this approach is the symbolic determination of the steady state
response, and this result can be useful for the analysis or synthesis of systems. Mainly
multibond graphs have been used for modeling, and the motivation to develop this paper
is to link many procedures and tools for single bond graphs to multibond graphs. Hence,
the results given in this paper can be extended to a class of non-linear systems.

Section 2 describes the typical modeling in bond graphs. The multiport junction
structure of an MBGI is proposed in Section 3. By assigning a derivative causality to the
multiport storage elements, the multiport junction structure of an MBGD is introduced
in Section 4. The main result of this paper (steady state) is presented in this section. The
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proposed methodology is applied to two case studies. A three-phase electrical system mod-
eled by a multibond graph is proposed. Hence, the steady state of the electrical currents is
obtained. The synchronous generator modeled by a multibond graph is the other case study.
The corresponding MBGDs of the generator and steady state are obtained. Simulation
results to verify this approach are shown. Finally, Section 5 gives the conclusions.

2. Modeling in a Bond Graph

The connection of two components always determines the power interactions. Further-
more, power can flow in any direction. In the bond graph methodology, effort e and flow f
are denoted as the power variables. The product of these variables represents the power P
flowing into or out of a port. The representation of a bond is shown in Figure 3 [40,41].

Fig. 1. Power bond.
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Figure 3. Power bond.

The power variables for some physical systems are indicated in Table 1.

Table 1. Power variables.

System Effort (e) Flow ( f )

Mechanical Force (F) Ang.velocity (ω)
Torque (τ) Velocity (ν)

Electrical Voltage (v) Current (i)

Hydraulic Pressure (P) Volume flow rate (Q)

Furthermore, the energy variables are necessary, denoted by momentum p(t) and dis-
placement q(t) where p(t) =

∫
e(t)dt and q(t) =

∫
f (t)dt. At each port, both an effort and

a flow exist. If one of the effort or flow variables is an input, the other will be the output.
The relationship is called causality. Hence, effort and flow are in opposite directions. The
causal stroke is represented by a short and perpendicular line made at one end of a bond. The
direction of the effort variable is indicated by the causal stroke, as shown in Figure 4 [40,41].

Fig. 1. Power bond.

( )e t

( )f t

Fig. 2. Causal bond.

( )e t
( )f t

Fig. 3. Bonds;

e
f

e

f

ye
yf

xe
xf

ze
zf



(a) (b) Fig. 4. Multibond

1

MP

0

MP MP

2e

1e

3e

4e

2f

1f
3f

4f

Figure 4. Causal bond.

Moreover, the sources, dissipation, and storage elements can be modeled in the bond
graph, and Table 2 gives these elements with their causal relations.

The basic elements of the multibond graphs are described in the next section.
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Table 2. Causal forms for one-ports.

Element Causal Form Causal Relation

Effort Source e(t) = E(t)

Flow Source f (t) = F(t)

Resistance e(t) = ΦR( f (t))

f (t) = Φ−1
R (e(t))

Capacitance e(t) = ΦC(
∫

f (t)dt)

f (t) = Φ−1
C ( de(t)

dt )

Inertia e(t) = ΦI(
∫

e(t)dt)

f (t) = Φ−1
I ( d f (t)

dt )

3. A Multibond Graph in an Integral Causality Assignment

In a multibond graph, the power variables are denoted by e(t) and f (t), where an
array of efforts or flows is given by an underscore. The typical single bond and a multibond
are shown in Figure 5 [15].

Fig. 1. Power bond.
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Fig. 2. Causal bond.
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Fig. 3. Bonds;
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Figure 5. Bonds; (a) single bond; (b) multibond.

Then, the composition of bonds results in a multibond according to Figure 3. The
multibond corresponds to three axes (x, y, z), and the power variables are given by:

e(t) =

 ex(t)
ey(t)
ez(t)

; f (t) =

 f x(t)
f y(t)
f z(t)


The power in any multibond is defined by P(t) = eT(t) f (t), where eT(t) is the

transpose of e(t). To express that the symbols, “1” and “0” represent arrays of 1-junctions
and 0-junctions, respectively; they are given by underscores. Then, the junctions in a
multibond graph are (1, 0). A basic multibond graph showing power variables, general
multiport elements represented by MP, and junctions is illustrated in Figure 6.
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Fig. 1. Power bond.
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Figure 6. Multibond graph with efforts and flows.

Furthermore, a multibond graph model is constructed of multiport elements, which
can be multiport storage elements (C, I), multiport dissipation elements R, and/or multi-
port sources

(
MSe, MS f

)
. These elements are shown in Figure 7 [15].

Fig. 5. Multiport
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Table 2. Causal forms

Figure 7. Multiport elements.

Multiport gyrators are essential elements in some multibond graph models that
determine the Eulerian junction structure, as shown in Figure 8 [15]. This multiport gyrator
is the triangle structure of three one-junctions and three gyrators, internally modulated
by the opposite junctions, which represent the gyroscopic forces described by the exterior
product in Euler’s equations for rotating coordinate frames.

The corresponding constitutive relationship of the multiport gyrator is defined by:

M(t) =

 M1(t)
M2(t)
M3(t)

 = X(Jwb)w(t)

=

 0 J3wb3 −J2wb2
−J3wb3 0 J1wb1
J2wb2 −J1wb1 0

 w1(t)
w2(t)
w3(t)


where wb =

[
wb1 wb2 wb3

]T is constant for this paper.
The different multiport elements that are part of a multibond graph model can be

grouped into interconnected blocks. Therefore, a multiport system represented by a
multibond graph model in a predefined integral causality assignment (MBGI) and their
key vectors are shown in Figure 9.
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Figure 9. Junction structure and key vectors of a multibond graph with integral causality assignment.

The multiport elements of Figure 7 are as follows:

•
(

MSe, MS f

)
represent the effort and flow modulated multiport sources.

• (C, I) denote the multiport storage elements defined by multiport capacitance and
inertia, respectively.

• R are the multiport dissipation elements that constitute the multiport resistors.
• (0 , 1, MTF) represent the multiport junction structure with 0 and 1 multiport junc-

tions, and the multiport transformers are denoted by MTF.
• GY is the multiport gyrator.

•
(

DSe, DS f

)
determine the detectors for the effort and flow, respectively.

The multiport energy variables are p(t) and q(t) related to multiport elements I and
C, respectively. The key vectors in Figure 7 are as follows:

• x(t) ∈ <n and xd(t) ∈ <m represent the multiport state variables for multiport storage
elements in integral and derivative causality assignments, respectively.

• z(t) ∈ <n and zd(t) ∈ <m are the co-energy vectors for multiport storage elements in
integral and derivative causality assignments, respectively.
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• IGY(t) ∈ <s and OGY(t) ∈ <s denote the inputs and outputs of the multiport gyrators.
• Din(t) ∈ <r and Dout(t) ∈ <r represent the relationships between the multiport

junction structure and multiport dissipation elements.
• u(t) ∈ <p and y(t) ∈ <q determine the multiport inputs and outputs of the system.

