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Abstract: A proper diagnosis of the state of an induction motor is of great interest to industry given
the great importance of the extended use of this motor. Presently, the use of this motor driven by
a frequency converter is very widespread. However, operation by means of an inverter introduces
certain difficulties for a correct diagnosis, which results in a signal with higher harmonic content and
noise level, which makes it difficult to perform a correct diagnosis. To solve these problems, this
article proposes the use of a time-frequency technique known as Dragon Transform together with
the functional ANOVA statistical technique to carry out a proper diagnosis of the state of the motor
by working directly with the curves obtained from the application of the transform. A case study
is presented showing the good results obtained by applying the methodology in which the state of
the rotor bars of an inverter-fed motor is diagnosed considering three failure states and operating at
different load levels.

Keywords: induction motors; transient analysis; fault diagnosis; functional ANOVA

1. Introduction

The induction motor fed by an inverter is presently a common and practically irre-
placeable element in most industrial sectors and in electric traction. The inverter allows
operation at variable speeds, a functionality required in many applications, and also allows
a considerable reduction in the current demanded during startup. However, the presence
of the inverter also has some drawbacks [1]. As far as maintenance work is concerned, its
influence is mainly in two aspects: changing the failure mechanisms and making diagnosis
more difficult [2]. The change in the electrical starting conditions and during continuous
operation of the motor changes in turn the failure mechanisms. Focusing on the problems
associated with the rotor, the fact that the starting current is much lower decreases stresses
on the rotor cage [3]. Still, other problems arise mainly associated with the higher harmonic
content, which increases the level of vibrations and the harmonic torques and temperature
in the cage [4–6]. The fact that inverters allow operation with repetitive cycles also has
a negative influence. These stresses will be higher in cases where regenerative braking
is used.

From a diagnostic point of view, as already reflected in the literature, inverters make
it more difficult to identify characteristic fault frequencies due to a higher noise level
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and interharmonics and subharmonics around the first component [7,8]. The commuta-
tion mechanism of the converter produces harmonics that can be confused with the one
characteristic of motor failure and, in addition, usually generates a signal with a higher
noise level. In addition, the harmonic content will vary significantly from one inverter to
another, or even within the same inverter, depending on the type of control applied and
the switching frequency chosen [9]. Detection of faults in inverter-fed induction motors
operating at fixed speed has already been studied in [6,10–13]. However, inverter-fed
motors may operate in non-stationary regimes due to the particularities of the industrial
application. If this is the case, it is not possible to employ the Fourier transform of the
stator current for fault detection, and the use of time-frequency transforms is essential.
Furthermore, motor operation tends to be under low slip condition, which in cases such
as broken bars, where the characteristic harmonics of failure in operation at high load are
very close to the fundamental harmonic, makes it difficult to identify these characteristic
failure frequencies [14,15]. These characteristics of the operation of the induction motor
with an inverter increase the possibility of false positives. These diagnostic errors can have
significant economic consequences in addition to gradually leading to a lack of confidence
in the diagnostic tasks.

This paper proposes a two-step methodology to overcome the difficulties in the
diagnosis inherent to inverter-fed motors, providing a reliable method to diagnose the
condition of the motor. The first step is to apply the Dragon Transform, which has been
recently developed by the authors [16]. This transform provides the adequate time and
frequency resolution to be able to follow the fault-related harmonics, which, in the case
of broken bars, evolve very close to the main harmonic. This feature is obtained by the
definition of atoms whose shape adapt to the trajectory of the fault harmonics [16]. It
should be noted that just as in the stationary state there are preset fault frequencies that
depend exclusively on the operating speed, in the case of diagnosis in transient state
during the start of the motor, the path of the fault harmonics is also previously known.
Therefore, if an adapted mathematical tool is available to separate the trajectory of the fault
harmonics from that of the main harmonic, it will be possible to carry out this monitoring
in a suitable way, as has already been demonstrated in [17]. The second step consists of the
application of the statistical technique known as Functional ANOVA to the curves obtained
with the Dragon Transform for the prediction of the condition of the motor. It should also
be noted that by not depending on the value detected at a particular point, as it would be
the case of a stationary motor operation, but of a whole curve in the time-frequency plane,
the diagnostic reliability increases by reducing possible false positives.

However, practical diagnosis cannot be based exclusively on the visual observation
of a curve since this can always introduce subjective elements and, in practice, would
require the continuous presence of an expert or adequate training for all maintenance
engineers. Therefore, to improve performance and practical functionality, it is necessary to
quantify the observed trajectories so statistical techniques can infer the most probable state
of the motor.

