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Abstract: Real-time diagnostics of complex technical systems such as power plants are critical to keep
the system in its working state. An ideal diagnostic system must detect any fault in advance and
predict the future state of the technical system, so predictive algorithms are used in the diagnostics.
This paper proposes a novel, computationally simple algorithm based on the Auto-Regressive
Integrated Moving Average model to solve anomaly detection and forecasting problems. The good
performance of the proposed algorithm was confirmed in numerous numerical experiments for
both anomaly detection and forecasting problems. Moreover, a description of the Autoregressive
Integrated Moving Average Fault Detection (ARIMAFD) library, which includes the proposed
algorithms, is provided in this paper. The developed algorithm proves to be an efficient algorithm
and can be applied to problems related to anomaly detection and technological parameter forecasting
in real diagnostic systems.

Keywords: online ARIMA; time series forecasting; anomaly detection; technical system diagnostics;
streaming data

1. Introduction

The number of real-time or online applications that generate time series data is in-
creasing rapidly in various industries. The importance of anomaly detection in such
applications is also increasing [1]. Generally, anomaly detection algorithms are intended to
find a point of change in the system’s state or behavior. The traditional classification of
anomaly detection algorithms includes “online” and “offline” types. The main difference
between them is that the offline data availability problem assumes that the full set of data
is available, transforming the problem by finding all existing changepoints accurately.
The online problem, in turn, expects the data to become available point by point in real
time, transforming the problem by finding anomalies as soon as they occur [2]. Online
or streaming applications are mainly used in critical systems where real-time decisions
with acceptable quality are required. The trade-off between the detector’s quality and
computational time is one of the challenges for online algorithms. The problems that can
be solved using these algorithms are actually important and vary from computer network
intrusions to heart attack recognition.

The Autoregressive Moving Average (ARMA) model is widely used for time series
analysis and forecasting [3–5]. The ARMA model is a combination of the Autoregressive
model (AR), which describes the analytical component of the signal, and the moving
average model (MA), which describes the noise component of the signal. The advantage of
the ARMA model is its clear mathematical and statistical base. However, there are serious
drawbacks such as time-consuming model tuning and hyperparameter selection. Another
disadvantage of the model is its applicability only to stationary time series. The latter
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problem is resolved with the Autoregressive Integrated Moving Average (ARIMA) model,
which evaluates the differences in the time series. A number of studies have been carried
out for the automatic selection of hyperparameters; however, the need for manual selection
of hyperparameters remains [6]. ARMA and ARIMA models and their modifications, such
as Seasonal Autoregressive Integrated Moving Average (SARIMA), are described in detail
in [6–8].

Since the state of systems can gradually change over time, causing data drifts or
statistical changes in the data, continuous updating of the model is required to achieve the
correct results and to make the model more robust and adaptive [9]. As such, continuous
model learning or online refitting is used in many applications and can be achieved in a
wide variety of practical tasks, such as predicting the values of technological parameters
and detecting equipment faults [10]. Unfortunately, training the classical ARIMA models
with a large amount of data is time consuming, making it inefficient to use and refit the
model in the online mode. Many works are dedicated to creating online ARIMA algorithms
for forecasting problems (see [11–17]). Most of them are based on removing the terms of
the moving average and increasing the order of the auto-regressive part.

In this paper, a comparison of several online algorithms based on the ARIMA model
is provided. Moreover, this paper represents a new algorithm that can be used both for
anomaly detection and forecasting purposes in real-time streaming applications. Numeri-
cal experiments were conducted on the Numenta Anomaly Benchmark (NAB) [9], which
contains anomalous data from real-world streaming applications and a real-world propri-
etary turbogenerator-bearing vibration dataset. All proposed algorithms are implemented
in the library in the Python3 programming language. A brief description of the library and
a link to the source code can be found in the Materials and Methods section.

