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Abstract: Fat-tree networks have many equal-cost redundant paths between two hosts. To achieve
low flow completion time and high network utilization in fat-tree, there have been many efforts to
exploit topological symmetry. For example, packet scatter schemes, which spray packets across all
equal-cost paths relying on topological symmetry, work well when there is no failure in networks.
However, when symmetry of a network is disturbed due to a network failure, packet scatter schemes
may suffer massive packet reordering. In this paper, we propose a new load balancing scheme named
LBSP (Load Balancing based on Symmetric Path groups) for fat-trees. LBSP partitions equal-cost
paths into equal sized path groups and assigns a path group to each flow so that packets of a flow
are forwarded across paths within the selected path group. When a link failure occurs, the flows
affected by the failure are assigned an alternative path group which does not contain the failed link.
Consequently, packets in one flow can still experience almost the same queueing delay. Simulation
results show that LBSP is more robust to network failures compared to the original packet scatter
scheme. We also suggest a solution to the queue length differentials between path groups.

Keywords: fat-tree; per-packet load-balancing; packet-reordering

1. Introduction

Modern datacenter networks have common characteristics such as high bandwidth
and low latency. In addition, many typical datacenter network topologies have rich path
diversity and symmetry [1,2]. Since many applications that run in datacenter networks
require high throughput or short flow completion time, there have been extensive research
on how to achieve those objectives through load-balancing [3].

Depending on the granularity of load balancing, approaches are categorized into
flow-level and packet-level. One of the major factors in deciding granularity of load-
balancing is the issue of packet reordering. Flow-level load-balancing is favorable to
in-order delivery, but prone to low network utilization and long flow completion time, so
there have been a lot of efforts to address the issues [2–7]. Packet-level load-balancing is
more effective in spreading traffic evenly than flow-level load-balancing, although it needs
to address the packet reordering issue. Many proposals have been made to make packet-
level load-balancing more viable by exploiting the unique characteristics of datacenter
networks [8–13]. A notable approach is to exploit the topological symmetry more directly.
The authors of [9] showed the effectiveness of RPS (Random Packet Spraying), which
sprays packets of a flow randomly across equal-cost paths. When RPS is used in symmetric
datacenter networks, the packets belonging to the same flow experience almost the same
queuing delay, and consequently most of them arrive at the destination in order. The study
also shows that asymmetry due to a link failure results in queue length differentials, which
adversely impacts TCP performance of RPS. DRILL [12] also exploits a key characteristics
of a symmetric Clos network. DRILL employs per-packet load-balancing based on queue
occupancies. To handle topological asymmetry, DRILL decomposes the network into a
minimal number of components, such that the paths within each component are symmetric.
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DRILL assigns each flow to a component and applies per-packet load-balancing across
paths inside the component.

A recent proposal for architectural fault-tolerance of data center networks [14] shows
the possibility that the network topology can keep symmetric more stably. Considering this
technological trend, it is important to explore how to more effectively exploit topological
symmetry and high degree of path diversity.

We propose a proactive per-packet load-balancing scheme named LBSP (Load Balanc-
ing based on Symmetric Path groups) for fat-trees. In LBSP, multiple equal-cost paths are
partitioned into path groups of equal size. For each flow, packets belonging to the flow are
sprayed across the paths within one path group chosen based on the destination address.
A notable feature is that path groups are of equal size. Hence, symmetry holds not only
between paths inside a path group, but also between path groups in terms of the number
of available paths for each flow. If a link failure occurs, LBSP selects an alternative path
group for the flows affected by the failure so that each flow is assigned a path group which
does not contain a failed link. Consequently, even in the presence of failures, for each flow,
LBSP conserves symmetry of multiple paths that the packets of the flow pass through.

A strength of LBSP is that, in a normal state (with no failures), it does not have to
maintain the information on mapping a flow to a path. Only when an alternative path group
needs to be used, the information is maintained for the relevant address range. In addition,
the simple rule on mapping a flow to a path group facilitates hardware implementation for
speedup.

To evaluate LBSP, we simulated three-tier fat-trees and compared flow completion
time between LBSP and the original packet scatter scheme. Simulation results show that
LBSP is much more robust to network failures than the original packet scatter schemes.

Since LBSP forwards packets based on the destination address, traffic distribution
between path groups can be uneven. To reduce the queue length differentials between path
groups, we propose a solution that uses not only the destination address but also the input
port number.

The rest of this paper is structured as follows. In Section 2, we explain the background
and motivation. In Section 3, we describe our scheme LBSP in detail. Section 4 demonstrates
the simulation results. In Section 5, we propose a solution to reduce the queue length
differentials between path groups. Section 6 describes the related work. In Section 7, we
conclude.