Thus, this paper’s main contribution is the diagnosis of broken rotor bars in inverter-
fed motors employing the analysis of the stator electric current captured during a controlled
startup. The use of the Dragon Transform permits the fault severity quantification along the
startup transient. This first analysis produces a set of curves that permit the fault diagnosis
with the functional ANOVA technique.

The structure of the rest of the paper is as follows: Section 2 explains the proposed
methodology based first on the severity quantification with the Dragon Transform and
second on the functional ANOVA for the analysis of the curves; Section 3 describes the lab-
oratory setup; Section 4 presents the functional ANOVA results, and Section 5 summarizes
the conclusions.
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2. Methodology

The proposed methodology for the diagnosis of faults in inverter-fed motors consists
of three stages. First, the Dragon Transform is applied to the current signal captured
during motor startup. Then, in order to quantify, time curves representing the energy
density associated with the fault harmonic trajectories are obtained. Finally, the statistical
technique known as functional ANOVA is applied to perform the analysis of the curves
and determine the condition of the motor.

2.1. The Dragon Transform and Fault Severity Quantification

The technique used for signal analysis and statistical examination in this paper is
the so-called Dragon Transform [16]. This paper uses the harmonics due to rotor bar
faults in inductions motors—they are present in the machine’s stator current and describe
unique trajectories in the time-frequency plane – for diagnosis purposes. Unfortunately,
in inverted-fed machines these harmonics appear too close to the path described by the first
harmonic fixed by the power supply. This makes it necessary to use a signal processing
technique precise enough to follow the entire trajectory of these harmonics despite the
proximity of the high-energy first harmonic. The Dragon Transform technique has this
ability because it traces those trajectories as very thin lines in the time-frequency plane.
This transform, which is explained in [16], is an atom-based correlation technique whose
time and frequency resolutions allow the fault trajectories to be perfectly delineated and
distinguished from the first harmonic, however close they may be. The atoms defined
in [16] are known as Dragon atoms because their energy in the time-frequency plane
follows the path of the harmonic component to be detected, i.e., the atoms’ shape adapts
perfectly to the trajectory of the harmonic to be followed. This kind of atoms is based on
any modulated window, as the Gabor function (in the next equation, the atom is based on
a gaussian window in brackets) [18]:

φ(t) =

(
Cσe−

(t−tc)2

2σ2

)
ei2π fc(t−tc), (1)

where σ is a deviation parameter which characterizes time dispersion; tc and fc are the time
and frequency at the center of the atom; and Cσ = 1/

(
4
√

π
√

σ
)

is a normalization constant.
The atom adapts to the trajectory of the signal to be detected if the exponential complex

angle is defined so that its derivative is equal to the frequency of the component to be
detected. In this way, these atoms can precisely follow the evolution of the harmonic
over time. Therefore, each of the atoms’ energy dispersion occurs in the direction of the
component’s evolution. Once the family of atoms is defined covering the entire time-
frequency plane, these atoms are correlated with the signal. This correlation defines the
Dragon Transform as follows [16]:

〈h, φ〉 =
∫ +∞

−∞
h(t)φ∗(t)dt, (2)

where h(t) is the signal to be analyzed. The result of the Dragon Transform application is
illustrated in Figure 1 with an actual signal, which is the startup current of an inverter-fed
induction motor with a broken rotor bar. Inverters permit programming of the starting
characteristics. In this case, the voltage supply’s first harmonic follows a linear ramp up
to 50 Hz in ten seconds. Figure 1a shows the stator current during a controlled starting
and the operation of the motor in a stationary state after the starting. Figure 1b shows the
motor slip s, which is calculated as follows:

s =
n1 − n

n1
, (3)
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where n is the motor speed and n1 is the synchronous speed, calculated as 60 fFC/p ( fFC
is the first harmonic frequency and p is machine’s pole pairs). In an inverter-fed motor,
the slip s is always very low, even during the startup transient, as it is shown in Figure 1b.
Figure 1c shows the expected trajectory of the first component (controlled by the inverter)
and the predicted paths of the fault-related harmonics ( fBBH) whose values are given by:

fBBH = (1± 2s) fFC, (4)

This equation defines a pair of harmonics around the first component separated
by 2s fFC, and known as LSH (lower side harmonic, (1− 2s) fFC) and USH (upper side
harmonic, (1 + 2s) fFC).

The result of the correlation of the signal in Figure 1a with a suitable family of Dragon
atoms is shown in Figure 1d, where color is used to represent each frequency component’s
energy. The time-frequency decomposition shows the expected trajectory of the first
harmonic during the inverter-controlled startup and the subsequent steady-state operation
(see Figure 1c). The predicted trajectories of the fault-related harmonics are also observed
during the transient and stationary operation. As the motor slip is low during the motor
operation (see Figure 1b), these harmonics’ trajectories develop close and parallel to the
first harmonic (see predicted trajectories in Figure 1b), which makes impossible their
observation and quantification by tools such as the Short Time Fourier Transform or
Complex Wavelet Transform [3]. However, the excellent time and frequency resolutions of
the Dragon Transform represents them as very thin lines, with no interference from the
first component energy.