2. Materials and Methods
2.1. Classical ARIMA Model

The ARMA model is described by an equation from [6]:

X̂t =
q

∑
i=1

βiεt−i +
p

∑
i=1

αiXt−i + εt + c (1)

where Xt is the value of the X time series at moment t; α ∈ Rp and β ∈ Rq are the vectors
of the weight coefficients; ε is a noise term; c is a constant; ∑

p
i=1 αiXt−i + εt + c is an

autoregressive model with order p, which is a linear combination of the previous p values
of series, constants and noise terms; ∑

q
i=1 βiεt−i + εt is the moving average model with

order q, which is a linear combination of the previous q noise terms and current noise term.
Time series representing real-world processes are often non-stationary. Deterministic

components, such as trends, seasonality, slow and fast variation, and cyclical irregularity are
usually represented in this manner. An effective way to remove most of these components
is to compute their differences. For the time series X, at time moment t, the first order
differences (lag = 1) are equal to ∇Xt = Xt − Xt−1, while the second order differences are
equal to ∇2Xt = ∇Xt −∇Xt−1. To remove the seasonality, seasonal differences can be
calculated, which are pairwise differences in values in neighboring seasons.

If ∇dXt is described by the ARMA model (p, q), it can be said that Xt is described by
the ARIMA model (p, d, q):

∇dX̃t =
q

∑
i=1

βiεt−i +
p

∑
i=1

αi∇dXt−i + εt + c (2)

where p, d, q are the hyperparameters or orders of a model, α ∈ Rp and β ∈ Rq are the
vectors of the weight coefficients.
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The predicted value of X̃t can be calculated as:

X̃t = ∇dX̃t +
d−1

∑
i=0
∇iXt−1 (3)

As stated earlier, hyperparameter selection is a separate, non-trivial task. The Box–
Jenkins method for solving this problem is described in [6].

2.2. Online Algorithms Based on the ARIMA Model
2.2.1. Online Gradient Descent

Generally, the maximum likelihood (ML) and prediction error (PE) methods with a
non-convex error criterion function are used to find the optimal ARMA weights. Other
algorithms (interested readers are directed to [18]) are also used to solve this problem, but
they all have their drawbacks. For example, they may fail to deliver the global optima.

The use of classical online algorithms with convex optimization methods, in this case,
is impossible since the moving average model is nonlinear in its parameters and, therefore,
to estimate the parameters, it is necessary to use nonlinear estimation procedures [6]. In
turn, noise components {εt}T

t=1 are required at each iteration when updating the model
weights (α, β) and at each iteration of the prediction procedure.

The solution to this problem may be the ARMA Online Gradient Descent algorithm
(ARMA-OGD) from [12] (see Algorithm 1, where TLMmaxq is the maximum value of the
Lagrange multipliers [12]). In this case, all terms of an MA model are replaced by additional
autoregressive terms. The ARIMA model (p, d, q) is converted to the ARIMA model
(p + m, d, 0), where m ∈ N is a constant, meaning that the algorithm with the coefficient
vector γ ∈ Rp+m attains a sublinear regret bound against the best ARMA model (p, d, q)
prediction in hindsight, with weak assumptions of the noise terms. The sublinear regret
with computational simplicity indicates the acceptableness of this approach. However, this
algorithm requires the following assumptions:

1. Noise components are randomly and independently distributed with zero expectations
and satisfy the following conditions: E[|εt|] < Mmax < ∞ and E[`t(Xt, Xt − εt)] < ∞
for every t.

2. The loss function `t must satisfy a Lipschitz condition [19].
3. Autoregressive weight coefficients αi satisfy |αi| < 1. This assumption is necessary to

restrict the decision set [12], but it is not necessary or sufficient for stability. In fact,
the absolute values of autoregressive weight coefficients can be bounded to any other
real number.

4. Moving average weight coefficients βi satisfy ∑
q
i=1|βi| < 1− ε for some ε > 0.

5. The signal is bounded by the constant. Without the loss of generality, we assume that
|Xt| < 1 for every t.

Algorithm 1 Online Gradient Descent.
Input Hyperparameters p, d, q, learning rate η;
Set m = logmax

(
(TLMmaxq)−1

)
For t from 1 to T − 1 do:

Predict X̃t
(
γt) = ∑

p+m
i=1 γi∇dXt−i + ∑d−1

i=0 ∇
iXt−1;

Get Xt and `m
t
(
γt) = `t

(
Xt, X̃t

(
γt));

Set ∇t = ∇`m
t
(
γt);

Update γt+1 ← ∏K
(

γt − 1
η∇t

)
End for

2.2.2. Full Refitting

The next online algorithm considered, based on the ARIMA model, is a full refitting
algorithm. In this algorithm, the model is refitted on the whole dataset, including new
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data, each time the new point(s) have been received (Algorithm 2). The “warm start”
technology was used, according to which the weight coefficients of the ARIMA model are
not initialized randomly, but are remembered from the last loop and are given as initials
for a new fitting loop. This allows the optimization algorithm to converge much faster.

