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Abstract: This study intended to investigate the long-term antibacterial effect, mechanical perfor-
mance, and surface topography of new anticaries dental composites. While most artificial aging
studies of dental resins lasted for 30–90 days, this study prolonged the water-aging to one year to
be more clinically relevant. The base resin was loaded with dimethylaminohexadecyl methacrylate
(DMAHDM) at 3 or 5 wt.% and nano-sized amorphous calcium phosphate (NACP) at 20 wt.%.
Composites were subjected to one-year water storage and wear. Following water aging, samples
were evaluated for flexural strength, elastic modulus, and microbiological assays. Biofilm plate
counting method, metabolic assay, colorimetric quantification of lactic acid, and Baclight bacterial
viability assay were measured after one year. Topography changes (∆Ra, ∆Rq, ∆Rv, ∆Rt) were
examined after wear and observed by scanning electron microscopy. Biofilm assays and topography
changes data were analyzed via one-way ANOVA and Tukey’s tests. Mechanical properties and
normalized data were verified using a t-test. The flexural strength values for the formulations that
contained 5% DMAHDM-20% NACP, 3% DMAHDM, and 5% DMAHDM were reduced significantly
(p < 0.05) in relation to the baseline but the values were still above the ISO standards. No significant
differences were observed between the groups concerning the topography changes, except for the
∆Rt, where there was a significant increase in the 5% DMAHDM-20% NACP group. All the groups
demonstrated robust biofilm-inhibition, with slightly reduced antibacterial properties following
water aging. The aged samples reduced the total microorganisms, total streptococci, and mutans
streptococci by 1.5 to 3-log, compared to the experimental control. The new formulations containing
DMAHDM and NACP were able to sustain the antibacterial performance after one-year of aging.
Mechanical properties and surface topography were slightly affected over time.

Keywords: amorphous calcium phosphate; antibacterial agents; biofilms; dental caries; surface
roughness; surface topography

1. Introduction

The most used restorative materials for dental fillings are resin composites. They have
excellent aesthetic characteristics, which mimic the natural teeth appearance [1]. Com-
posites require less invasive cavity preparations compared to other restorative materials.
However, composites present a reduced lifespan and concerning failure rate in clinical
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studies [2–4]. The most common reasons for restorations replacement are secondary caries
and restoration fracture [5].

Several investigations have been attempted to defeat this problem by imparting an-
tibacterial additives into composite restorations [6]. However, incorporating antibacterial
agents to be released from the materials has shown limited long-term performance. Once
the ion release occurs from a booster in the initial weeks to a few months, the amount of
discharging decreases over time [7]. The approaches to overcome the limited release and
promoted sustained ion release to convey an antibacterial effect are an ongoing investiga-
tion area.

Another strategy to convey dental materials with antibacterial properties involves
incorporating antibacterial monomers, such as polymerizable quaternary ammonium
methacrylates (QAMs), where the antibacterial agent is a component of the polymer matrix,
granting the polymer surface with contact-active antibacterial activity [8–10]. Quaternary
ammonium methacrylates have been investigated as promising long-lasting antibacterial
compounds as they co-polymerize and covalently bond with the other monomers in the
composite formulation [8,9].

More recently, dimethylaminohexadecyl methacrylate (DMAHDM) has been synthe-
sized, and its concentration was tuned to induce a high antibacterial effect in preclinical
reports [11,12]. The robust antibacterial performance of DMAHDM is attributed to its
high surface charge density that can pull toward the negatively charged cell membrane of
bacteria. Besides, DMAHDM has a long alkyl-chain that could improve the monomer’s
penetration capability against the attached microorganisms [11,12].

To complement the antibacterial composites’ anticaries strategy, nano-sized amor-
phous calcium phosphate (NACP) fillers were added to the composite formulations to
impart remineralization capabilities [13]. Composites containing NACP fillers release more
calcium (Ca) and phosphate (P) ions during the acidic pH challenge [14]. The Ca and
P ion release behavior confers buffering capacity and forms a hydroxyapatite layer to
remineralize tooth surfaces subjected to demineralization [15–17].

The dual antibacterial and remineralizing formulation with DMAHDM and NACP
has been intensively investigated and had demonstrated encouraging immediate anticaries
outcomes with no impact on the mechanical or physical properties [15,17]. However, new
anticaries composites intended for a clinical application will be subject to aging inside
the mouth and exposed to chemical, physical, and mechanical processes [18]. Polymer
degradation and aging are among the most intimidating difficulties to the long-term
application of new resin-based dental materials [19].