2. Background and Motivation
2.1. Assumption on Fat-Tree

In this paper, we consider packet forwarding in fat-trees. We use the three-tier k-ary
fat-tree architecture proposed in [1]. A k-ary fat-tree has k pods, each containing two layers
of k/2 switches. Each k-port switch (ToR switch) in the lower layer is directly connected
to k/2 hosts. Each of the remaining k/2 ports is connected to k/2 of the k ports in the
aggregation layer of the hierarchy. There are (k/2)2 k-port core switches. Each core switch
has one port connected to each of k pods. The ith port of any core switch is connected to
pod i such that consecutive ports in the aggregation layer of each pod switch are connected
to core switches on (k/2) strides. We note that each ToR switch is connected with k/2
aggregation switches and each aggregation switch with k/2 core switches. In general, a
fat-tree built with k-port switches supports up to k3/4 hosts. A fat-tree architecture in [1]
can achieve the full bisection bandwidth of a network. In this paper, we assume that k≥ 8 is
a power of 2. The links between ToR switches and aggregation switches are homogeneous
and the links between aggregation switches and core switches are homogeneous. In a
fat-tree, path selection is made only in the stage of upward forwarding because downward
forwarding is deterministic once upward forwarding is determined.
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2.2. Per-Packet Load Balancing and Packet Reordering

Packet reordering can affect performance of TCP. Since fast retransmit of TCP degrades
performance severely in multipath routing environments where out-of-order packets are
produced persistently, packet-level scheduling schemes usually entail measures to handle
out-of-order packets. DeTail [8], a cross-layer network stack, constructs a lossless fabric
in the link layer. When the queue fills up beyond a threshold, flow control messages
are propagated back to quench the source. As a consequence, packets are seldom lost
due to congestion, so DeTail simply disables fast retransmit and fast recovery in TCP.
Out-of-order packets are reordered at the end-hosts. In Fastpass [10], a centralized arbiter
assigns a timeslot and a path to each packet with the aim of achieving nearly zero queues.
The arbiter requires complete knowledge of every host’s traffic demand in the network
and communicates with end-hosts for each request for packet scheduling. Presto [11]
mitigates packet reordering by balancing traffic load in units of flowcell whose size is set
to the maximum TCP Segment Offload size (64 KB). When out-of-order packets are to be
reordered at the end-hosts, the resequencing delay must be short.

2.3. Exploiting Topological Symmetry

Some proposals employ per-packet load-balancing approaches that exploit topological
symmetry of data center networks. The authors of [9] demonstrated the efficacy of RPS
(Random Packet Spraying), which sprays packets of a flow randomly across the equal-cost
paths. As far as topological symmetry holds, all the packets belonging to the same flow
experience almost the same queuing delay even if they pass through different paths. Hence,
it leads to only a few out-of-order packets.

However, if the network becomes asymmetric due to failures, spraying packets across
multiple paths with unbalanced traffic may cause massive packet reordering. Figure 1
shows an example in an 8-ary fat-tree. For better visibility, Figure 1 shows only the switches
and links that the flows specified by three source-destination pairs pass through. If the
link connecting Switch A11 and Switch T11 fails, packets of the flow from S3 to D3 may
experience different queueing delay depending on which core switch they pass through.
That is, packets passing through core switches C12, C13, C14, or C15 may observe shorter
queueing latency than packets passing through the other core switches. As a result, the
flow from S3 to D3 may suffer TCP performance degradation due to packet reordering.
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Hence, the approaches relying on symmetry of a network need to cope with failures
which result in asymmetry. In [9], a variant of RED called SRED (Selective RED) is proposed
to be used together with RPS. If a flow that cannot use all the multiple paths makes
differentials of queue lengths between switches, SRED drops the packets belonging to
the flow more aggressively. By doing this, SRED prevents flows that cannot use all the
equal-cost paths from affecting the other “normal” flows. DRILL (Distributed Randomized
In-network Localized Load-balancing) [12] employs per-packet decisions at each switch
based on local queue occupancies and randomized algorithms to distribute load. DRILL
compares queue lengths of two random ports plus the previously least-loaded port and
sends the packet to the least loaded of these. When a failure causes topological asymmetry,
DRILL decomposes the network into a minimal number of symmetric components, assigns
each flow to a component, and applies load-balancing across paths inside the component.
Although DRILL provides a more generalized solution, it is notable that the time complexity
of constructing a labeled multigraph needed for decomposition is O(L2V2), where L and V
are the number of leaves and the number of vertices, respectively, in the case of a symmetric
leaf-spine datacenter. Therefore, while decomposition is done instantaneously for small
sized networks, it may take considerable time to perform decomposition for large-scaled
networks.