Algorithm 2 Full refitting.
Input Hyperparameters p, d, q, learning rate η;
Set randomly α1, β1

For t from T1
test to T − 1 do:

Set αt, βt ← f it(αt−1, βt−1, [X1 . . . Xt], η)∗,
Predict X̃t

(
αt, βt) = ∑d−1

i=0 ∇
iXt−1 + ∑

q
i=1 βt

iεt−i + ∑
p
i=1 αt

i∇dXt−i + εt + c
End for
* f it() is the notation of any suitable optimization algorithm
using “warm start” technology

2.2.3. Window Refitting

In the window refitting algorithm, the model is refitted not on the whole dataset,
but only on its last section in relation to the current time moment. The size of each new
training set is determined by the width of the window. The width is a hyperparameter,
which requires an individual setting. The wider the window, the more accurate and
computationally complex the model, and vice versa. This algorithm also uses “warm start”
technology (see Algorithm 3).

Algorithm 3 Window refitting.
Input Hyperparameters p, d, q, learning rate η, window width W;
Set randomly α1, β1

For t from T1
test to T − 1 do:

Set αt, βt ← f it(αt−1, βt−1, [Xt−W . . . Xt], η)∗,
Predict X̃t

(
αt, βt) = ∑d−1

i=0 ∇
iXt−1 + ∑

q
i=1 βt

iεt−i + ∑
p
i=1 αt

i∇dXt−i + εt + c
End for
* f it() is the notation of any suitable optimization algorithm
using “warm start” technology

2.3. Performance Metric for the Forecasting Problem

To evaluate the forecasting algorithms, the Mean Absolute Percentage Error was used
(Equation (4)). The main motivation for choosing this metric is the easy interpretability of
the results and the ability to compare forecast errors between different physical measures.

MAPE(Xt, X̃t) =
1
T

T

∑
t=1

∣∣Xt − X̃t
∣∣

max(ε, |Xt|)
(4)

where X̃t is a predicted value at a time moment t, Xt is a true value at time moment t, T
is the number of points in time series X, and ε is an arbitrarily small yet strictly positive
number to avoid undefined results when Xt is zero—in our case, ε = 2.22 · 10−16.

2.4. Anomaly Detection Algorithms
2.4.1. Novel Anomaly Detection Algorithm Based on OGD Algorithm

According to the definition in [20], the technical state is the state of the system at a
certain point in time, which, under certain environmental conditions, is characterized by
the values of the parameters established by the technical documentation for the system. In
our case, this is Xt. This state may implicitly include information about the presence of a
defect or other anomaly in a system. Applying the ARIMA models to these parameters can
make the presence of an anomaly in a technical system more apparent. Weight coefficients
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can provide more transparent and precise information about changes in a system state than
the parameters themselves.

The Online Gradient Descent algorithm allows us to track weight coefficients in online
mode. This makes it possible to use the base of the Online Gradient Descent algorithm
not only for forecasting problems, but also for anomaly detection problems. For this, it is
necessary to transform the OGD algorithm by essentially creating a novel algorithm based
on it.

Let us suppose that we have the entire history of the weight coefficients’ changes in
the form of vectors γ1 . . . γT−1.

From Algorithm 1:

γt+1 ←∏
K

(
γt − 1

η
∇t

)
for each t from 1 to T (5)

If the coefficient vector satisfies all the requirements, there is no need to project the
vector of the weight coefficients. Then, this formula is converted into the following form:

γt+1 = γt − 1
η
∇t (6)

However, tracking the values of the weight coefficients themselves is impractical for
the following reasons:

1. The optimal values of the weight coefficients are unknown initially.
2. The state of a considered system may gradually change over time. This will lead to a

shift in the optimal values of the weight coefficients. This, in turn, can lead to a high
false-positive rate in an anomaly detection algorithm.

To avoid these shortcomings, we plot the discrete differences in the weight coefficients
along a time axis. This solution allows us to analyze the state of the technical system more
interpretably since, in a steady state, this value should tend toward 0 and, in the case of
a change in an operating mode or anomaly mode, deviate from 0. Moreover, the value
of the shift in each specific weight coefficient over the time interval is the sum of these
weight coefficient values throughout the time interval. The vector of a discrete difference
in a weight coefficient is:

∇γt = γt+1 − γt = − 1
η
∇t (7)

Thus, a discrete difference vector must tend toward 0 when close to the optimum
value. At the same time, a strong and sudden deviation from 0 may indicate the occurrence
of an anomaly. In order to monitor these changes, a threshold can be introduced, which is
a hyperparameter and requires separate tuning. Based on the above, an anomaly detection
and forecasting algorithm was obtained (the pseudo-code is presented in Algorithm 4).