Dental composites are constituted of an organic polymer matrix, usually methacrylate-
based monomer and inorganic reinforcing filler particles, commonly glass, quartz, such as
alumina, or silica. As the polymer matrix is the resin component of a cured dental resin
composite, over time, deterioration is expected with the clinical service [20]. Bonds made
between the coupling agent and inorganic filler particles are prone to chemical hydrolysis.
This process includes physical reactions such as sorption, dissolution, elution, and physical
changes such as softening and swelling [21]. Additionally, the polymer’s water sorption
and hydrolytic degradation increase material susceptibility to wear during chewing [22].
Previous reports on bioactive composites have focused on short-term effects (up to 180
days) and ion release [23,24].

This study aims to investigate the antibacterial effect, mechanical performance, and
surface topography of new anticaries dental composites after one-year water storage and
simulated wear. Baseline results were compared to the new results obtained from the
long-term evaluation.

2. Materials and Methods
2.1. Experimental Design

Two concentrations of DMAHDM were used (3 and 5 wt.%) in the absence and pres-
ence of NACP (20 wt.%) to evaluate their outcomes on the dependent variables. Figure 1 il-
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lustrates the design of the study. The designed formulations containing 3 or 5% DMAHDM
with and without NACP, the experimental and commercial controls were aged via water-
aging for one year or fatigue aging using a chewing simulation machine for 250,000 cycles,
equivalent to one year of clinical service under chewing simulation. This experiment
was conducted according to a randomized complete block design, with 6 repetitions for
each group.
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speed of upward movement of 40 mm/s, speed of downward movement of 40 mm/s, 
speed of horizontal movement of 40 mm/s, and frequency of 1 Hz [26]. By the end of the 

Figure 1. Flowchart of the experimental design proposed in this study. Different antibacterial formulations were designed.
Following the aging, the mechanical properties were assessed via flexural strength, elastic modulus, and measurements
of the topography changes following simulated wear. The antibacterial activity was analyzed by biofilm plate counting
method, metabolic assay, colorimetric quantification of lactic acid, and Baclight ® bacterial viability assay.

The base resin composed of bisphenol glycidyl dimethacrylate (BisGMA, Esstech, Ess-
ington, PA, USA) and triethylene glycol dimethacrylates (TEGDMA, Esstech) at a mass ratio
of 1:1. Camphorquinone (0.2 wt.%) and ethyl 4-dimethylaminobenzoate (0.8 wt.%) were
used as photoinitiators. Barium boroaluminosilicate glass particles (median size: 1.4 µm;
Dentsply Sirona, Milford, DE, USA) silanized with 4 wt.% 3-methacryloxypropyltrimethox-
ysilane were incorporated as base fillers.

Then, specimens were divided into the following groups:

1. Commercial control (Heliomolar, Ivoclar Vivadent, Mississauga, ON, Canada): 22%
BisGMA and Urethane dimethacrylate resin mix + 77% highly dispersed silicon
dioxide, prepolymer, and ytterbium trifluoride as fillers + <1% stabilizers, catalysts,
and pigments;

2. Experimental Control: 35% BisGMA-TEGDMA resin mix 1:1 ratio + 65% glass parti-
cles;

3. 3% DMAHDM: 32% BisGMA-TEGDMA resin mix 1:1 ratio + 3% DMAHDM + 65%
glass particles;
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4. 5% DMAHDM: 30% BisGMA-TEGDMA resin mix 1:1 ratio + 5% DMAHDM + 65%
glass particles;

5. 3% DMAHDM+20% NACP: 32% BisGMA-TEGDMA resin mix 1:1 ratio + 3%
DMAHDM + 20% NACP + 45% glass particles;

6. 5% DMAHDM+20% NACP: 30% BisGMA-TEGDMA resin mix 1:1 ratio + 5%
DMAHDM + 20% NACP + 45% glass particles.

2.2. Samples Aging

The samples were immersed in distilled water and stored at 37 ◦C for one-year of
water degrading aging. Following the one-year time, flexural strength and elastic modulus
were performed to evaluate the mechanical properties. The antibacterial properties were
assessed via biofilm plate counting method, metabolic assay, colorimetric quantification
of lactic acid, and Baclight ® bacterial viability assay. The results were compared to our
previous data [15] when the composite samples were tested immediately without aging
(referred to as baseline samples).