We argue that, for topologically symmetric networks such as fat-trees, per-packet
load-balancing can be enhanced at lower overhead costs by fully exploiting symmetry.
If a network keeps more stably symmetric and concurrent failures are rare, it would be
desirable to exploit symmetry to the full. Recent fault-tolerance-related research enables us
to envision more robust network architectures, which support our approach. For instance,
shareable backup [14] realizes fast recovery (in sub-milliseconds) from failures using backup
switches. In shareable backup, the entire data center shares a pool of backup switches.
When a switch or link failure occurs, the internal connections to it on all the circuit switches
are reconfigured to connect to a backup switch, which replaces a failed switch to restore
full capacity. This implies that, after being in a transient asymmetric state, a network can
revert to a symmetric state shortly.

3. Load Balancing Based on Symmetric Path Groups (LBSP)
3.1. Basic Idea

The proposed scheme LBSP aims to achieve high TCP performance by exploiting
a symmetric portion of redundant paths even when symmetry of the whole network is
disturbed due to failures. The main features of LBSP are as follows.

• Initially, LBSP partitions shortest paths into fixed equal sized symmetric subsets called
path groups.

• In a normal state without a failure, LBSP assigns a (default) path group to a flow based
on the least significant bits of the destination address.

• In the case of failure detection, LBSP selects an alternative path group instead of the
default path group for the flows affected by the failure.

LBSP partitions multiple equal-cost paths between two hosts into more than one path
group of the same size. The rationale for partitioning multiple equal-cost paths is that, in
the presence of network failures, we can reduce packet reordering by forwarding packets
through a portion of multiple paths which are still symmetric. DRILL [12] also adopts
the idea of partitioning multiple shortest paths between a source and destination pair
into components. However, since DRILL partitions a network into a minimal number of
symmetric components, the component sizes may be different. In addition, when there
is no failure in a fat-tree, the whole network has only one component. In contrast, LBSP
partitions the shortest paths into fixed equal-sized symmetric path groups. This enables
the topological symmetry property to be satisfied not only between paths inside a path
group but also between path groups. This reduces the complexity for handling asymmetry.

For each flow, a path group is selected according to a rule based on the destination
address. This allows every packet belonging to the same flow to use the same path group.
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For ease of explanation, we consider an 8-ary fat-tree, although our scheme is scalable to
larger fat-trees. In the 8-ary fat-tree depicted in Figure 2, consider a packet going from
Host 0 to Host 112. If no restriction is imposed on path selection, the packet can choose
one of the 16 shortest upward paths which pass through different core switches. Now we
partition the links between the Switch T0 and the aggregation Switches A0, A1, A2, and A3
into two link groups, which are indicated by the red solid lines and the red dashed lines
in Figure 2. Similarly, for each of the aggregation Switches A0, A1, A2, and A3, the links
between the aggregation switch and its neighbor core switches are partitioned into two
link groups, represented by the blue solid lines and the blue dashed lines in Figure 2. If we
combine the first partition with the second partition, as shown in Table 1, the 16 symmetric
upward paths are partitioned into four path groups, each of which consists of four paths.
The flow from Host 0 to Host 112 is assigned one of the four path groups. For simplicity,
we assign a link group to each flow based on the parity of the least significant bits of the
destination address. Within a link group, packets are forwarded in a round-robin manner.
This method guarantees that the flows selecting the same path group observe almost the
same queue occupancies.
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Table 1. Path groups and link groups in 8-ary fat-tree.

Path Group Link Group
(ToR Switch–Aggregation Switch)

Link Group
(Aggregation Switch–Core Switch)

0 0 0
1 0 1
2 1 0
3 1 1

If a link failure occurs, LBSP tries to select an alternative path group which does not
contain failed links. Figure 3 illustrates selecting an alternative path group. Suppose that
the default path group for the flow S2→ D2 is the paths that pass through Switches A9
and A11. If Switch T11 detects the link failure between Switch A11 and itself, it assigns the
flow an alternative link group that passes through Switches A8 and A10. Then, at Switches
A8 and A10, the flow S2→ D2 is assigned one of the two link groups. Suppose that the
flow S2→ D2 is assigned the same path group as the flow S1→D1 according to the least
significant bits of the destination address. Then, as indicated by the green dashed lines,
the paths for the flow S2→ D2 are as follows: S2→ T11→ {A8,A10}→ {C0,C2,C8,C10}
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→ {A4,A6}→ T5→ D2. It is important to note that the two flows S1→ D1 and S2→ D2
using the same path group will observe almost the same queue lengths.
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3.2. Partitioning Paths and Assigning Path Groups

The practical design of LBSP was inspired by Flexible Interval Routing (FIR), which
Gomez et al. used to implement a routing algorithm for fat-trees [15]. We associate
each output port with the range of the destination addresses. The range indicates all the
destination hosts which are reachable from the output port. Since each upward output
port leads to every host in a fat-tree, the range of destination addresses contains all the
host addresses. In contrast, each downward output port has a limited range. Figure 4a
illustrates the ranges associated with the output ports of an aggregation switch and a core
switch in a fat-tree shown in Figure 2.