The state space representation of a multiport system based on a multibond graph
model is described by the following Lemma:

Lemma 1. Consider an LTI system modeled by a multibond graph with a preferred integral
causality assignment (MBGI) whose multiport storage elements can have integral and derivative
causality assignments. The relationships of the multiport key vectors are shown in Figure 9, and
the multiport junction structure is determined by:

•
x(t)

IGY(t)
Din(t)
y(t)
zd(t)

 =


S11

11 S12
11 S11

12 S11
13 S11

14
S21

11 S22
11 S21

12 S21
13 0

S11
21 S12

21 S22 S23 0
S11

31 S12
31 S32 S33 0

S11
41 0 0 0 0




z(t)
OGY(t)
Dout(t)

u(t)
•
xd(t)

 (1)

where the entries of S take values inside the set {0,±I, ±Kt}, I being the identity matrix and Kt
the multiport transformer module. The constitutive relationships for the multiport elements are
given by:

z(t) = Fx(t) (2)

zd(t) = Fdxd(t) (3)

OGY(t) = XGY IGY(t) (4)

Dout(t) = LDin(t) (5)

Furthermore, the properties of the submatrices of S are: (1) S11
11, S22

11, and S22 are skew-symmetric;

(2) S12
11 = −

(
S21

11
)T , S11

12 = −
(
S11

21
)T , S11

14 = −
(
S11

41
)T , and S21

12 = −
(
S12

21
)T , then a state space

representation of the multiport system is defined by:[ •
x(t)
y(t)

]
=

[
A B
C D

][
x(t)
u(t)

]
(6)

where the corresponding matrices are:

A = E−1
[
S11

11 + S12
11QXSXA + S11

12QLSLA

]
F (7)

B = E−1
[
S11

13 + S12
11QXSXB + S11

12QLSLB

]
(8)

C =
[
S11

31 + S12
31QXSXA + S32QLSLA

]
F (9)

D = S33 + S12
31QXSXB + S32QLSLB (10)

with:
E = I− S11

14F−1
d S11

41F (11)

and the algebraic loops matrices are described by:

QX = XGY

[
I−

(
S22

11 + S21
12MLS12

21

)
XGY

]−1
(12)

QL = L
[
I−

(
S22 + S12

21MXS21
12

)
L
]−1

(13)
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MX = XGY

(
I− S22

11XGY

)−1
(14)

ML = L(I− S22L)−1 (15)

SXA = S21
11 + S21

12MLS11
21 (16)

SLA = S11
21 + S12

21MXS21
11 (17)

SXB = S21
13 + S21

12MLS23 (18)

SLB = S23 + S12
21MXS21

13 (19)

The proof of Lemma 1 is presented in Appendix A.
The state equation described by Lemma 1 determines a system with linearly inde-

pendent and dependent state variables according to the causality of the multiport storage
elements. Hence, matrix E gives the relationships between these state variables.

When the dynamic period of a stable system has finished, the steady state response
can be obtained. From (6) and setting

•
x(t) = 0 for a system with invertible state matrix A,

the steady state is defined by:

xss = −A−1Buss (20)

yss =
(

D− CA−1B
)

uss (21)

where xss, yss and uss denote the steady state of the state variables, outputs and inputs,
respectively.

The steady state response of multiport systems in a multibond graph approach is
presented in the next section.

4. A Multibond Graph in a Derivative Causality Assignment

The information on the causality of a bond graph model has been a great tool to find
easy and direct results in the physical domain. The assignment of integral causality to a
single bond graph (BGI) and a multibond graph (MBGI) can determine the state spaces of
the systems. Furthermore, the structural controllability and structural observability of a
system in the physical domain are obtained through the causal paths from the sources and
detectors to the storage elements, respectively. Hence, the linearization of systems modeled
by single bond graphs or multibond graphs using causal paths have been presented [30].

In order to get the steady state of a system, a derivative causality for the multiport
storage elements of a multibond graph is assigned (MBGD), which is shown in Figure 10.

Fig. 7. Junction structure
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Figure 10. Multibond graph in a derivative causality assignment.

Figure 10 illustrates that all the multiport storage elements have a derivative causality
assignment, and the multiport dissipation elements and multiport gyrators must have the
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appropriate causality to get a correct multibond graph model. The relationships of the
MBGD are obtained through the following Lemma.

Lemma 2. Consider a multibond graph model in a preferred derivative causality assignment
(MBGD) of an LTI system whose scheme is shown in Figure 10, where all the multiport storage
elements have a derivative causality assignment and the multiport junction structure is defined by:

z(t)
zd(t)

Id
GY(t)

Dd
in(t)

y(t)

 =


J11

11 J12
11 J13

11 J11
12 J11

13
J21

11 J22
11 J23

11 J21
12 J21

13
J31

11 J32
11 J33

11 J31
12 J31

13
J11

21 J12
21 J13

21 J22 J23
J11

31 J12
31 J13

31 J32 J33





•
x(t)
•

xd(t)
Od

GY(t)
Dd

out(t)
u(t)

 (22)

where the entries of J take values inside the set {0, ±I, ±Kt}, I being the identity matrix and
Kt the multiport transformer module. The constitutive relations for the multiport dissipation and
multiport gyrators are expressed by:

Dd
out(t) = LdDd

in(t) (23)

Od
GY(t) = Xd

GY Id
GY(t) (24)

The multiport storage elements are given by (2) and (3). Furthermore, the properties of the
submatrices of J are: (1) J11

11, J22
11, J33

11, and J22 are skew-symmetric; (2) J12
11 = −

(
J21

11
)T , J13

11 =

−
(
J31

11
)T , J11

12 = −
(
J11

21
)T , J23

11 = −
(
J32

11
)T , J21

12 = −
(
J12

21
)T , and J31

12 = −
(
J13

21
)T . A state space

representation of this multiport system is described by: x(t)
xd(t)
y(t)

 =

 A∗11 A∗12
A∗21 A∗22
C∗ G∗

[ •
x(t)
•

xd(t)

]
+

 B∗1
B∗2
D∗

u(t) (25)

where the matrix partition is given by:

A∗11 = F−1
[
J11

11 + J13
11PXJ11

XA + J11
12PLJ11

LA

]
(26)

A∗12 = F−1
[
J12

11 + J13
11PXJ12

XA + J11
12PLJ12

LA

]
(27)

A∗21 = F−1
d

[
J21

11 + J23
11PXJ11

XA + J21
12PLJ11

LA

]
(28)

A∗22 = F−1
d

[
J22

11 + J23
11PXJ12

XA + J21
12PLJ12

LA

]
(29)

B∗1 = F−1
[
J11

13 + J13
11PXJXB + J11

12PLJLB

]
(30)

B∗2 = F−1
d

[
J21

13 + J23
11PXJXB + J21

12PLJLB

]
(31)

and the corresponding matrices for the output are:

C∗ = J11
31 + J13

21PXJ11
XA + J32PLJ11

LA (32)

G∗ = J12
31 + J13

21PXJ12
XA + J32PLJ12

LA (33)

D∗ = J33 + J13
21PXJXB + J32PLJLB (34)
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with:

J11
XA = J31

11 + J31
12NLJ11

21 (35)

J11
LA = J11

21 + J13
21NXJ31

11 (36)

J12
XA = J32

11 + J31
21NLJ12

21 (37)

J12
LA = J12

21 + J13
21NXJ32

11 (38)

JXB = J31
13 + J31

12NLJ23 (39)

JLB = J23 + J13
21NXJ31

13 (40)

The algebraic loop matrices are:

NL = Ld
(

I− J22Ld
)−1

(41)

NX = Xd
GY

(
I− J22

11Xd
GY

)−1
(42)

PL = Ld
(

I− J22Ld − J12
21NXJ21

12Ld
)−1

(43)

PX = Xd
GY

(
I− J22

11Xd
GY − J21

12NLJ12
21Xd

GY

)−1
(44)

The proof of Lemma 1 is presented in Appendix B.
Based on the multibond graph in a derivative causality assignment of an LTI system,

the steady state in the physical domain is proposed in the following Theorem.

Theorem 1. The steady state of the multiport state variables of multiport LTI stable systems
modeled by a multibond graph with a preferred integral causality assignment whose multiport
storage elements can have integral and derivative causality assignments and the corresponding
multibond graph in a derivative causality assignment has all the multiport storage elements is
defined by:

xss = B∗uss (45)

yss = D∗uss (46)

The proof of Theorem is presented in Appendix C.
Thus, given an MBGI of an LTI system and obtaining the MBGD, the steady state can

be determined in a direct way, and it is not necessary to get the state space of the system.
The proposed methodology is applied to the cases study in the next section.

5. Case Study

The multibond graph models for two linear physical systems are analyzed. The steady
state behavior of these systems in the physical domain applying the proposed results
is presented.