For the simulated wear, the samples were immersed in artificial chemical saliva pre-
pared according to a previous study [25] and subjected to a chewing simulation machine
(Chewing Simulator CS-4, SD Mechatronik GMBH, Feldkirchen-Westerham, Baviera, Ger-
many). The chewing simulation machine is designed to permit appropriate standardization
of the number of cycles, speed, load, and frequency against the composite samples. Com-
posite samples were subjected to a load of 49 N, an equivalent of 5 kg, and 250,000 cycles,
which is equivalent to almost one year of clinical service [25].

The opposing contact was a steatite tip with 6 mm of diameter (SD Mechatronik,
D-83620 Feldkirchen-Westerham, Germany), which was controlled to attain an upward
movement of 2 mm, downward movement of 1 mm, horizontal movement of 0.7 mm,
speed of upward movement of 40 mm/s, speed of downward movement of 40 mm/s,
speed of horizontal movement of 40 mm/s, and frequency of 1 Hz [26]. By the end of
the simulated wear, the composite samples’ topography changes were investigated via
scanning electron microscopy (SEM) and surface roughness instrument.

2.3. Mechanical Properties
2.3.1. Flexural Strength and Elastic Modulus

The samples were prepared using a stainless-steel bar mold (2 × 2 × 25 mm3). A thin
polyester strip was applied on the top of the samples to assure standardization of the
surface smoothness [27]. The samples were light-cured (Labolight, DUO, GC, Tokyo, Japan)
for 1 min at each side with the radiance emittance of 2330 mW/cm2. The samples were
kept in water for 15 min before detachment and stored in water for one year. After water
aging, the bars were subjected to samples flexural strength and elastic modulus using a
three-point flexural test previously described [12].

2.3.2. Surface Roughness and Wear behavior

Composite discs (Ø = 8 mm; 2 mm-thickness) were fabricated using a customized mold
and cured (Labolight, DUO, GC, Tokyo, Japan) for 1 min per side to deliver 2330 mW/cm2

radiant emittance. The surface roughness parameters were noted from the surface exposed
to the simulated wear, as described above, using a surface roughness tester (Surftest SJ-310;
Mitutoyo America, Aurora, IL, USA). At a sustained speed of 0.5 mm/s, a force of 4 mN,
a 0.25-mm cutoff value, and 1.5-mm tracing length, each sample was traversed by the
stylus tip (5 µm) [28]. An average of five readings from each sample was taken. Then, the
following parameters were measured:

• Average surface roughness (Ra): Ra represents the average surface roughness from the
roughness profile’s mean line.

• Maximum peak height (Rq): denoted as the highest peak produced by the chewing
simulation. A high Rq value indicates a high amount of wear.
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• Maximum valley depth (Rv): stated as the deepest valley produced by the chewing
simulation. A high Rv value indicates a high amount of wear.

• Maximum high of the profile (Rt): Rt estimates the distance between the maximum peak
height and the maximum valley depth.

By estimating these roughness parameters before and after the simulated wear, the
variation of Ra, Rq, Rv, and Rt for each sample and each group (∆Ra, ∆Rq, ∆Rv, ∆Rt) were
calculated. The delta values(∆) were obtained by subtracting the final values from the
initial ones. The results were expressed in µm.

2.3.3. Scanning Electron Microscopy

Following the simulated wear, a representative sample of each group was examined
via scanning electron microscopy (SEM). The samples were mounted and gold-sputtered.
The composites’ surface morphology was then visualized via SEM (Quanta 200, FEI Com-
pany, Hillsboro, OR, USA) with 3.5 kV. The representative images were taken at 100, 500,
and 1000 × magnification.

2.4. Microcosm Biofilm Model

Composite discs (Ø = 8 mm; 0.5 mm-thickness) were fabricated using a customized
mold and cured as described above. The discs were stored in water per one day and then
stirred for 1 h at 100 rpm using a magnetic bar to release uncured monomers [29]. After one-
year of water aging, samples were subjected to a gas diffusion sterilization (ethylene oxide),
followed by seven days of de-gassing to guarantee the complete release of entrapped
ethylene oxide [30]. The biofilm model used has involved human saliva as inoculum
as previously described [15,31–33]. The local Institutional Review Board approved the
use of human saliva for in vitro biofilm experiments. The saliva was collected from ten
people with healthy oral status. The donors avoided brushing their teeth 24 h and eating
or drinking 2 h before saliva collection.