In a fat-tree, once upward paths are selected, the downward paths are deterministic.
In an 8-ary fat-tree, a flow from a pod to another pod has 16 shortest paths. LBSP partitions
all the 16 shortest paths into four path groups using the parity of each port number of
each switch on the upward paths. Since partitioning the shortest paths in this way makes
consecutive packets pass through different ports in a ToR switch, it helps reduce latency
when a round-robin manner is used.

LBSP selects a path group for each flow based on the least significant bits of the
destination address. That is, for upward forwarding, each ToR switch and aggregation
switch selects uplinks based on the LSB and the second LSB, respectively. Across paths
within a link group, packets of a flow are forwarded in a round-robin manner. Hence,
flows can use increased bandwidth with a higher probability compared to flow-level load
balancing. For downward forwarding, each switch forwards a packet according to the
range of destination address. Figure 4b illustrates partitioning paths and assigning path
groups to source-destination pairs according to the least significant bits of the destination
address. If each output port has a mask register that indicates which bit of the destination
address is to be compared, then in a normal state without failures, LBSP does not have to
keep the information on which specific flow is assigned to which path group.
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3.3. Handling Asymmetry due to Failures
3.3.1. Failure Notification

For failure detection, each switch sends hello messages to its neighbor switches. On
detecting a failure, it floods a failure message in the network. A failure message contains
the information on the failure type and the address range affected by the failure. With
the failure types, a switch can figure out which link group should not be selected. Table 2
summarizes the failure types.

Table 2. Failure Types.

Type Type of Failed Link Affected Link Group

0 ToR switch–aggregation switch Link Group 0
1 ToR switch–aggregation switch Link Group 1
2 aggregation switch–core switch Link Group 0
3 aggregation switch–core switch Link Group 1

A failure message from a switch detecting a failure of a downlink contains the address
range associated with the port incident to the failed link. In contrast, a failure message
from a switch detecting a failure of an uplink contains the address range of all the hosts. In
the fat-tree shown in Figure 2, suppose that the link between A31 and T31 is down. The
failure message sent from A31 will contain the address range of [124 . . . 127] and the failure
type of 1. Suppose that Switch T3 receives the failure message. Then, T3 cannot select Link
Group 1 for the flows with the destination address in the range 124–127.

In the case of a three-tier fat-tree, the failure messages take at most three hops to reach
all the aggregation switches and ToR switches that need the failure information to select a
link group.
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3.3.2. Modifying the Forwarding Tables

As previously described, when the network has no failure, upward forwarding in LBSP
is performed as predefined. If a switch receives a message about a failure which affects
the flows passing through itself, it modifies the forwarding table so that an alternative link
group is chosen for packets with the destination addresses within the range indicated in
the failure message.

For instance, consider a flow from Host 15 to Host 115, as shown in Figure 5. Since the
LSB of the destination address (115) is 1, Switch T3 forwards packets using output Ports 1
and 3. Similarly, since the second LSB of 115 is 1, Switches A1 and A3 selects output Ports
1 and 3 for the flow. Suppose that the link between the aggregation Switch A31 and the
core switch C15 is down. The failure message conveys the information that the affected
address range is [112 . . . 127] and the failure type is 3. It means that the flows with the
address in the range of 112–127 are affected by the failure and cannot be forwarded through
Link Group 1 between an aggregation switch and a core switch. Note that failure Type 3
does not affect the forwarding tables of ToR switches. On receiving the failure message,
aggregation Switches A1 and A3 modify their forwarding tables as follows.

Destination Address Range Link Group (Output Ports)

112 . . . 127 Link Group 0 (Ports 0, 2)

Suppose that Host 15 sends packets to Host 115 at that point. Since the LSB of 115 is
1, Switch T3 forwards packets using Ports 1 and 3 as predefined. However, Switches A1
and A3 select Ports 0 and 2 instead of Ports 1 and 3, because the modified forwarding table
indicates that packets whose destination addresses are in the range [112 . . . 127] must be
forwarded through output Ports 0 and 2.
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3.4. Discussions

LBSP is economical in that it does not require a lot of state information and can be
implemented with simple hardware. In a normal state without a failure, LBSP can forward
packets upwards by simply mapping the least significant bits of the destination address to
a path group. The bit comparison needed can be implemented by using the mask register
as in FIR [15] so that only the specific bit(s) of the destination address is compared. Only
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when a failure is notified, the entries for the corresponding address range and link group
are maintained in the forwarding table. To indicate whether the forwarding table needs to
be searched, the restriction register proposed for FIR in [15] can be used.