5.1. Three-Phase Electrical System

A three-phase electrical system formed by two sources and a transmission line for
each phase is shown in Figure 11.

Park’s transformation offers a great reduction in the mathematical modeling of three-
phase systems. This Parktransformation changes the parameters and variables from phases
(a, b, c) to new variables of the reference frame [42,43]. The new variables are (d, q, 0) with
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d and q axis components, and a stationary current that is the zero-sequence current is the
third variable. Thus, by definition:

 id(t)
iq(t)
i0(t)

 =

√
2
3


cos θ cos

(
θ − 2π

3
)

cos
(
θ + 2π

3
)

sin π sin
(
θ − 2π

3
)

sin
(
θ + 2π

3
)

1√
2

1√
2

1√
2


 ia(t)

ib(t)
ic(t)

 (47)

1
av

1
cv

1
bv

1
aR 1

aL

1
bR 1

bL

1
cR 1

cL

1
ai

1
bi

1
ci

3
ci3

cL

3
aL

3
ai

3
bL

3
bi

2
aL

2
bL

2
cL

2
ai

2
ci

2
bi

2
av

2
cv

2
bv

Fig. 9. Three-phase
Figure 11. Three-phase electrical system.

The angle θ is given by:

θ = wt +
π

2
(48)

where w denotes the rated angular frequency in rad/s.
In a similar way, to change the voltages and flux linkages:

vdq0(t) = Pvabc(t) (49)

λdq0(t) = Pλabc(t) (50)

By knowing the importance of Park’s transformation for the analysis of three-phase
electrical systems, the multibond graph model of this case study is shown in Figure 12.
The dynamic model of the system in the (d,q,0) axis is modeled by a multibond graph.
However, the supply voltages to the system are (a,b,c) and the multiport transformers to
convert (a, b, c) to (d, q, 0) are applied. Furthermore, the three-phase output current by
using a multiport transformer with the inverse Parktransformation is obtained.
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Figure 12. MBGI of the electrical system.

The multiport storage elements in an integral causality assignment are expressed by
the following key vectors:

x(t) =

[
p3(t)
p4(t)

]
;
•
x(t) =

[
e3(t)
e4(t)

]
; z(t) =

[
f3(t)
f4(t)

]

with the constitutive relationship:

F−1 = diag
{

Ldq0
1 , Ldq0

2

}
(51)

In a derivative causality assignment, they are described by:

xd(t) = p10(t);
•

xd(t) = e10(t); zd(t) = f10(t)

with the constitutive relationship:
F−1

d = L3 (52)

The multiport gyrators are defined by:

IGY(t) =

 f8(t)
f9(t)
f11(t)

; OGY(t) =

 e8(t)
e9(t)
e11(t)


with:

XGY = diag{X1(wL1), X2(wL2), X3(wL3)} (53)

For the multiport dissipation elements:

Din(t) = f12(t); Dout(t) = e12(t)
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with:
L= Rdq0

1 (54)

and the inputs and outputs are:

u(t) =
[

e1(t)
e2(t)

]
; y(t) =

 f21(t)
f25(t)
f23(t)


where the matrices for resistors, inductors, and gyrators are:

Ldq0
i = diag

{
Ld

i , Lq
i , L0

i

}
; i = 1, 2, 3 (55)

Rdq0
1 = diag

{
Rd

1, Rq
1, R0

1

}
(56)

Xi(wLi) =

 0 wLd
i 0

−wLq
i 0 0

0 0 0

; i = 1, 2, 3 (57)

The multiport junction structure of this MBGI is given by:

e3(t)
e4(t)
f8(t)
f9(t)
f11(t)
f12(t)
f21(t)
f25(t)
f23(t)
f10(t)



=



0 0 −I 0 0 −I I 0 −I
0 0 0 −I −I 0 0 I −I
I 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
I I 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0

PT 0 0 0 0 0 0 0 0
0 PT 0 0 0 0 0 0 0

PT PT 0 0 0 0 0 0 0
I I 0 0 0 0 0 0 0





f3(t)
f4(t)

e8(t)
e9(t)
e11(t)
e12(t)
e1(t)
e2(t)
e10(t)


(58)

In this case,
S11

11 = S22
11 = S22 = S21

12 = S12
21 = S21

13 = S23 = 0 (59)

and (7), (8) are re-written as:

A =
[
S12

11XGYS21
11 + S11

12LS11
21

]
F (60)

B = S11
13 (61)

From (51)–(58) with (60) and (61), the state equation of the electrical system is:

E
•
x(t) = −

[
Rdq0

1 + X1(wL1) + X3(wL3) X3(wL3)
X3(wL3) X2(wL1) + X3(wL3)

][
Ldq0

1 0
0 Ldq0

2

]−1

x(t)

+

[
I 0
0 I

]
u(t) (62)

where E is obtained from (11), (51), (52), and (58), which is:

E =

 I + Ldq0
3

(
Ldq0

1

)−1
Ldq0

3

(
Ldq0

2

)−1

Ldq0
3

(
Ldq0

1

)−1
I + Ldq0

3

(
Ldq0

2

)−1

 (63)
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with the outputs:

y(t) =

 PT 0
0 PT

PT PT

[ Ldq0
1 0
0 Ldq0

2

]−1

x(t) (64)

When a derivative causality is assigned to the multiport storage elements of a multi-
bond graph, then the corresponding MBGD of the system is shown in Figure 13.

The causality for the two multiport gyrator elements defined by the multibonds 8 and
9 have to be changed in order to have a correct multibond graph, and their key vectors are
given by:

Id
GY(t) =

 e8(t)
e9(t)
f11(t)

; Od
GY(t) =

 f8(t)
f9(t)

e11(t)


with the constitutive relation:

Xd
GY = diag

{
X−1

1 (wL1), X−1
2 (wL2), X3(wL3)

}
(65)

and the matrix for the dissipation field is:

Ld = L (66)

Figure 13. MBGD of the electrical system.
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Now, the multiport junction structure of the MBGD is defined by:



f3(t)
f4(t)

f10(t)
e8(t)
e9(t)
f11(t)
f12(t)


=



0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 I I 0 0 0 0
−I 0 −I 0 0 −I −I I 0
0 −I −I 0 0 −I 0 0 I
0 0 0 I I 0 0 0 0
0 0 0 I 0 0 0 0 0





e3(t)
e4(t)
e10(t)
f8(t)
f9(t)

e11(t)
e12(t)
e1(t)
e2(t)


(67)

For this case study, from (67), (30) is reduced to:

B∗1 = F−1J13
11PXJ31

13 (68)

and PX is re-written as:

PX = Xd
GY

(
I− J21

12LdJ12
21Xd

GY

)−1
(69)

The key step to get the steady state of the system is to calculate (69), which is described in
Appendix D.