As a rule, the state of a technical system is characterized by a large number of param-
eters that do not have the same scale and cannot be directly compared, which makes it
difficult to describe the state of a technical system through the weights of the modernized
ARIMA model. To solve this problem, the following normalization of the initial parameters
was carried out:

X̃i =
Xi − µ

σ
(8)

where X̃i is a scaled time series, Xi is an initial time series, µ is the expectation of X, and σ
is the standard deviation of X.
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Algorithm 4 ARIMA Anomaly detection.
Input Hyperparameters p, d, q, learning rate η, threshold εth, empty list r;
Set m = logmax

(
(TLMmaxq)−1

)
For t from 1 to T − 1 do:

Predict X̃t
(
γt) = ∑

p+m
i=1 γi∇dXt−i + ∑d−1

i=0 ∇
iXt−1;

Get Xt and `m
t
(
γt) = `t

(
Xt, X̃t

(
γt));

Set ∇t = ∇`m
t
(
γt);

Update γt+1 ← ∏K
(

γt − 1
η∇t

)
Update ∇γt = − 1

η∇t

For w from 1 to p + m do:
If |∇γt

w| < εth then
Add value t to r
ALERT

End for
End for

In practice, when verification is provided using benchmarks, the sample size is not big
enough (unlike real technical systems) to achieve a global optimum by stochastic gradient
descent. In this regard, four heuristic methods have been developed, which are more
sensitive to anomalies in this case. The first three are similar in meaning and can be used in
batch processing. They are distinguished by metrics that generalize the entire set of weight
coefficients with one point for each available time moment. The fourth method can only
be used for offline analysis (this method is not overfitted for a particular dataset because
similar results have been obtained for other datasets). All methods are presented below
(executed instead of the condition in Algorithm 4):

1. Metric based on Euclidean norm

Metrict
1 =

√√√√ S

∑
n=1

(∇γts)2

εt
th1

= µ(Metrict
1)

t
t−win + 3 · σ(Metrict

1)
t
t−win

If Metrict+1
1 > εt

th1
then ALERT

where S is the number of all weight coefficients of the ARIMA models for the con-
sidered system, t is the time moment, ∇γts is a discrete difference in one specific
weight coefficient, win is the width of the window (requiring separate tuning, can be
an equally timed physical process), µ is a function for computing the mean of a metric
in a particular window win, σ is a function for computing the standard deviation of a
metric in a particular window win, and εt

th1
is the threshold of the metric.

2. Using a metric based on the maximum absolute values

Metrict
2 = max{|∇γts|}S

s=1

εt
th2

= µ(Metrict
2)

t
t−win + 3 · σ(Metrict

2)
t
t−win

If Metrict+1
2 > εt

th2
then ALERT
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3. Metric based on the mean of max/std

Metrict
3 = mean

{
max{|∇γws|}t

w=t−window

std{|∇γws|}t
w=t−window

}S

s=1

ε+th3 = µ(Metrict
3)

t
t−win + 3 · σ(Metrict

3)
t
t−win

ε−th3 = µ(Metrict
3)

t
t−win − 3 · σ(Metrict

3)
t
t−win

If (Metrict+1
3 > εt

+th3
) or (Metrict+1

3 < εt
−th3

) then ALERT

4. Complex metric

Metrict
41 = max{|∇γts|}S

s=1

Metrict
42 =

t+win

∑
i=t−win

ai ·Metrici
41 where at = e

2·t
40.5·win

Metrict
43 =

{
0, if Metrict

42 < Q
Metrict

42, else

where Q is the first value after index which is

greater than
9 · T
10

of a sorted smallest to largest values of Metric43

If Metrict
43 is local maxima then ALERT

2.4.2. One Point Prediction

The idea of using the ARIMA model for anomaly detection purposes is not new. How-
ever, when using the ARIMA model in an anomaly detection algorithm, the approach is
almost always the same [10,21,22]. The ARIMA model makes a prediction, then the difference
between this prediction and the actual values is calculated and, if this difference is significant,
then it is an anomaly. The pseudo-code of this approach is presented in the Algorithm 5. This
algorithm has been chosen for comparison with the developed algorithm (Algorithm 4).