While we describe the LBSP scheme using 8-ary fat-trees for simplicity, LBSP performs
better for a higher fan-out ratio (k). For k-ary fat-trees with k ≥ 16, we have two choices on
partitioning shortest paths: either having more path groups or having more paths in each
path group. Having more path groups enhances robustness to failures because each switch
has more alternative path groups. On the other hand, having more paths in a path group
helps reduce the flow completion time for each flow.

Effectiveness of LBSP becomes more evident in fat-trees with high oversubscription
ratios, where queues build up more. If a failure occurs in such a network, network
asymmetry and queue buildup may jointly cause severe packet reordering. LBSP is effective
also in the presence of a degraded link. When packets in a TCP flow are spread evenly
across multiple paths, performance of the flow depends on the slowest path. LBSP deals
with a degraded link and a disconnected link in the same way by selecting an alternative
path group.

Some might be concerned that selecting an alternative path group in the presence of
a failure can significantly reduce network utilization. The proportion of flows that need
to select an alternative path due to a link failure is not significant. For k-ary fat-tree, the
proportion of the source-destination pairs to be rerouted due to a link failure between a ToR

switch and an aggregation switch is
(

k3

4 −
k
2

)
k
2 /

(
k3/4

2

)
Hence, in the illustrative 8-ary

fat-tree of Figure 3, if a failure occurs on the link between a ToR switch and an aggregation
switch, the flows which communicate with the four hosts connected to the ToR switch are
affected, and the proportion of the source-destination pairs to be rerouted is approximately
6%. Hence, network utilization is not significantly affected.

While LBSP assigns a path group to a flow simply based on the least significant bits of
the destination address, entropy can be increased by hashing several fields in the packet
header to a path group as in ECMP (Equal-cost Multiple Path). ECMP, which is the de
facto flow-level load balancing scheme, distributes flows across available multiple paths by
statically hashing some fields in the packet header. Hence, ECMP does not require state
information, either. It is known that ECMP works well for a large number of flows with
sufficient entropy but that it may underutilize a network when a few long flows collide on
some path [6]. We expect that, by employing ECMP-like hashing and utilizing multiple
symmetric paths, LBSP can mitigate the shortcomings of ECMP without causing excessive
packet ordering.

4. Simulation Results

We performed simulations for an 8-ary fat-tree and a 16-ary fat-tree using ns-2. All
links have bandwidth of 1 Gbps, queue size of 250 packets, and propagation delay of 50 µs.
At the transport layer, we used TCP-Reno and set the retransmission timer to 20 ms. For
tests with network failures, we simulated link failures, node failures, and degraded links.
For link failure tests, we disconnected a link connecting an aggregation switch and a ToR
switch. For node failure tests, we made an aggregation switch down. A node failure causes
multiple link failures simultaneously. We measured the flow completion time, which is
important in datacenter networks.

Short-lived flows in an 8-ary fat-tree

First, we simulated all-to-all short-lived flows of size 32 KB with load factor 0.8
repeatedly for about 3.3 s. In total, 128 flows were generated using a random permutation.
Figure 6a shows the 99.9th percentile of the flow completion times. Neither a link failure
nor a node failure affects the flow completion time of TCP flows significantly. Since the
flows are short, the queues do not build up enough to cause packet reordering or packet
drops. Hence, the original packet scatter scheme, which distributes packets using more
paths, performs marginally better than LBSP.
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Long-lived flows in an 8-ary fat-tree

To validate the functionality of LBSP for long-lived flows, we chose to use a similar
test scenario to the one used in [6] considering the limit of our simulation environment.
We generated a small number of 100 MB flows from hosts on ToR switches in two specific
pods transmitting to hosts on another specific ToR switch in a different pod. We simulated
four flows with size 100 MB repeatedly for about 20 s. The source and destination hosts
were selected as depicted in Figure 3. For the source-destination pairs <S1, D1>, two flows
were generated. For each of the other source destination pairs <S2, D2> and <S3, D3>,
one flow was generated. This scenario is not advantageous to LBSP because <S1,D1> and
<S2,D2> were selected so that, under the link failure, the three flows from S1 and S3 take
the same paths. Figure 6b shows the 99.9th percentile of flow completion times for the
original packet scatter scheme and LBSP. When there is no failure in the network, both
schemes perform almost equal. When a failure occurs at a link between a ToR switch
and an aggregation switch, as shown in Figure 3, LBSP performs better than the original
packet scatter scheme despite the disadvantageous scenario. For the original packet scatter
scheme, the flow from S3 suffers the greatest degradation of performance. The reason is
that the packets from S3 arrive at D3 out of order due to different queuing delays. In LBSP,
however, the flows seldom experience packet reordering. When an aggregation switch in
the source pod of the three flows fails, the gap between two schemes becomes greater than
that shown in Figure 6b.