By substituting (68) into (45) with (67), the steady state response is given by:

xss = F−1
[

I 0 0
0 I 0

]
PX

 I 0
0 I
0 0

uss (70)

Using the co-energy variables as state variables in electrical systems is very common, then
from (2) and (70) with (A46):

zss =

[
Px

11 Px
12

Px
21 Px

22

]
uss (71)

The three-phase representation of the system for each state variable is:

p3(t) =

 pd
3(t)

pq
3(t)

p0
3(t)

; e3(t) =

 ed
3(t)

eq
3(t)

e0
3(t)

; f3(t) =

 f d
3 (t)

f q
3 (t)

f 0
3 (t)


p4(t) =

 pd
4(t)

pq
4(t)

p0
4(t)

; e4(t) =

 ed
4(t)

eq
4(t)

e0
4(t)

; f4(t) =

 f d
4 (t)

f q
4 (t)

f 0
4 (t)


with the voltage inputs given by:

e1(t) =

 vd
1(t)

vq
1(t)

v0
1(t)

; e2(t) =

 vd
2(t)

vq
2(t)

v0
2(t)


By substituting (A46) into (71), the steady state responses in terms of the previous

physical variables are obtained by:



Appl. Sci. 2021, 11, 1717 18 of 38

f3(t) =

 f d
3 (t)

f q
3 (t)

f 0
3 (t)

 =
1
Λ


Rq

1
(wL1)

2
−(1+k)

wL1
0 −Rq

1k1

(wL1)
2

(1+k)k1
wL1

0

(1+k)
wL1

Rd
1

(wL1)
2 0 −(1+k)k1

wL1

−Rd
1k1

(wL1)
2 0

0 0 0 0 0 0





vd
1(t)

vq
1(t)

v0
1(t)

vd
2(t)

vq
2(t)

v0
2(t)


(72)

f4(t) =

 f d
4 (t)

f q
4 (t)

f 0
4 (t)

 =
1
Λ


−Rq

1k
w2L1L2

(1+k)k
wL2

0 −Rq
1kk1

w2L1L2

(1+k)kk1
wL2

+ Λ
w(L2+L3)

0

−(1+k)k
wL2

−Rd
1k

w2L1L2
0

−(1+k)kk1
wL2

− Λ
w(L2+L3)

−Rd
1kk1

w2L1L2
0

0 0 0 0 0 0





vd
1(t)

vq
1(t)

v0
1(t)

vd
2(t)

vq
2(t)

v0
2(t)


(73)

Furthermore, the resistances and inductances on the (d, q, 0) axis are defined by:

Rdq0 = PRabcP−1 (74)

Ldq0 = PLabcP−1 (75)

Unbalanced conditions may be simulated by appropriate modification of the pa-
rameters of the multiport system. Unbalanced conditions such as unbalanced voltages,
unsymmetrical inductances, and unsymmetrical resistors with appropriate changes can be
analyzed. However, these possible unbalanced conditions are not considered in this paper
and can be treated for future works.

In order to demonstrate the effectiveness of the proposed methodology, the steady state
response will be obtained from the multibond graph in an integral causality assignment
that represents the dynamic system and the direct substitution in (72) and (73).

Considering a balanced system, the numerical parameters of the elements are: Rabc =
diag{10 Ω, 10 Ω, 10 Ω}, Labc

1 = diag{0.1 H, 0.1 H, 0.1 H}, Labc
2 = diag{0.15 H, 0.15 H, 0.15 H},

Labc
3 = diag{0.5 H, 0.5 H, 0.5 H}, F = 60 Hz and the supply voltages

vabc
1 (t) =

 200 cos(377t)
200 cos(377t− 120)
200 cos(377t + 120)

V and vabc
2 (t) =

 100 cos(377t)
100 cos(377t− 120)
100 cos(377t + 120)

V.

When a system is balanced Rdq0 = Rabc, Ldq0 = Labc and the voltages are:

vdq0
1 (t) =

 −0.5438
244.9483

0

V; vdq0
2 (t) =

 −0.2719
122.4741

0

V

From (72) and (73), the steady state for the electrical currents is given by:
(

f d
3

)
ss(

f q
3

)
ss(

f 0
3
)

ss

 =

 −1.8291
0.2227

0

A;


(

f d
4

)
ss(

f q
4

)
ss(

f 0
4
)

ss

 =

 0.9070
−0.1720

0

A (76)

from the junction structure given by (67), the steady state for f10(t) is defined by:
(

f d
10

)
ss(

f q
10

)
ss(

f 0
10
)

ss

 =

 −0.9221
0.0507

0

A
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The simulation results by using the 20-SIM software of the MBGI are shown in Figure 14.
The dynamic performance and steady state periods of the complete system on the (d, q, 0) axis
are illustrated in Figure 14.

0 0.05 0.1 0.15 0.2
time {s}
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−3

−2

−1
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1
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( )0 0
1 1 0
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( )1 1 1.8286d d
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i t i A= -

( )1 1 0.2217q q
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i t i A=

C
u
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e
n

t 
{A
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C
u
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e
n

t 
{A

}

(c)

Figure 14. Dynamic and steady state responses on the (d, q, 0) axis: (a) idq0
1 (t) = f3(t); (b) idq0

2 (t) = f4(t); (c) idq0
3 (t) = f10(t).

The three phase currents (a, b, c) for each branch are shown in Figure 15. These

currents are obtained from the outputs y(t) =
[

f21(t) f25(t) f23(t)
]T

where f21 = iabc
1 ;

f25(t) = iabc
2 (t) and f23(t) = iabc

3 (t).
Since this system is under balanced conditions, an equivalent reduced circuit per

phase and with mesh currents can be solved [42,43]. In Appendix E, the check for mesh
currents in the phasor approach of this case study is described.

However, the approach of this paper has the following characteristics: (1) we analyze
under unbalanced conditions; (2) the mathematical model is not required; (3) the inverse
of the state matrix is not necessary; (4) multibond graphs permit compaction; (5) systems
have multi-domain energy; (6) the steady state response is symbolic.
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Figure 15. Three phase currents on the (a, b, c)axis: (a) f21(t) = iabc

1 (t); (b) f25(t) = iabc
2 (t); (c) f23(t) = iabc

3 (t).

5.2. Synchronous Generator

Synchronous generators represent one of the main sources of electrical energy in three-
phase power systems. These synchronous generators are powered by hydroelectric or
thermoelectric plants [42,43]. The schematic diagram of the cross-section of a synchronous
generator with a pair of poles is illustrated in Figure 16. The field winding uses direct
current and produces a magnetic field that induces voltages in the three phases in the
armature windings.

The circuits used for the analysis of a synchronous generator are shown in Figure 17.
The three-phase armature winding represents the stator circuits carrying current in all three
phases, and the field winding describes the rotor circuit.

Figure 18 shows an MBGI of a synchronous generator on the d-q axis.
Figure 18 contains two sections:

• Stator circuits formed by three phase windings on the d-q axis where Rd and Ld denote
the resistance and self-inductance on the d-axis circuit; Rq and Lq denote the resistance
and self-inductance on the q-axis circuit; M is the mutual inductance between the
stator and rotor; Vd and Vq are the supply voltages on thed-q axis; and the mechanical
part whose elements are TL the mechanical torque, J the moment of inertia, and D the
mechanical friction.
This section is modeled by a multibond graph where Vd, Vq, and TL are effort sources
that determine a multiport effort source MSe : VdqTL; the resistances on the d-q axis
and the friction give a multiport resistance R : RdqD; the inductances Ld, Lq, and
J represent a multiport field I : MdqJF with the mutual inductance M linking the
inductance rotor circuit L f ; the relationships between the electrical circuits and the
mechanical part are represented by a multiport gyrator MGY : X(do, q0, 0).

• The rotor circuit formed by the resistance and inductance on the field winding R : R f
and L f and the supply voltage for this winding MSe : Vf .
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Figure 16. Schematic diagram of a three-phase synchronous machine.
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Figure 17. Stator and rotor circuits of a synchronous generator.
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Fig. 16. Multibond

1 1
2 4

3

5 7

6
0dqR





MdqJ

MSe:Vf

R:Rf 0 0: , ,0X d q

MSe:VdqTL

Figure 18. Multibond graph of a synchronous generator.

In order to demonstrate that the multibond graph of Figure 18 represents a syn-
chronous generator, the mathematical model in state variables is obtained.