The saliva obtained from each donor was pooled, diluted in sterile glycerol at a
7:3 ratio, and stored at −80 ◦C freezer [15,31–33]. According to the previous report, the
saliva-glycerol solution was used as bacterial inoculum mixed with a McBain artificial
saliva growth medium at a 1:50 ratio [34]. Next, each composite disc was placed in a 24-well
plate well containing the mixed inoculum-growth media and incubated. Growth media
was replenished at 8 and 24 after the initial incubation following the protocol described in
previous reports [15,31–33]. Biofilm plate counting method, metabolic assay, colorimetric
quantification of lactic acid, and Baclight bacterial viability assay were measured in three
independent experiments.

2.4.1. Biofilm Plate Counting Method

The biofilm grown over the top of the aged composite discs (n = 9) were moved to
a vial with 1 mL cysteine peptone water (CPW) for biofilm detachment via sonication
and vortex. The biofilm solution was then diluted and plated in one non-selective growth
agar (Tryptic soy supplemented with 5% sheep blood) and two selective agar plates (Mitis
salivarius agar and Mitis salivarius bacitracin agar) to grow total streptococci and mutans
streptococci, respectively [15,31–33]. After 48 h of incubation, each plate’s colony-forming
units were counted and expressed as CFU/per disc. The data were then transformed in log
10 for bacterial reduction assessment.

2.4.2. Metabolic Assay

Representative samples of aged composite discs were subjected to a metabolic assay
(n = 9). This assay is based on metabolically active cells’ ability to transform a water-soluble
dye[3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide] into an insoluble for-
mazan. The used protocol was described as other else [15].
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2.4.3. Colorimetric Quantification of Lactic Acid

The lactic acid produced by the biofilm was quantified via an enzymatic (lactate
dehydrogenase) assay. Following the 2-day biofilm formation, representative aged discs
(n = 9) were submerged into 1.5 mL of buffered peptone water supplemented with 0.2%
sucrose. After the 3 h-incubation, the absorbance of the solution in each well was calculated
(optical density OD340nm) using the microplate reader. Standard curves were obtained, and
results expressed in mmol/L [15,35].

2.4.4. Baclight Bacterial Viability Assay

The viability of the biofilm grown over representative samples of each group was
assessed using Baclight kit (Molecular Probes, Eugene, OR, USA). Each sample was stained
with a solution of SYTO 9 and propidium iodide (1:1 ratio) for 15 min. Then samples were
taken under an inverted epifluorescence microscope (Eclipse TE2000-S, Nikon, Melville,
NY, USA). The green fluorescence represents live bacteria’s presence, while the red flu-
orescence indicates the presence of bacteria with defective and compromised bacterial
membranes [15,36].

2.5. Statistical Analysis

All experiments were performed with replicates in each of three independent exper-
iments. Normality and equal variance of data were confirmed using the Shapiro-Wilk
test. One-way analysis of variance (ANOVA) and Tukey’s multiple comparison tests were
performed to detect the dependent variables’ significant effects on the antibacterial assays
and topography changes. Mechanical properties and normalized data of the antibacterial
assays before and after aging for each group were compared using the t-test. A p-value
<0.05 was considered statistically significant. All the statistical analyses were performed by
Sigma Plot 12.0 (SYSTAT, Chicago, IL, USA).

3. Results

In Figure 2A, the 3% DMAHDM, 5% DMAHDM, and 5% DMAHDM-20% NACP
groups had experienced a significant reduction in the flexural strength following the water
aging (p < 0.05). Although values are acceptable according to ISO 4049 [37]. For the
elastic modulus (Figure 2B), experimental control, 3% DMAHDM, 5% DMAHDM, and
3% DMAHDM-20% NACP were increased after aging by around 8% (p > 0.05; power of
analysis = 100%).