Long-lived flows in a 16-ary fat-tree with oversubscription ratios

We simulated one link failure in a 16-ary fat-tree. We partitioned shortest paths into
the same number of path groups as in an 8-ary fat-tree. Consequently, since each path
group has more paths, the probability of packet loss due to congestion decreases. We
disconnected a link connecting a ToR switch and an aggregation switch as in the tests for
an 8-ary fat-tree. We generated five flows going to one pod: four flows coming from the
pod containing the disconnected link and one flow from another pod. Figure 7a shows the
result. For oversubscription ratio of 1:1, a link failure or a node failure does not significantly
affect TCP flow completion time of the original scatter scheme. This was also the case
when we simulated oversubscription ratio of 4:1 by reducing the bandwidth of the links
connecting core switches and aggregation switches to 250 Mbps. However, when the
oversubscription ratio was set to 8:1, the flow completion time of the original packet scatter
scheme drastically increases, even when only one link is disconnected. In this case, there
was no packet drop. However, it was observed that queue occupancy irregularly increased
in many links connecting core switches and aggregation switches. It implies that the
destination host suffered a lot of packet reordering. In contrast, the flow completion time
of LBSP is not affected.
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Fat-trees with degraded links

We simulated asymmetries by degrading the bandwidth of a link from 1 Gbps to 100
Mbps for an 8-ary fat-tree and a 16-ary fat-tree both. We set the bandwidth of one link
connecting a ToR switch and an aggregation switch to 100 Mbps. Short-lived flow tests
were performed using flows with size 32 KB for the 8-ary fat-tree and long-lived flow tests
using flows with size 100 MB for the 8-ary and 16-ary fat-trees both.

Figure 7b shows the results for short-lived flow tests. We can see that the effect of a
degraded link on flow completion time is larger than that of a disconnected link which
is shown in Figure 6a. Note that performance of LBSP is less affected by a degraded link
compared to that of the original packet scatter scheme. Figure 7c shows the results for long-
lived flow tests. The impact of degraded links on performance of the original packet scatter
scheme is enormous. For both 8-ary and 16-ary fat-trees, the original packet scatter scheme
experiences over eleven times longer flow completion time than in a normal condition.
Since there is no packet drop, the performance degradation is only due to out-of-order
packets. LBSP can avoid such huge degradation of performance by selecting an alternative
path group that does not contain the degraded link.

5. Handling Queue Length Differentials
5.1. Introducing States in Link Group Selection

As mentioned above, the basic forwarding decision of LBSP is made based on the
destination address. If the traffic load is high and the LSB and second LSB of the destination
addresses are not evenly distributed, it can cause a large queue differential between link
groups which leads to low network utilization and delayed response time. If a slight degree
of transient packet reordering is allowed, we can reduce the queue length differentials
between link groups by permitting more flexibility in selecting a path group.

First, we consider a ToR switch. For each ToR switch, we maintain three states, States
0, 1, and 2, as shown in Figure 8. A switch starts from State 0. At State 0, the switch
selects a link group purely based on the LSB and second LSB of the destination address.
A ToR switch monitors the queue lengths of the link groups. If the queue length of Link
Group 0 exceeds a given threshold and is t times longer than that of Link Group 1, the ToR
switch transitions to State 1. Conversely, if the queue length of Link Group 1 exceeds the
threshold and is t times longer than that of Link Group 0, the ToR switch transitions to
State 2. Since being in State 1 indicates that the output ports belonging to Link Group 0
are more crowded, we migrate a part of the traffic from Link Group 0 to Link Group 1 by
relaxing the condition for selecting Link Group 1. More specifically, at State 1, packets with
the destination addresses LSB 0 can also be forwarded to ports in Link Group 1 if the parity
of the input port (through which the packet came in) is 1. Likewise, at State 2, a part of the
traffic for Link Group 1 is forwarded to the ports in Link Group 0. Table 3 summarizes how
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to determine the link group for a packet in each state. When the queue lengths between
two link groups are almost equal while being in State 1 or State 2, the switch returns to
State 0.
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Table 3. Determining a link group for a packet in each state.