The multibond graph has the following key vectors:

x(t) =

[
p4(t)
p5(t)

]
;
•
x(t) =

[
e4(t)
e5(t)

]
; z(t) =

[
f4(t)
f5(t)

]
Din(t) =

[
f2(t)
f6(t)

]
; Dout(t) =

[
e2(t)
e6(t)

]
; u(t) =

[
e1(t)
e7(t)

]
IGY(t) = f3(t); OGY(t) = e3(t)

The constitutive relations are:

F−1 =

[
LdqJ MT

sR
MsR L f

]
(77)

L = diag
{

RdqD, R f

}
(78)

XGY = X(−d0,−q0, 0) =

 0 0 Pq0
0 0 −Pd0
−Pq0 Pd0 0

 (79)

where:

RdqD = diag
{

Rd, Rq, D
}

LdqJ = diag
{

Ld, Lq, J
}

MsR =
[

M 0 0
]

and the multiport junction structure is defined by:


e4(t)
e5(t)
f3(t)
f2(t)
f6(t)

 =


0 0 −I −I 0 I 0
0 0 0 0 −1 0 1
0 I 0 0 0 0 0
I 0 0 0 0 0 0
0 1 0 0 0 0 0





f4(t)
f5(t)
e3(t)
e2(t)
e6(t)
e1(t)
e7(t)


(80)
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From (80):
S22 = 0; S22

11 = 0; S21
12 = 0; S12

21 = 0 (81)

and substituting (81) into (15), (14), (12), and (13), the algebraic loop matrices are:

ML = QL = L (82)

MX = QX = XGY (83)

From (81)–(83), the state matrix (7) is reduced to:

A =
(

S11
11 + S12

11QXS21
11 + S11

12QLS11
21

)
F (84)

and the input matrix (8) is written as:

B = S11
13 + S12

11QXS21
13 + S11

12QLS23 (85)

From (77)–(80) and (82)–(85), the state space representation of the synchronous
generator is given by:[

e4(t)
e5(t)

]
=

[
−RdqD 0

0 −R f

][
f4(t)
f5(t)

]
+

[
X(−d0,−q0, 0) 0

0 0

][
f4(t)
f5(t)

]
+

[
e1(t)
e7(t)

]
(86)

To determine the steady state response, the MBGD of the synchronous generator is
shown in Figure 19.

Figure 19. MBGD of a synchronous generator.

By assigning a derivative causality to the multiport storage elements defined by the
bonds 4 and 7, then the bonds 2 and 6 have to change their causality in order to obtain the
correct multibond graph. Hence, the new vectors for the multiport dissipation elements
are given by:

Dd
in(t) =

[
e2(t)
e6(t)

]
; Dd

out(t) =
[

f2(t)
f6(t)

]
and its constitutive relation is:

Ld = diag
{

R−1
dqD, R−1

f

}
(87)

and for the multiport gyrator is:
Xd

GY = XGY (88)



Appl. Sci. 2021, 11, 1717 24 of 38

The multiport junction structure for the MBGD is defined by:


f4(t)
f5(t)
f2(t)
f6(t)
f3(t)

 =


0 0 0 I 0 0 0
0 0 0 0 1 0 0
0 0 0 I 0 0 0
−I 0 −I 0 0 I 0
0 −1 0 0 0 0 1





f4(t)
f5(t)
e2(t)
e6(t)
e3(t)
e1(t)
e7(t)


(89)

From (30) and (89), B∗ is reduced to:

B∗ = F−1
(

J11
12PLJLB

)
(90)

From (2), (45), and (90), the steady state response is defined by:

zss = J11
12PLJLBuss (91)

also, J21
13 = 0 then JLB is

JLB = J23 (92)

From (43), (87)–(89):

PL =

 R−1
dqD

(
I + XGYR−1

dqD

)−1
0

0 R−1
f

 (93)

and substituting (89), (92) and (93) into (91), the steady state in a symbolic form is
defined by:

zss =

 R−1
dqD

(
I + XGYR−1

dqD

)−1
0

0 R−1
f

uss (94)

By using physical variables:

zss =

[ (
f4

)
ss

( f5)ss

]
=



(
f d
4

)
ss(

f q
4

)
ss(

f J
4

)
ss

( f5)ss

 =


(id)ss(
iq
)

ss
(w)ss(
i f

)
ss


and system inputs:

uss =

[ (
e1
)

ss
(e7)ss

]
=



(
ed

1

)
ss(

eq
1

)
ss(

eTL
1

)
ss

(e7)ss

 =


(Vd)ss(
Vq
)

ss
(TL)ss(
Vf

)
ss


and (79), (87) and (94), the steady state for each state variable is described by:

(
f d
4

)
ss(

f q
4

)
ss(

f J
4

)
ss

( f5)ss

 =


P2

d0 + DRq Pd0Pq0 −Pq0Rq 0
Pd0Pq0 P2

q0 + DRd Pd0Rd 0
Pq0Rq −Pd0Rd RdRq 0

0 0 0
∆
R f

 1
∆



(
ed

1

)
ss(

eq
1

)
ss(

eTL
1

)
ss

(e7)ss

 (95)
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where:
∆ = DRdRq + P2

d0Rd + P2
q0Rq

Considering balanced conditions applied to the synchronous generator:

vabc(t) =

 100 cos(377t)
100 cos(377t− 120)
100 cos(377t + 120)

 V

and using Park’s transformation:

(
ed

1

)
ss(

eq
1

)
ss(

eTL
1

)
ss

(e7)ss

 =


122.4744 V

3.1903× 10−10 V
100 N ·m

30 V


the numerical parameters of the elements for the d-axis are Rd = 0.1 Ω and Ld = 1.7 H, for
the q-axis are Rq = 1 Ω and Lq = 1.64 H, the mutual inductance between d and q axes is
M = 1.55 H, for the field circuit are R f = 1 Ω, L f = 1.65 H, and the mechanical part is
given by J = 2.37N −m− s2 and D = 1. The initial flux linkages are: Pd0 = 0.002 A ·H
and Pq0 = 0.1279 A ·H. By substituting all the numerical values of the parameters into
(95), the steady state of the co-energy vector of the synchronous generator is given by:

(
f d
4

)
ss(

f q
4

)
ss(

f J
4

)
ss

( f5)ss

 =


−46.642 A

1.988 A
994.03 rad/s

30.00 A

 (96)

In order to prove the obtained results, the simulation of the synchronous generator
using the 20-SIM software is shown in Figure 20.

−50

0

50

100 id {A}  (id)ss=−46.6096 A

−1

1

3 iq {A} (iq)ss=1.9880 A

0

500

1000

1500
w {rad/s}  (w)ss=994.0349 rad/s

0 10 20 30 40 50 60 70 80 90 100
time {s}

−60

−30

0

30 if {A}  (if)ss=30.0014 A

Figure 20. Physical variables’ performance for the synchronous generator: id, iq, w, and i f .

The dynamic behavior based on the MBGI of Figure 18 for the synchronous generator
is obtained and shown in Figure 20. The steady state for the variables id, iq, w, and i f is
illustrated, and the results given in (96) are verified.
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Finally, Figure 21 shows the three-phase electrical current (ia, ib, ic) produced by the
synchronous generator. Under balanced conditions, the currents

(
id, iq

)
are transformed to

(ia, ib, ic) by using Park’s inverse transformation. Note that when the dynamic period is
over, the steady state response is reached.

Figure 21. Three-phase electrical current: ia, ib, and ic.

Finally, the analysis and methodologies developed for bond graphs using the junction
structure can be extended with this paper for multibond graphs.

6. Conclusions

The steady state response of LTI systems represented by multibond graph models is
presented. The multiport junction structure of a multibond graph in an integral causality
assignment (MBGI) that determines the state space of an LTI system is proposed. This MBGI
admits multiport storage elements in integral and derivative causality assignments that
represent linearly independent and dependent state variables, respectively. By assigning a
derivative causality to all storage elements, a multibond graph in a derivative causality
assignment (MBGD) is obtained. The relationships between MBGI and MBGD give the
direct determination of the steady state of a multiport system.