For the biofilm inhibition, the DMAHDM-NACP composites significantly reduced
the CFU counts of the total microorganisms’ growth in comparison to the control group
by 2–3-log (p > 0.001; power of analysis = 100%). (Figure 3A). Overall, the log reduction
was reduced after aging by around 0.5–1-log using the 5% DMAHDM, 3% DMAHDM-20%
NACP, and 5% DMAHDM-20% NACP composites (Figure 3D). For the total Streptococci,
all the antibacterial formulations resulted in significant inhibition of 1.5–3-log after aging
(p < 0.001) (Figure 3B). After normalizing the data, the bacterial log reduction demonstrated
that the 3% DMAHDM-20% NACP group was the only composite with a significantly
reduced antibacterial action by around 1-log (Figure 3E). For mutans streptococci, all the
formulations significantly (p < 0.05) reduced the CFUs after aging (p < 0.001). However,
(Figure 3F) showed a significant decline of 1–1.5-log of the antibacterial formulations
against the mutans streptococci CFU.

When analyzing the metabolic activity results, all the antibacterial formulations
demonstrated metabolic activity reduction following aging (p < 0.05). However, the 5%
DMAHDM and 5% DMAHDM-20% NACP groups showed slightly increased activity
compared to the baseline samples. When the data were normalized (Figure 4B), the aged
samples were found to reduce the metabolic activity by 61–86%, while the baseline samples
reduced it by around 68–89%. No significant difference was found between aged and
non-aged samples concerning each group after normalizing the data except for the 5%
DMAHDM group (Figure 4B).
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formulations after aging and at baseline. * Asterisks indicate significant differences compared to
baseline values before aging.

For the lactic acid production, the 5% DMAHDM and 5% DMAHDM-20% NACP
groups significantly (p < 0.05) decreased the lactic acid production after aging compared
to the control (Figure 4C). The lactic acid production was slightly increased after aging
concerning each antibacterial formulation. The capability of lactic acid inhibition was
reduced by around 15–35% (Figure 4D). The 3% DMAHDM is the only group that did not
show a reduced inhibition after aging compared to the baseline counterpart (p > 0.05).

The live/dead images showed high quantification of viable microorganisms over the
experimental control (Figure 5B). The incorporation of 3% and 5% DMAHDM into the
composite formulation was associated with a mixture of viable and dead/compromised
colonies (Figure 5C,D). Adding 20% of NACP to the DMAHDM was associated with the
minor viable microorganisms (Figure 5E,F).
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Figure 3. Colony-forming unit (CFU) counts of the (A) total microorganisms, (B) total streptococci, and (C) mutans streptococci
on the composite surface (mean ± SD; n = 9). Different letters indicate significant differences between groups (p < 0.05). The
difference in the log reduction between the baseline and aged samples concerning the (D) total microorganisms, (E) total
streptococci, and (F) mutans streptococci is illustrated. * Asterisks indicate significant differences compared to baseline values
before aging. (EC = experimental control; 3D = 3% DMAHDM; 5D = 5% DMAHDM; 3DN = 3% DMAHDM-20% NACP;
5DN = 5% DMAHDM-20% NACP).
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Table 1 shows the topography changes following the simulated wear. No significant
difference was found between all the groups when the Ra, Rq, and Rv values were observed
(p > 0.05). However, following the Rt value, the 5% DMAHDM-20% NACP group was
significantly associated with more surface discrepancies compared to the experimental
control (p < 0.05). Figure 6 illustrates the SEM images of the composite samples following
the simulated wear. All the investigated groups showed surface topography changes.
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Figure 5. The live/dead images for the biofilms formed over the composites’ surface (n = 3). (A) A schematic drawing
showing the accumulation of the biofilm over the composite surface. Live bacteria were stained green, and compromised
bacteria were stained red. The higher amount of viable microorganisms was associated with the experimental control
group (B), followed by the 3% and 5% DMAHDM (C,D). The minimum load of viable bacteria was observed over the
DMAHDM-NACP groups (E,F).
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Table 1. The difference in average surface roughness (∆Ra), maximum peak height (∆Rq), maximum valley depth (∆Rv),
and the average distance between the highest peak and lowest valley (∆Rt) of the resin composite formulations subjected to
cyclic fatigue (mean ± SD). Values indicated by different letters are statistically different from each other (p < 0.05).