Algorithm 5 One-point prediction.
Input Hyperparameters p, d, q, learning rate η, threshold ˜εth, emply list r;
Set α, β← f it(αt−1, βt−1, [X1 . . . Xt], η)∗,
For t from T1

test to T − 1 do:
Predict X̃t(α, β) = ∑d−1

i=0 ∇
iXt−1 + ∑

q
i=1 βiεt−i + ∑

p
i=1 αi∇dXt−i + εt + c

If |X̃t − Xt| < ˜εth then
Add value t to r
ALERT

End for
* f it() is the notation of any suitable optimization algorithm

2.5. Performance Metric for Anomaly Detection Problem

Standard metrics, such as precision and recall, are not suitable for evaluating anomaly
detection algorithms in systems where time series are used since they do not take into account
the specifics of time. Because of this, some measurable characteristics of the algorithm perfor-
mance, such as detection delay, are not accounted for either. For this reason, the Numenta
Anomaly Benchmark performance scoring algorithm (or the NAB evaluating algorithm)
was chosen from [9]. The purpose of this algorithm is to encourage early detection and to
penalize false positives and false negatives.

The NAB evaluating algorithm contains three components, which must be tuned:

• the anomaly window;
• the application profiles;
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• the scoring function.

The window in which the detected anomaly is perceived as a true positive is called
an anomaly window (vertical blue lines in Figure 1). It is recommended by [9] to take a
window equal to 10% of the sample length divided by the number of anomalies centered
around a ground truth anomaly label. For technical systems, a more reasonable approach
is to take the moment of occurrence of a hidden defect as a left boundary and the window
width as the value characterizing the time taken to complete physical processes, during
which the defect degrades.

In order to better understand the properties of each specific anomaly detection algo-
rithm, the concept of an application profile was proposed. The application profile is a set
of coefficients for true positives, false positives, and false negatives: ATP, AFP, AFN , with
0 ≤ ATP and −1 ≤ AFP, AFN ≤ 0. Three application profiles are usually used: standard
(standard weights of coefficients), reward low FPs (heavily penalizes FPs), and reward low
FNs (heavily penalizes FNs). The application profiles (see Table 1), given by [23], are used
in our work.

Table 1. Application profile for NAB scoring algorithm used in this work.

Metric ATP AFP ATN AFN

Standard 1.0 −0.11 1.0 −1.0
LowFP 1.0 −0.22 1.0 −1.0
LowFN 1.0 −0.11 1.0 −2.0

The scoring function is used to weigh all true positives, false positives, and false
negatives (true negatives are not used for evaluation, on principle), taking into account
the coefficients and window width. Inside the window, only the first detection is used to
weigh the true positives, while the rest are not taken into account. The sigmoidal scoring
function gives high scores to early detections and gently penalizes detections outside of
the window (see Figure 1). The equation of the scoring function is as follows:

σA(y) = (ATP − AFP)

(
1

1 + e5y

)
− 1 (9)

where y is the relative position of the detection within the anomaly window.

Figure 1. Scaled sigmoid function.

Score for each special time series d:

SA
d =

(
∑

y∈Yd

σA(y)

)
+ AFN fd (10)

where Yd is the set of data instances detected as anomalies by the detection algorithm and
fd is the number of windows in which there are no detected anomalies.
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To evaluate the anomaly detection algorithm in the entire set of D datasets, it is
necessary to add them together:

SA = ∑
d∈D

SA
d (11)

The final score is:

SA
NAB = 100 ·

SA − SA
null

SA
perfect − SA

null
(12)

where SA
perfect is a perfect score in which all anomalies are detected correctly and there are

no false positives; SA
null is a score in which no anomalies are detected.

The better the final score, the better the anomaly detection algorithm. The best result
is equal to 100.

2.6. Python Library

One of the results of this work is the Anomaly Detection Library, named “ARIMAFD”.
The library is implemented in the Python3 programming language. It includes an algorithm
based on the ARIMA model for both forecasting and anomaly detection problems and
others algorithms, as described in this paper. The advantages of algorithms from this
library include the fact that a training set is not necessary, as well as the ability to work in
online mode (batch processing). The disadvantages include the laborious process necessary
to obtain the stationarity of the time series and to use heuristics.