Two case studies are modeled by multibond graphs: a three-phase electrical system
and a synchronous generator. In both cases, the steady state using this approach is obtained.
Finally, in order to verify the steady state behavior of the state variables, the simulation
results are shown. The advantages for applying multibond graphs with respect to bond
graphs for multibody systems are clear: the short notation, junction structure, and mathe-
matical model are compact. Furthermore, the proposed junction structure to determine the
characteristics (structural observability, structural controllability, stability, control design)
in the physical domain can be key for new results.
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Appendix A. Proof of Lemma 1

From the second and third lines of (1) with (4) and (5):(
I− S22

11XGY

)
IGY(t) = S21

11z(t) + S21
12LDin(t) + S21

13u(t) (A1)

(I− S22L)Din(t) = S11
21z(t) + S12

21XGY IGY(t) + S23u(t) (A2)

Substituting (A2) into (A1):(
I− S22

11XGY

)
IGY(t) = S21

12L(I− S22L)−1
[
S11

21z(t) + S12
21XGY IGY(t) + S23u(t)

]
+S21

13u(t) + S21
11z(t) (A3)

and substituting (A1) into (A2) and (A2) into (A1):

(I− S22L)Din(t) = S12
21XGY

(
I− S22

11XGY

)−1[
S21

11z(t) + S21
12LDin(t) + S21

13u(t)
]

+S23u(t) + S11
21z(t) (A4)

It is assumed that ML and MX can be obtained. This is true since S22, S22
11, and XGY

are skew-symmetric matrices and L is a diagonal and constant matrix, then the algebraic
sum of an identity matrix and a skew-symmetric matrix is invertible.

From (14) and (15), (A3) and (A4) can be written as:

IGY(t) =
(

I− S22
11XGY − S21

12MLS12
21XGY

)−1[(
S21

11 + S21
12MLS11

21

)
z(t)

+
(

S21
13 + S21

12MLS23

)
u(t)

]
(A5)

Din(t) =
(

I− S22L− S12
21MXS21

12L
)−1[(

S11
21 + S12

21MXS21
11

)
z(t)

+
(

S23 + S12
21MLS21

13

)
u(t)

]
(A6)

In the same way,
(
I− S22

11XGY − S21
12MLS12

21XGY
)

and
(

I− S22L− S12
21MXS21

12L
)

can be
invertible.

By substituting (A5) and (A6) into the first line (1) with (4) and (5):

•
x(t) = S12

11XGY

(
I− S22

11XGY − S21
12MLS12

21XGY

)−1[(
S21

11 + S21
12MLS11

21

)
z(t)+(

S21
13 + S21

12MLS23

)
u(t)

]
+ S11

14
•
xd(t) + S11z(t) + S11

13u(t)

S11
12L
(

I− S22L− S12
21MXS21

12L
)−1[(

S11
21 + S12

21MXS21
11

)
z(t) (A7)(

S23 + S12
21MXS21

13

)]
u(t)

From (12) and (13), (A7) is reduced to:

•
x(t) =

[
S11 + S12

11QX

(
S21

11 + S21
12MLS11

21

)
+ S11

12QL

(
S11

21 + S12
21MXS21

11

)]
z(t) (A8)

+
[
S11

13 + S12
11QX

(
S21

13 + S21
12MLS23

)
+ S11

12QL

(
S23 + S12

21MXS21
13

)]
u(t) +

•
xd(t)
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From the fifth line of (1) with (2) and (3):

xd(t) = F−1
d S11

41Fx(t) (A9)

Fd is a diagonal and constant matrix, and S11
41 = −

(
S11

14
)T . Then, the E matrix is

invertible, and applying the derivative with respect to the time to (A9) and substituting
into (A8) with (2), the state equation of the state variables of the first line of (6) with (7)–(11)
is proven.

From the fourth line of (1) with (4) and (5):

y(t) = S11
31z(t) + S12

31XGY IGY(t) + S32LDin(t) + S33u(t) (A10)

Substituting (A5) and (A6) with (12) and (13):

y(t) = S11
31z(t) + S12

31QX

[(
S21

11 + S21
12MLS11

21

)
z(t) +

(
S21

13 + S21
12MLS23

)
u(t)

]
+

S32QL

[(
S11

21 + S12
21MXS21

11

)
z(t) +

(
S23 + S12

21MLS21
13

)
u(t)

]
+ S33u(t) (A11)

From (A11), (9) and (10), the output equation of the second line of (6) is proven.

Appendix B. Proof of Lemma 2

F is a constant and diagonal matrix, which is invertible. From the third line of (22)
with (23) and (24):

Dd
in(t) =

(
I− J22Ld

)−1(
J11

21
•
x(t) + J12

21
•

xd(t) + J13
21Xd

GYId
GY(t) + J23u(t)

)
(A12)

From the second line of (22) with (23) and (24):

Id
GY(t) =

(
I− J33

11Xd
GY

)−1(
J31

11
•
x(t) + J32

11
•

xd(t) + J31
12LdDd

in(t) + J31
13u(t)

)
(A13)

Ld is a constant and diagonal matrix, and Xd
GY is skew-symmetric. Furthermore, J22

and J33
11 are skew-symmetric matrices, and

(
I− J22Ld

)
and

(
I− J33

11Xd
GY

)
can be invertible

by solving (A12) and (A13):

Dd
in(t) =

(
I− J22Ld − J13

21NXJ31
12Ld

)−1[(
J11

21 + J13
21NXJ31

11

)•
x(t)+(

J12
21 + J13

21NXJ32
11

) •
xd(t) +

(
J23 + J13

21NXJ31
13

)
u(t)

]
(A14)

Id
GY(t) =

(
I− J33

11Xd
GY − J31

12NLJ13
21Xd

GY

)−1[(
J31

11 + J31
12NLJ11

21

)•
x(t)+(

J32
11 + J31

21NLJ12
21

) •
xd(t) +

(
J31

13 + J31
12NLJ23

)
u(t)

]
(A15)

The matrices J13
21 and J31

12 are related by J13
21 = −

(
J31

12
)T , then

(
I− J22Ld − J13

21NXJ31
12Ld

)
and

(
I− J33

11Xd
GY − J31

12NLJ13
21Xd

GY

)
can be invertible matrices. From the first line of (22)

with (A14) and (A15):
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z(t) = J13
11Xd

GY

(
I− J33

11Xd
GY − J31

12NLJ13
21Xd

GY

)−1[(
J31

11 + J31
12NLJ11

21

)•
x(t)

+
(

J32
11 + J31

21NLJ12
21

) •
xd(t) +

(
J31

13 + J31
12NLJ23

)
u(t)

]
+

J11
12Ld

(
I− J22Ld − J12

21NXJ21
12Ld

)−1[(
J11

21 + J13
21NXJ31

11

)•
x(t)

+
(

J12
21 + J13

21NXJ32
11

) •
xd(t) +

(
J23 + J12

21NXJ21
13

)
u(t)

]
+J11

11
•
x(t) + J11

13u(t) + J12
11
•

xd(t) (A16)

With (43) and (44), the expression (A16) is reduced to:

z(t) =
[
J11

11 + J13
11PX

(
J31

11 + J31
12NLJ11

21

)
+ J11

12PL

(
J11

21 + J13
21NXJ31

11

)]•
x(t) +[

J12
11 + J13

11PX

(
J32

11 + J31
12NLJ12

21

)
+ J11

12PL

(
J12

21 + J13
21NXJ32

11

)] •
xd(t) +[

J11
13 + J13

11PX

(
J31

13 + J31
12NLJ23

)
+ J11

12PL

(
J23 + J13

21NXJ31
13

)]
u(t) (A17)

From (26), (27) and (30) with (A17), the expression of the first line of (25) is proven.
From the second line of (22) with (A14), (A15), (43), and (44):

zd(t) =
[
J21

11 + J23
11PX

(
J31

11 + J31
12NLJ11

21

)
+ J21

12PL

(
J11

21 + J13
21NXJ31

11

)]•
x(t) +[

J22
11 + J23

11PX

(
J32

11 + J31
12NLJ12

21

)
+ J11

12PL

(
J12

21 + J13
21NXJ32

11

)] •
xd(t) +[

J21
13 + J23

11PX

(
J31

13 + J31
12NLJ23

)
+ J21

12PL

(
J23 + J13

21NXJ31
13

)]
u(t) (A18)

Substituting (28), (29) and (31) into (A18), the equation of the second line of (25) is proven.
From the fifth line of (22) with (A14), (A15), (43), and (44):

y(t) =
[
J11

31 + J13
21PX

(
J31

11 + J31
12NLJ11

21

)
+ J32PL

(
J11

21 + J13
21NXJ31

11

)]•
x(t) +[

J12
31 + J13

21PX

(
J32

11 + J31
12NLJ12

21

)
+ J32PL

(
J12

21 + J13
21NXJ32

11

)] •
xd(t) +[

J33 + J13
21PX

(
J31

13 + J31
12NLJ23

)
+ J32PL

(
J23 + J13

21NXJ31
13

)]
u(t) (A19)

From (32)–(34) and (A19), the output of the third line of (25) is proven.