Resin Composite Formulation Ra (µm) Rq (µm) Rv (µm) Rt (µm)

Commercial Control 0.292 ± 0.098 a 0.189 ± 0.109 a 0.590 ± 0.178 a 1.583 ± 0.429 ab

Experimental Control 0.104 ± 0.067 a 0.250 ± 0.107 a 0.221 ± 0.092 a 0.325 ± 0.048 a

3% DMAHDM 0.223 ± 0.145 a 0.307 ± 0.158 a 0.439 ± 0.363 a 1.212 ± 0.627 ab
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4. Discussion

Bioactive composites are constantly being investigated to reduce the risk of treatment
failure over time. One drawback of this process is the short-term effect of the materials
on bacterial growth [13]. As a result, bioactive dental composites may demonstrate re-
duced antibacterial properties and weak mechanical performance, threatening their clinical
longevity. Early failure of composite restorations may occur due to the breakdown of the
resin matrix and its interface with the filler. The hydrolysis of the silane-resin bond could
be another mechanism for degradation due to aging [38]. These different degradation
patterns may leach the resin matrix and initiate cracks and flaws within the composite’s
structure, which could deteriorate the restoration’s mechanical properties [39].

The degradation and leaching process can chemically and physically change the
structure of the composite [18]. Antibacterial formulations with a high rate of degradation
and structure changes due to aging are highly expected to lose their bioactivity and strength.
As a result, the long-term evaluation of bioactive formulations’ antibacterial and mechanical
performance is essential before translating them into clinical models.

This study has investigated the impact of water aging on the bioactive composite for-
mulations containing DMAHDM and NACP. Our hypothesis was partially accepted since
after one year of water aging; the bioactive formulations demonstrated great antibacterial
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action but slightly reduced certain mechanical properties compared to the baseline samples.
This present study provides the first outcomes of long-term aging of bioactive composites
containing DMAHDM and NACP.

The use of contact-killing monomer in the resin matrix was proposed in 1993 [40].
Since then, several QAMs have been used to impart bioactivity in resin-based materials.
DMAHDM, as an antibacterial monomer, has a broad antimicrobial spectrum. Its antibacte-
rial mechanism depends on contact inhibition where the positively charged quaternary
amine N+ sites contact the negatively charged bacterial cell membrane [41]. As a result, the
cell membrane will be disrupted, and cytoplasmic leakage will occur [17].

DMAHDM demonstrates more significant biofilm inhibition compared to other QAMs,
such as dimethylaminododecyl methacrylate (DMADDM). This might contribute to the
long alkyl chain within the DMAHDM structure, which may increase the monomer’s
contact surface, resulting in more pronounced inhibition. DMAHDM is co-polymerized
with the resin matrix via a covalent bond with the polymer network made it immobilized
in the composite [42,43]. This characteristic ensures that DMAHDM will constantly at-
tain its antibacterial capability and not collapse over time [40], which was supported by
our findings.

Total microorganisms and total streptococci bacterial inhibition showed almost no
difference between the baseline and water-aged composite samples. One exception was
noticed with the 5% DMAHDM group, where there was about a 2-log difference in re-
duction on total microorganism in the water-aged samples. On the other hand, Mutans
streptococci showed less antibacterial effectiveness after aging than the baseline results.
S. mutans is considered an indicative bacterium related to dental caries due to its capability
in acid production, acid tolerance, and the synthesis of intracellular and extracellular
polysaccharides [44]. The results suggest that aged samples were less effective against
cariogenic bacteria, as the baseline samples were more efficient in killing cariogenic species.
This could be attributed to the composite physical changes due to aging, allowing the
cariogenic species to adhere more efficiently to the surface than the smooth and non-altered
baseline samples. Besides, the resin matrix’s leaching may affect the distribution of the
DMAHDM over the composite surface, which may compromise the contact killing against
the cariogenic species. This explanation could be supported by the fact that DMAHDM
has only one methacrylate side [45,46]. As a result, the cross-linking efficiency with other
monomers might not be efficient such as dimethacrylate monomers.

There were no significant differences between aged and baseline samples concerning
metabolic activities and lactic acid reduction in this study. However, we noticed that the 5%
DMAHDM and 5% DMAHDM-20% NACP composites revealed slightly higher metabolic
activity after aging. Lactic acid production was also higher in those groups than the 3%
DMAHDM-20% NACP compared to baseline samples. This outcome could be correlated
to the physiological state of the viable bacterial cells. However, despite the slightly re-
duced effectiveness, the designed formulations demonstrated potent antibacterial effects
following the aging process, indicating these formulations’ capabilities to induce repeated
antibacterial actions as more biofilm grown over the composite along the time. Although
these formulations are promising candidates to prevent secondary caries development,
their frequent use may raise questions regarding bacterial resistance. A previous study has
addressed this question where the regular exposure to DMAHDM did not induce bacterial
resistance against S. mutans and other endodontic and periodontal pathogens [47].