The Anomaly Detection Library can be installed via the Python Package Index (PyPI)
or via a link on GitHub https://github.com/waico/arimafd (accessed on 1 April 2021). For
the purpose of unification, the commands and API design were developed in comparison
with the scikit-learn library. An MIT License was used for the library.

3. Results
3.1. Forecasting by Online Algorithms

We used one specific time series, received from the sensors of the turbogenerator in a
single operational mode without transients, which produces a total of 25 thousand samples in
about half a month. The choice to use only one time series was due to our desire to compare
the forecast results for one physical quantity. The time series was separated in the training
and testing sets, accordingly, as 5 and 20 thousand samples (5 thousand samples are enough
for the first training period). At each point in the testing set, the results were evaluated.

Table 2 presents the results for time series forecasting by various online algorithms,
as presented in Section 2.2. The results in Table 2 are presented in more detail in Figure 2.
Despite the fact that the MAPE curves of the non-refitted ARIMA, full refitting and window
refitting algorithms are visually merged into one (their similar numerical values are shown
in Table 2), this picture shows the general behavior of the algorithms’ MAPE with an
increase in the forecast horizon. We discuss the results more broadly in Section 4.

Table 2. Mean absolute percentage error of algorithms and ratio of learning time between algorithms.
Non-refitted Autoregressive Integrated Moving Average (ARIMA) is an algorithm with unchanged
weight coefficients for the testing set after fitting on the training set. The training time ratio is the
ratio of the mean time taken for one model retraining procedure in the research algorithm compared
to the mean time taken for one model retraining procedure in the Gradient Descent algorithm (0.09 s
per one retraining procedure by the Intel Core i9-9900K processor).

Algorithm
MAPE, % Training

1 Point 30 Points 60 Points 180 Points Time Ratio

Non-refitted ARIMA 0.1642 0.3828 0.4713 0.7886 0.00
Full refitting 0.1644 0.3808 0.4698 0.7887 205.24

Window refitting 0.165 0.3823 0.4725 0.7914 16.04
Online gradient descent 0.1667 0.3895 0.4936 0.9036 1.00

https://github.com/waico/arimafd
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Figure 2. Absolute forecasting error averaged over all refitting. Forecasting horizon is 180 points.

3.2. Anomaly Detection

Using the Numenta Anomaly benchmark [9], the developed anomaly detection al-
gorithm based on the ARIMA model was tested. Table 3 shows the scoreboard with the
current state of the anomaly detection algorithm’s performance for the Numenta Anomaly
benchmark, taken from the official page of the NAB on GitHub, and the results obtained
using Algorithms 4 and 5. It can be seen from the table that the anomaly detection al-
gorithm based on the ARIMA model shows strong results, and the algorithm based on
Online Gradient descent and the complex metric took third place in accordance with
this scoreboard.

Table 3. Score NAB from the scoreboard, where symbol * marks the result obtained by Algorithms 4 and 5.

Detector Standard Profile Reward Low FP Reward Low FN

Perfect 100.0 100.0 100.0
Numenta HTM 70.5–69.7 62.6–61.7 75.2–74.2

CAD OSE 69.9 67.0 73.2
ARIMA AD algorithm with complex metric * 65.03 48.11 71.23

earthgecko Skyline 58.2 46.2 63.9
KNN CAD 58.0 43.4 64.8

One point prediction * 56.76 25.61 67.44
Relative Entropy 54.6 47.6 58.8

ARIMA AD algorithm with mean of max/std metric * 53.66 34.20 60.48
ARIMA AD algorithm with max of absolute value metric * 51.11 29.05 59.07

Random Cut Forest 51.7 38.4 59.7
Twitter ADVec v1.0.0 47.1 33.6 53.5
Windowed Gaussian 39.6 20.9 47.4

Etsy Skyline 35.7 27.1 44.5
ARIMA AD algorithm with Euclidean norm metric * 18.57 13.75 21.00

Bayesian Changepoint 17.7 3.2 32.2
EXPoSE 16.4 3.2 26.9
Random 11.0 1.2 19.5

Null 0.0 0.0 0.0

This algorithm was also tested for its ability to detect hidden defects on real tech-
nical systems. Figure 3 shows the discrete differences in the weight coefficients of a
turbogenerator-bearing vibration. From this figure, it can be seen that the received values
increase in absolute value in a time moment in which, according to the commission, a
defect arises, leading to the failure of the turbogenerator. Most of the other splashes are
related to changes in the operation mode. For the case of the turbogenerator, one out of
five hidden defects was detected.
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Figure 3. The discrete difference in the modernized ARIMA weight coefficients for turbogenerator-
bearing vibration time series. The black vertical line shows the time moment in which the hidden
defect arose.