Appendix C. Proof of Theorem

Firstly, given an LTI system modeled by a multibond graph in an integral causality
assignment (MBGI), this MBGI contains multiport storage elements that represent the
state variables. Furthermore, these elements can have an integral causality assignment
determining linearly independent state variables (x) and the linearly dependent state
variables

(
xd

)
, and a derivative causality is assigned.

In order to prove that the state matrix A associated with(20) and is invertible, some
given properties are necessary.

Property 1 [37]. The order n of a model is equal to the number of I and C elements in
integral causality when a preferred integral causality is assigned to the bond graph model.

Property 2 [38].
(a) The bond graph rank q of the state space A matrix deduced from the bond graphs is

equal to the number of I and C elements in derivative causality when a preferred derivative
causality is assigned to the bond graph model.

(b) The number k = n− q of structurally nummmodes is equal to the number of I and
C elements, which have to stay in integral causality when a preferred derivative causality
is assigned to the bond graph model.
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From the state equation for a bond graph model described by [37]:

•
x(t) = Ax(t) + Bu(t)

with x(t) ∈ <n and u(t) ∈ <p.
Property 2 (a) can be interpreted by [37]:

x(t) = A−1 •x(t)− A−1Bu(t)

If some of the I and C elements do not accept a derivative causality assignment, this means
that the A matrix is not invertible and then not of full rank.

The second part of Property 2 corresponds to the writing of the characteristic polyno-
mial of the A matrix as [37]:

P(s) = det(sIn − A) = sk
(

sq + aq−1sq−1 + · · ·+ a1s + a0

)
The point of view is structural because we detect k structurally null modes, but not the
cases where a0 could be null.

Hence, a multibond graph in a derivative causality (MBGD) can be obtained. This
MBGD has all the multiport storage elements in a derivative causality assignment, and
using Lemma 2, (25) can be written as:[

x(t)
xd(t)

]
=

[
A∗11 A∗12
A∗21 A∗22

][ •
x(t)
•

xd(t)

]
+

[
B∗1
B∗2

]
u(t) (A20)

The first line of (A20) is expressed by:

•
x(t) = (A∗11)

−1x(t)− (A∗11)
−1A∗12

•
xd(t)− (A∗11)

−1B∗1u(t) (A21)

Substituting (A21) into the second line of (A20):

xd(t) = A∗21

[
(A∗11)

−1x(t)− (A∗11)
−1A∗12

•
xd(t)− (A∗11)

−1B∗1u(t)
]
+ A∗22

•
xd(t) + B∗2u(t) (A22)

and reducing:

xd(t) = A∗21(A
∗
11)
−1x(t) +

[
A∗22 −A∗21(A

∗
11)
−1A∗12

] •
xd(t) +

[
B∗2 −A∗21(A

∗
11)
−1B∗1

]
u(t) (A23)

the state variables xd are linearly dependent, then:

A∗22 −A∗21(A
∗
11)
−1A∗12 = 0

B∗2 −A∗21(A
∗
11)
−1B∗1 = 0

The expression (A23) is reduced to:

xd(t) = A∗21(A
∗
11)
−1x(t)

and deriving with respect to time:

•
xd(t) = A∗21(A

∗
11)
−1 •x(t) (A24)

From the first line of (A20) with (A24):

x(t) =
[
A∗11 + A∗12A∗21(A

∗
11)
−1
]•

x(t) + B∗1u(t)
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in a compact form:
x(t) = Ã∗

•
x(t) + B∗1u(t)

where:
Ã∗ = A∗11 + A∗12A∗21(A

∗
11)
−1

in terms of state equation:

•
x(t) =

(
Ã∗
)−1

x(t)−
(

Ã∗
)−1

B∗1u(t) (A25)

Comparing (A25) with E
•
x = Ax + Bu given in (6):

Ã∗ = A−1E (A26)

and:
−
(

Ã∗
)−1

B∗1 = E−1B

Then:
B∗1 = −Ã∗E−1B (A27)

It is known that the steady state for an LTI system is:

xss = −A−1Buss (A28)

and substituting (A26) into (A27), the equation (45) is proven.
From the third line of (25) and (A24):

y(t) =
[
C∗ + G∗A∗21(A

∗
11)
−1
]•

x(t) + D∗u(t) (A29)

(A29) can be reduced to:

y(t) = C̃∗
•
x(t) + D∗u(t) (A30)

where:
C̃∗ = C∗ + G∗A∗21(A

∗
11)
−1 (A31)

Substituting (A25) into (A30):

y(t) = C̃∗
(

Ã∗
)−1

x(t) +
[

D∗ − C̃∗
(

Ã∗
)−1

B∗
]

u(t)

and comparing with the second line of (6)

C̃∗
(

Ã∗
)−1

= C (A32)

and:
D∗ − C̃∗

(
Ã∗
)−1

B∗ = D (A33)

By substituting (A26) into (A32):

C̃∗ = CA−1E (A34)

and from (A26), (A27), and (A34), (A33) is given by:

D∗ = D− CA−1B (A35)
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The steady state for the output is obtained from the second line of (6):

yss = Cxss + Duss (A36)

and substituting (A28) into (A36) with (A35), the equation (46) is proven.

Appendix D. Calculation of PX

From (69):
P−1

x Xd
GY = I− J21

12LdJ12
21Xd

GY (A37)

and substituting (65), (54), and (67) into (A37):

(
Xd

GY

)−1
Px =

 I + R1X−1
1 (wL1) 0 X3(wL3)
0 I X3(wL3)

−X−1
1 (wL1) −X−1

2 (wL2) I

−1

(A38)

In order to obtain (A38), the following partition is done [44]: I 0 X3(wL3)
0 I X3(wL3)

−X−1
1 (wL1) −X−1

2 (wL2) I

−1

=

[
R11 R12
R21 R22

]−1

=

[
∆̂R
−1 −∆̂R

−1
R12R−1

22

−R−1
22 R21∆̂R

−1
R−1

22 + R−1
22 R21∆̂R

−1
R12R−1

22

]
(A39)

where:
∆̂R = R11−R12R−1

22 R21 (A40)

then:

R11 =

[
I 0
0 I

]
; R12 =

[
X3(wL3)
X3(wL3)

]
(A41)

R21 =
[
−X−1

1 (wL1) −X−1
2 (wL2)

]
; R22 = I

By substituting (A41) into (A40):

∆̂R =

[
I + R1X−1

1 (wL1) + X3(wL3)X−1
1 (wL1) X3(wL3)X−1

2 (wL2)

X3(wL3)X−1
1 (wL1) I + X3(wL3)X−1

2 (wL2)

]
(A42)

To get the inverse of (A42), we apply (A39) one more time, with the partition:

[
I + R1X−1

1 (wL1) + X3(wL3)X−1
1 (wL1) X3(wL3)X−1

2 (wL2)

X3(wL3)X−1
1 (wL1) I + X3(wL3)X−1

2 (wL2)

]
=

[
W11 W12

W21 W22

]
(A43)

with:
∆̂W = W11−W12W−1

22 W21 (A44)

From (A43) and (A44) W−1
22 =

[
I + X3(wL3)X−1

2 (wL2)
]−1

and from (57) and

X−1
i (wLi) =

 0 −1
wLi

0
1

wLi
0 0

0 0 0

, we have W−1
22 = diag

{
L2

L2+L3
, L2

L2+L3
, 1
}

. For simplicity,

we use the notation D
(

L2
L2+L3

, L2
L2+L3

, 1
)

= diag
{

L2
L2+L3

, L2
L2+L3

, 1
}

. W12 = D
(

L3
L2

, L3
L2

, 0
)

,

W21 = D
(

L3
L1

, L3
L1

, 0
)

.