if (this switch is a ToR switch) then
D← LSB of the destination address
else if (this switch is an aggregation switch) then
D← second LSB of the destination address
end
S← parity of the input port through the packet came in

State 1 State 0 State 2

if (D == 0) then
if (S == 0) then
group = 0
else
group = 1
end
else
group = 1
end

if (D == 0) then
group = 0
else
group = 1
end

if (D == 1) then
if (S == 0) then
group = 0
else
group = 1
end
else
group = 0
end

Aggregation switches essentially use the same mechanisms for state transition and
link group selection as ToR switches, although we need to consider one difference. At the
first hop, all the packets belonging to one flow are forwarded through the ports within the
same ToR switch anyway. In contrast, at the second hop, the packets belonging to one flow
are forwarded through a pair of aggregation switches. To make sure that the packets of the
same flow encounter the same group of flows and experience almost the same queueing
delay, the two aggregation switches must select the same link groups for each flow. To this
end, a pair of aggregation switches (e.g., A0 and A2 in Figure 5) transitions to the same state
simultaneously by exchanging the state information. In addition, aggregation switches
use a looser condition for a state transition compared to a ToR switch, because the state
transition needs a message exchange between the aggregation switches. In the numerical
analysis in Section 5.2, we set the threshold and the t value to 5 and 1.5, respectively, for
ToR switches, whereas, for aggregation switches, the threshold and the t value are set to 20
and 2, respectively.

When a switch transitions from State 0 to State 1 or State 2 and a flow starts to select an
alternative link group with a shorter queue length, transient packet reordering can occur.

5.2. Numerical Results

We calculate the queue lengths under the mechanism presented in Table 3, by present-
ing the numerical results about the queue length for each hop in an 8-ary fat-tree. Adopting
the time-slot model that is used in [16], we made similar assumptions. All packets have
the same length. All switches are output-queued, and the capacity of each port is 1. Each
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output port transmits one packet at each time-slot if the queue is not empty. Permutation
traffic patterns are used and therefore once a host is selected for packet generation, the
destination address of the generated packet is determined accordingly. In each time slot,
each host generates packets using Bernoulli distribution.

To evaluate the behavior of a round robin manner, we randomly select a host for each
pod in each time-slot and then generate four consecutive packets with the offered load ρ on
each input port of each ToR switch. Packets are sent for 1000 time slots. We repeated this
process for 100 randomly generated traffic permutation patterns. We varied the offered
load ρ from 0.3 to 0.9.

We calculated not only the average queue lengths but also the difference between the
queue lengths of different link groups. Recall that the queue lengths at the ports in the same
link group are always almost equal. Figure 9a shows the average queue lengths for the
upward hop outputs. We can see that traffic distribution mechanism prevents the queue
lengths from growing excessively. As the offered load ρ increases, the queue lengths at the
second hop (aggregation switches) are longer than those at the first hop (ToR switches).
The reason is that aggregation switches less frequently perform state transitions in order to
reduce message exchanges between aggregation switches. At the third hop (i.e., output
ports of core switches), the average queue length increases linearly with respect to the
offered load ρ, and remains below 1. Figure 9b shows the difference between the queue
lengths of different link groups. Since aggregation switches less frequently perform state
transitions, the queue length differences at the second hop are larger than those at the
first hop.
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6. Related Work

There have been many efforts to enhance load-balancing in datacenter networks.
We summarize the efforts in two categories: flow-level load-balancing and packet-level
load-balancing.

Flow-level load balancing

ECMP (Equal Cost Multiple Path) is a standard forwarding scheme which is sup-
ported by commodity switches. ECMP distributes traffic across equal-cost paths based
on flow hashing. VL2 [2] uses a variant of VLB (Valiant Load Balancing) that employs a
random flow-level distribution to avoid packet reordering. In this variant of VLB, each
host selects an intermediate switch (i.e., core switch) independently and randomly. This
scheme may consume additional network capacity by extending a path length, but it can
improve utilization of bisection bandwidth. Hedera [4] is a centralized flow scheduling
scheme aimed at maximizing network utilization. Collecting information on flows, Hedera
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dynamically computes paths so that flows avoid busy links. Hedera requires a picture of
the whole routing and traffic demands of all flows. CAAR (Congestion-Aware Adaptive
foRwarding) [5] is a distributed forwarding scheme where each flow selects the most
underutilized path. The flow can be redirected to an underutilized path in transmission
if the selected path becomes congested. Each switch selects the next hop based on its
neighbors’ queue length which is updated in each time slot. Similarly, FlowBender [6]
reroutes flows when congestion is detected. In FlowBender, however, congestion is de-
tected using end-to-end notification ECN and rerouting is initiated by end-hosts detecting
congestion. In [17], the authors presented a theoretical solution to DLBP (Dynamic Load
Balancing Problem) in hybrid switching data center networks with converters. MPTCP [7]
generates several subflows for a flow and assigns each subflow one of multiple paths. Since
each subflow performs congestion control independently, it mitigates the problem due to
packet reordering. MPTCP requires significant changes to protocol stacks for end-hosts. To
improve the efficacy of MPTCP for many-to-one traffic, DCMPTCP [18] has been proposed.