It is of utmost importance to evaluate any new product’s mechanical properties,
predict its performance, and prevent catastrophic failures [48,49]. In dental composites,
mechanical properties should be sufficient to function in the oral cavity for an extended
period, hopefully encompassing the patient’s lifetime [50]. The bioactive composites in this
study demonstrated acceptable clinical performance compared to the commercially tested
composite before aging.

After one year of aging, the 3% DMAHDM, 5% DMAHDM, and 5% DMAHDM-
20% NACP groups showed a significant reduction in flexural strength than their baseline



Appl. Sci. 2021, 11, 3718 13 of 16

counterparts. However, the 3% DMAHDM composites showed a higher flexural strength
value than the commercial control even after aging. The other groups did not show reduced
values than the baseline measurement, but the reduction was not significant. These results
may suggest that bioactive composites formulated in this study are mechanically stable.
While there is a minor concern related to the 5% DMAHDM-20% NACP group, it might
be preferable to limit this group’s use in a low-stress area inside the oral cavity, such as
cervical and root restorations.

Masticatory load and salivary esterase might affect the surface smoothness of compos-
ite restorations inside the oral cavity, which may cause irregularities and physical changes
that accelerate the rate of plaque accumulation [51]. Besides, irregularities and physical
changes may allow cracks and flaws within the composites, acting as a stress concentra-
tion area, facilitating the fracture of such restoration [39]. Hence, it was imperative to
evaluate the surface roughness and wear behavior of the bioactive formulations overtime
via simulated chewing. In vitro chewing testing provides valuable inputs by simulating
clinical settings through masticatory load and artificial saliva [52,53], which assists in the
material evaluation.

This study used 250,000 cycles representing one-year clinical service to evaluate our
bioactive composites. All the samples reported similar average surface roughness. Particle
size, shape, hardness, fillers distribution, properties of the matrix, and the interfacial
bonding can influence new formulations’ abrasive resistance. Here, the incorporation of
the two anticaries agents has not compromised the surface roughness.

No significant differences were also noticed between the Rv and Rq values regard-
ing the wear behavior. Only the Rt parameter, which marks the difference between the
maximum peak height and the maximum valley depth, revealed a significant difference
between the experimental control and the 5% DMAHDM-20% NACP group, which in
line with the finding showing that the 5% DMAHDM-20% NACP group had the lowest
flexural strength following aging. This phenomenon could be explained by the resin matrix
and its filler interface breakdown due to aging and the degradation that may change the
composite’s physical structure.

This study is limited to a one-year evaluation for water-based degradation. However,
the aging of dental composites inside the mouth is further complex under the influence of
saliva, cariogenic biofilms, and patient’s diet. In vitro aging models for dental materials
evaluate only single factors, missing the complexity of the synergy of factors. The biofilm
model used in this study was in static condition with a high concentration of bacterial
nutrients, which may allow more biofilm biomass to accumulate over the composites. This
static model is different from the dynamic biofilm formation found inside the oral cavity,
where saliva’s shear force could affect the availability of nutrients [54]. Therefore, complex
evaluations are encouraged to obtain clinically relevant information to predict better the
performance of new antibacterial and remineralizing dental materials. Besides, future
studies may conduct preclinical studies to assess in situ degradation of new anticaries
formulations inside the oral cavity. In situ models are highly recommended as a transitional
phase to clinical trials. They also extend the knowledge about oral physiological processes,
which helps verify the in vitro outcomes [55].

5. Conclusions

Composite materials placed inside the oral cavity are constantly subjected to biofilm
formation over their surfaces, contributing to new carious lesions around the restorations.
Designing a bioactive antibacterial composite formulation with prolonged antibacterial
action and excellent mechanical properties is essential to assure long-term clinical service.
Here, we have shown that all the antibacterial formulations substantially reduce biofilm
formation even after one year of aging/cycling. Our findings also demonstrated that the
antibacterial formulations also maintained acceptable mechanical properties. Overall, this
outcome is a step toward designing dental materials that can sustain antibacterial effects
over time.
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