(a) (b)

(c) (d)
Figure 1. Analysis with the Dragon Transform of the stator current of an inverter-fed induction motor
with a broken rotor bar during a linear startup: (a) Stator current; (b) Motor slip; (c) Theoretical
trajectories of the first component and the bar breakage harmonics; (d) Time-frequency distribution
of the stator current given by the Dragon transform.
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As the trajectories of fault-related harmonics are correctly observed as thin lines in the
time-frequency plane, their energy can be captured so fault severity can also be quantified.
Figure 2 shows the quantification curves corresponding to the analysis of the signal shown
in Figure 1. These time curves represent the energy density along the trajectories of broken
bar harmonics shown in Figure 1d. The two curves correspond to the energy of the
harmonics on both sides of the first component. Therefore, this quantification technique
could be used for fault detection and diagnosis during an inverter-controlled IM startup
following any profile in time.

Figure 2. Fault severity quantification of the case shown in Figure 1: time evolution of the energy
density along the bar breakage harmonic trajectories (LSH in blue and USH in green).

2.2. Functional Data Analysis

The application of the Dragon Transform to the stator current of the induction motor
during startup yields a set of time curves. Therefore, Functional Data Analysis tools
are the natural choices for analyzing this particular type of data. The application of
modern technologies is increasingly allowing us to measure continuous time phenomena
as functions. Although the measured curves are often discretized, data sets can be better
seen as made of functions rather than finite-dimensional measurements. Functional Data
Analysis [19,20] are the set of statistical tools specially developed to deal with this particular
type of data. Many standard statistical tools have been adapted to cope with functional
data’s specificities, and the classical ANOVA (ANalysis Of VAriance) procedure is one
of them. In that spirit, a functional ANOVA test procedure was introduced in [19]. We
propose considering this approach to help in the diagnosis of induction motors. This test
analyzes whether the mean curves for different conditions can be considered the same or if
significant differences among mean curves can be detected. If, as an example, three different
conditions (1,2,3) are considered, the functional ANOVA test will have as null hypothesis:

H0 : m1 = m2 = m3, (5)

where mi is the mean curve for the transformation curves obtained in the i-th category.
The null hypothesis states that m1(t) = m2(t) = m3(t) for every t in the domain where
these functions are simultaneously defined. Then, the functional ANOVA procedure is
carried out by applying a kind of asymptotic parametric bootstrap procedure as detailed
in [21]. The procedure is implemented by applying the fda.usc package [22] in R [23]. This
package is available at the CRAN repository. Other approaches for functional ANOVA can
be seen in [24].
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3. The Laboratory Setup

The test bench used in this work (Figure 3) consisted of an induction motor with
the following specifications: rated power of 1.1 kW; star connection; 400 V rated voltage;
1410 rpm rated speed, and 2.6 A rated current. The motor load was a Lucas Nülle powder
magnetic brake, which also incorporates a torque and speed meter. Data was captured
using the cDAQ-9174 by National Instruments with an NI-9215 module. Two Hall effect
sensors by LEM were used as current (LA 25-NP) and voltage (LV 25-P) transducers.
The sampling frequency used for voltage, stator current and speed acquisition was 50 kHz.

Figure 3. Elements of the test bench: (1) Induction motor; (2) Magnetic powder brake; (3) Brake
control unit; (4) Laptop; (5) Custom-made board of sensors; (6) CompaqDAQ by National Instruments;
(7) ABB inverter.

The motor was tested under three different conditions: healthy, with a rotor bar broken
at 70%, and with full broken rotor bar. Bar breakage was achieved by drilling a hole at the
junction of a bar and the cage end ring. Fault detection also depends on the motor load,
being more challenging at low loads. For this reason, the motor was tested also at two
motor load levels: low load (35% of rated torque); high load (60% of rated torque).

An ABB inverter, model ACS355, with open loop scalar control was used as motor
supply. This inverter allows the user full control of the startup transient following a linear
profile. The supply voltage amplitude and its frequency increase from zero to the final
cruise values configured by the user, in this case to 50 Hz. In this work, the inverter was
configured so the startup transient was 10 s long with a final frequency of 50 Hz. The voltage
was captured to calculate the fundamental frequency and the synchronous speed over
time, as explained in [16]. The speed was also measured for the calculation of the motor
slip. This information permits the computation of the fundamental component and fault-
related harmonics trajectories in the time-frequency plane, which are necessary to apply
the Dragon Transform to the stator current and compute the spectrogram. Although the
startup lasts 10 s, only the central six seconds are analyzed to avoidable edge effects at the
beginning and end of the transient that affect the fault severity quantification. A total of
150 tests were carried out: 45 at healthy condition and low load; 45 at healthy condition
and high load; 15 at medium fault condition and low load; 15 at medium fault condition
and high load; 15 at full broken bar and low load; 15 at full broken bar and high load.