4. Discussion

The results obtained during the forecasting experiment with various online algorithms
were rather interesting and sometimes unexpected. The main results are shown in Table 2
and Figure 2. In actual fact, we expected to obtain results showing that non-refitted ARIMA
had the worst result in terms of the MAPE, but this does not always happen when using
real-world data. One of the possible reasons for this is that, halfway through a month,
the technical system’s state does not change so much that the trained model becomes
incorrect. On the other hand, the models have to be retrained sooner or later due to the
turbogenerator’s continuous state changes and data drift. In this case, questions regarding
the model retraining frequency and window selection for retraining are raised. The OGD
algorithm allows us to dispel these questions since the model is updated constantly in real
time. Additionally, the results clearly show that all algorithms are suitable for short-term
forecasting. However, for long-term forecasting (180 points ahead), as expected [16], the
OGD algorithm is less suitable, as the MAPE value is quite small (less than 1 percent)
and still comparable with other algorithms’ results. The comparison of computational
complexity also favors the OGD-based algorithm among the retrainable model-based
algorithms (Table 2).

We also obtained interesting results for the anomaly detection problems at the tur-
bogenerator. We detected one out of five hidden defects. At first glance, it seems that we
obtained a weak result when applying this algorithm since just one hidden defect out of
five was correctly detected. However, in actual fact, we were able to detect the emergence
of an anomaly that has not been detected by existing diagnostic systems, and which ulti-
mately led to serious financial losses. Moreover, this algorithm is an unsupervised change
point detection algorithm, which means that it can contribute toward safety, even in the
case of previously unknown hidden defects. As for the remaining four hidden defects,
there is currently no understanding of whether they impacted the signals from the sensors
and, consequently, the possibility of detection. Some more anomaly detection results were
obtained using the Numenta Anomaly Benchmark. This benchmark was initially created
to evaluate unsupervised real-time anomaly detection algorithms and includes time series
data from various sources. The fact that the developed algorithm took third place on
the corresponding scoreboard allows us to assert that the developed algorithm can be
universally applied.

5. Conclusions

Many researchers are working on high-performance anomaly detection and fore-
casting algorithms with the ability to learn continuously and adapt to changing states.
In this paper, we proposed a novel algorithm that can solve all of these challenging tasks
simultaneously. It is based on the well-known ARIMA model, which is widely used for
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time-series modeling. The proposed algorithm works in online mode and uses unlabelled
data, making it possible to solve tasks in an unsupervised manner. At the same time, it
is much more computationally efficient and almost identically accurate when compared
to classical ARIMA-based algorithms. All of these characteristics are essential for online
process monitoring, including technical system diagnostics. A library in the Python3
programming language, using the “ARIMAFD” algorithm, was also proposed. As such, it
is applicable both for anomaly detection and forecasting purposes.

For the forecasting problem, the proposed algorithm was compared with two pseudo-
online algorithms and the non-learning ARIMA model. The results clearly show that all
the algorithms turned out to be quite accurate, while their computational complexity and
stability to changes in a system differed significantly, in favor of the developed online
ARIMA-based algorithm. The strong ability of the proposed algorithm to find anomalies
was confirmed by the fact that it took third place in the Numenta Anomaly Benchmark
competition and the fact that it was able to detect a fault in the real-world data from the
turbogenerator. The proposed algorithm not only beats the classical ARIMA-based 1-
point-ahead prediction (Algorithm 5), but also outperforms most of the well-known online
anomaly detection algorithms proposed by respectable researchers. While the results on the
NAB prove the applicability of the proposed algorithm in various applications, successful
anomaly detection in the turbogenerator data shows the clear benefits that the algorithm
can bring in improving the safety and economic efficiency of power plants. Taken together,
these results suggest that the combined algorithm we developed may be able to contribute
to the development of technical diagnostics and online process monitoring.

The next steps in this direction should be the extension of a heuristics list that makes
the overall algorithm more robust and invariant to the data, as well as the use of more
advanced optimization algorithms.
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