∆̂R
−1

=

[
∆̂W
−1 −∆̂W

−1
W12W−1

22

−W−1
22 W21∆̂W

−1
W−1

22 + W−1
22 W21∆̂W

−1
W12W−1

22

]
(A45)
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∆̂W is given by:

∆̂W =


1 + L2L3

L1(L2+L3)
−Rd

1
wL1

0
Rq

1
wL1

1 + L2L3
L1(L2+L3)

0
0 0 1


and the inverse is:

∆̂W
−1

=
1
Λ

 1 + k Rd
1

wL1
0

−Rq
1

wL1
1 + k 0

0 0 1

 = α11

where k = L2L3
L1(L2+L3)

, Λ = (1 + k)2 +
Rd

1 Rq
1

(wL1)
2 , and k1 = L3

L2+L3
; then k = L2

L1
k1.

To calculate the rest of the elements of (A45), we have:

−W−1
22 W21∆̂W

−1
=
−1
Λ

 (1 + k)k Rd
1

wL1
k 0

−Rq
1

wL1
k (1 + k)k 0

0 0 0

 = α21

−∆̂W
−1

W12W−1
22 =

−1
Λ

 (1 + k)k1
Rd

1
wL1

k1 0
−Rq

1
wL1

k1 (1 + k)k1 0
0 0 0

 = α12

W−1
22 + W−1

22 W21∆̂W
−1

W12W−1
22 =

−1
Λ

 (1 + k)kk1 +
L2Λ

L2+L3

Rd
1

wL1
kk1 0

−Rq
1

wL1
kk1 (1 + k)kk1 +

L2Λ
L2+L3

0
0 0 Λ

 = α22

Finally,

∆̂R
−1

=

[
α11 α12
α21 α22

]
also

−∆̂R
−1

R12R−1
22 = −

[
α11X3(wL3) + α12X3(wL3)
α21X3(wL3) + α22X3(wL3)

]
=

[
α13
α23

]
−R−1

22 R21∆̂R
−1

=
[
−X−1

1 (wL1)α11 −X−1
2 (wL2)α21

]
=
[

α31 α32
]

R−1
22 + R−1

22 R21∆̂R
−1

R12R−1
22 = I− X−1

1 (wL1)α11X3(wL3)− X−1
2 (wL2)α21X3(wL3) = α33

from (65) and (A38)

Px =

 Px
11 Px

12 Px
13

Px
21 Px

22 Px
23

Px
31 Px

32 Px
33

 =

 X−1
1 (wL1)α11 X−1

1 (wL1)α12 X−1
1 (wL1)α13

X−1
2 (wL2)α21 X−1

2 (wL2)α22 X−1
2 (wL2)α23

X3(wL3)α31 X3(wL3)α32 X3(wL3)α33

 (A46)

Appendix E. Mesh Current Solution

Considering the balanced system given in Figure 11, the three-phase system can be
reduced to one system per phase, as shown in Figure A1.
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Figure A1. Single-phase equivalent system.

The circuit can be solved with the well-known mesh formulation described by:[
R1 + J2πF(L1 + L3) J2πFL3

J2πFL3 J2πF(L2 + L3)

][
i1
i2

]
=

[
V1
V2

]
Substituting the numerical parameters of the elements given by R1 = 10 Ω, L1 = 0.1 H,
L2 = 0.15 H, L3 = 0.5 H, V1 = 200 V, V2 = 100 V, and F = 60 Hz, the formulation is
defined by: [

10 + J226.1946 J188.4955
J188.4955 J245.0441

][
i1
i2

]
=

[
200
100

]
Mesh currents are given by:[

i1
i2

]
=

[
10 + J226.1946 J188.4955

J188.4955 J245.0441

]−1[ 200
100

]
[

i1
i2

]
=

[
0.1838− J1.4932
−0.1414 + J0.7405

]
=

[
1.5044∠− 82.97920 A
0.7538∠100.81430 A

]
The current in L3 is:

i3 = i1 + i2 = 0.0424− J0.7527 = 0.7538∠− 86.77280 A

Now, the graphical behavior of the three-phase currents for i1 is shown in Figure A2a,b,
illustrating i1 from the MBGI of Figure 12.

0 0.05 0.1 0.15 0.2 0.25
time {s}

−2

−1

0

1

2

i1_a {A}
i1_b {A}
i1_c {A}

(a)

0 0.05 0.1 0.15 0.2 0.25
time {s}

−2

−1

0

1

2

i1_a {A}
i1_b {A}
i1_c {A}

(b)
Figure A2. Three-phase currents for i1: (a) single-phase equivalent circuit; (b) MBGI.

Figure A3 shows the simulation of the equivalent reduced circuit of Figure A1 and the
MBGI of Figure 12 for i1 simultaneously.
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0 0.05 0.1 0.15 0.2 0.25
time {s}

−2

−1

0

1

2

i1_a {A} Circuit
i1_b {A} Circuit
i1_c {A} Circuit
i1_a {A} MBGI
i1_b {A} MBGI
i1_c {A} MBGI

Figure A3. Three-phase current for i1 using the equivalent reduced circuit and MBGI.

The graphical behavior of the three-phase currents for i2 is shown in Figure A4a,b,
illustrating i1 from the MBGI of Figure 12.

0 0.05 0.1 0.15 0.2 0.25
time {s}

−1

−0.5

0

0.5

1
i2_a {A}
i2_b {A}
i2_c {A}

(a)

0 0.05 0.1 0.15 0.2 0.25
time {s}

−2

−1

0

1

2

i2_a {A}
i2_b {A}
i2_c {A}

(b)
Figure A4. Three-phase currents for i2: (a) single-phase equivalent circuit; (b) MBGI.

Figure A5 shows the simulation of the equivalent reduced circuit of Figure A1 and the
MBGI of Figure 12 for i2 simultaneously.

0 0.05 0.1 0.15 0.2 0.25
time {s}

−2

−1

0

1

2

i2_a {A} Circuit
i2_b {A} Circuit
i2_c {A} Circuit
i2_a {A} MBGI
i2_b {A} MBGI
i2_c {A} MBGI

Figure A5. Three-phase current for i2 using the equivalent reduced circuit and MBGI.
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The graphical behavior of the three-phase currents for i3 is shown in Figure A6a,b,
illustrating i3 from the MBGI of Figure 12.

0 0.05 0.1 0.15 0.2 0.25
time {s}

−1

−0.5

0

0.5

1
i3_a {A}
i3_b {A}
i3_c {A}

(a)

0 0.05 0.1 0.15 0.2 0.25
time {s}

−2

−1

0

1

2

i3_a {A}
i3_b {A}
i3_c {A}

(b)
Figure A6. Three-phase currents for i3: (a) single-phase equivalent circuit; (b) MBGI.

Figure A7 shows the simulation of the equivalent reduced circuit of Figure A1 and the
MBGI of Figure 10 for i3 simultaneously.

0 0.05 0.1 0.15 0.2 0.25
time {s}

−2

−1

0

1

2

i3_a {A} Circuit
i3_b {A} Circuit
i3_c {A} Circuit
i3_a {A} MBGI
i3_b {A} MBGI
i3_c {A} MBGI

Figure A7. Three-phase current for i3 using the equivalent reduced circuit and MBGI.
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