Packet-level load balancing

DeTail [8] is a cross-layer network stack to reduce the long-lived flow completion
time tail. At the link layer, DeTail employs flow control based on port buffer occupancies
to construct a lossless fabric. At the network layer, DeTail performs per-packet adaptive
load balancing. Each switch dynamically picks a packet’s next hop using the congestion
information obtained from port buffer occupancies. Out-of-order delivery is reordered at
the end-hosts. The study in [9] shows the feasibility RPS (Random Packet Spraying) in
which packets of every flow are randomly assigned to one of the available shortest paths to
the destination. It shows experimentally that RPS works well in symmetric topologies. To
handle asymmetry due to failures, SRED (Selective RED) is proposed for use along with
RPS. SRED selectively enables RED only for flows that induce queue length differentials. If
a flow that cannot use all the multiple paths makes differentials of queue lengths between
switches, SRED drops the packets belonging to the flow more aggressively. To this end,
SRED requires a topology aware centralized fault manager, which configures end hosts
or ToR routers to mark all packets of flows affected by a link failure so that downstream
routers can employ RED only on marked packets. Fastpass [10] is a system where a logically
centralized arbiter controls each packet’s timing and path. The ultimate goal of the arbiter
is to make queue lengths almost zero. At large scales, Fastpass needs several arbiters.
Presto [11] performs proactive load-balancing with granularity in-between flow-level and
packet-level. Edge vSwitches break each flow into discrete units of packets, called flowcells
whose size is the maximum TCP Segment Offload size (64 KB). Presto employs a centralized
approach. A centralized controller collects the network topology, partitions the network
into a set of multiple spanning trees, and assigns each vSwitch a unique forwarding label in
each spanning tree. When a failure occurs, the controller prunes the spanning trees that are
affected by the failure or enforces a weighted scheduling algorithm over the spanning trees.
Packet reordering is handled by the GRO (Generic Receive Offload) handler modified to
reduce computational overhead. DRILL (Distributed Randomized In-network Localized
Load-balancing) [12] is a datacenter fabric for Clos networks which employs per-packet
decisions at each switch based on local queue occupancies and randomized algorithms to
distribute load. DRILL compares queue lengths of two random ports and the previously
least-loaded port, and sends the packet to the least loaded of these. To handle asymmetry,
DRILL partitions network paths into groups, each of which is symmetric and applies micro
load balancing inside each path group. TTC (Thresholded Two-Choice) [13] has been
proposed to improve downward load-balancing in fat-trees based on the observation that
DRILL [12], which well balances upward traffic, may perform poorly on downward load
balancing since local path decisions are agnostic to downward congestion. Similar to DRILL,
TTC also uses a two-choice algorithm. However, to improve downward load-balancing,
TTC makes local routing decisions from two choices: a default path using the deterministic
D-mod-k scheme [15] and a random choice. The random choice is selected only when the
load of the default path exceeds that of the random choice by a threshold. However, TTC
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has yet to handle link failures and packet reordering. More recently, VMS (Virtual Multi-
channel Scatter) [19] has been proposed. VMS is a packet-level load-balancing scheme
which runs in the virtual switch layer.

7. Conclusions

We propose a new per-packet load balancing scheme LBSP that exploits symmetric
redundant paths in fat-trees. LBSP is focused on enabling packets in a flow to experience
almost the same queueing delays even when the whole network becomes asymmetric due
to network failures. To this end, LBSP partitions equal-cost paths between two hosts into
more than one path groups of the same size. Each flow is assigned a path group based on
the least significant bits of the destination address. Packets of a flow are forwarded across
the links of the selected path group. When a failure is detected, LBSP selects an alternative
path group for the flows affected by the failure so that the multiple paths that the packets
of the flows pass through are symmetric. Only when a failure occurs, LBSP maintains the
state information to reroute the affected flows. Simulation results show that LBSP is much
less affected by network failures than the original packet scatter scheme.

Since LBSP selects a path group based on the destination address, the difference
between the queue lengths of different link groups can be large for heavy load. To mitigate
the problem, we propose a solution which migrates a part of the traffic from the default
link group to the alternative link group.
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