4. Results
4.1. Examples of Time-Frequency Distributions and Fault Severity Quantification

The motor has been tested under two load levels (low and high load) and three levels
of fault severity (healthy state, 70% breakage and full broken rotor bar). Each test consisted
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of a 10-s startup transient, followed by a steady-state motor operation. Figure 4 shows an
example of a stator current time-frequency distribution of one of the motor tests with one
broken rotor bar. The trajectories of the two fault-related harmonics observed are parallel
to the first frequency component in both regimes. However, this paper aims to demonstrate
that this fault can be diagnosed even in transient regimes. For this reason, only one section
of the startup transient is used for diagnosis purposes. This section is circled in Figure 4,
where only the middle six seconds are considered to avoid edge effects at the end of the
transient, but especially at the beginning.

Figure 4. Time-frequency distribution of the stator current. The black circle marks the area analyzed.

The Dragon Transform has been applied to all laboratory tests to obtain their time-
frequency distributions. Some examples, for the middle 6 s, are shown in Figure 5. The fault
severity quantification is the energy density in the time-frequency distribution along the
fault-related harmonics trajectory, as shown in Figure 5. The excellent time and frequency
resolutions delivered by the Dragon Transform permits the observation of the fault-related
trajectories (see Figure 5c,d), which are absent in the healthy cases (see Figure 5a,b). These
combined resolutions allow us to quantify the fault severity during the transient.

Figure 6 shows the energy of the fault-related harmonics along the trajectories given
by Equation (4). As it can be observed, the energy of the faulty trajectories (Figure 6c,d)
is higher than the healthy cases (Figure 6a,b). These quantification curves have been
calculated for all laboratory tests and are the input to the ANOVA to achieve the fault
diagnosis during the startup transient.

(a) (b)
Figure 5. Cont.
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(c) (d)
Figure 5. Time-frequency distributions of the stator current for the following cases: (a) Healthy motor
under low load; (b) Healthy motor under high load; (c) Motor with one broken rotor bar under low
load; (d) Motor with one broken rotor bar under high load.

(a) (b)

(c) (d)
Figure 6. Fault severity quantification curves from the time-frequency distribution of Figure 5 for the
following: (a) Healthy motor under low load; (b) Healthy motor under high load; (c) Motor with one
broken rotor bar under low load; (d) Motor with one broken rotor bar under high load.

4.2. Fault Diagnosis with ANOVA

In this section, we provide the results obtained applying the functional ANOVA
procedures to the set of curves obtained from the time-frequency distributions given by the
Dragon Transform from the stator currents of all laboratory experiments on three different
situations. This procedure will serve to analyze whether the mean curves for the three
categories in which fault severities are classified (healthy motor, medium fault, and full
fault) can be considered the same or if significant differences among mean curves can
be detected. In the first scenario, motors under high load are considered, using the USH
values provided by the Dragon Transform as input values for the functional ANOVA.
Notice that as only the USH values are used and not the LSH values, the procedure is not
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considering all the available information and thus even better results would be obtained if
both sidebands are used as input. The results for this first scenario are given in Figure 7.
The left panel shows the mean curves for each of the three states considered (solid lines, red
for healthy motor state R1, green for medium fault state R2 and blue for full fault state R3)
together with all curves for each state (dotted color lines) and the global mean (solid black
line). In the middle panel the mean curves are pictured together with dotted grey lines
simulating the type of variability expected for the mean curves if the equality of means
condition H0 holds. It can be seen that the mean colored curves, in all cases monitored, are
placed apart from the grey curves suggesting that the null hypothesis H0 does not hold.
This appreciation is confirmed in the right panel by seeing the bootstrap simulated values
for the functional ANOVA test statistic (dashed red vertical line) and that show how the
value of the test statistics are highly unlikely to be generated by the distribution of the test
statistic under the null hypothesis. The p-value is close to 0, which clearly reinforces the
rejection decision of the equality of mean curves stated under the null hypothesis H0.

The second scenario is that of low-load motors, which is a condition that makes
diagnosis more difficult. As in the previous case, only the functional ANOVA procedure
with the USH values is provided. The results obtained are shown in Figure 8. The third
panel of the figure shows that the functional ANOVA also clearly detects the differences
among the three mean curves.

Finally, to check what would happen for the general case when the motor can be
working under different load levels, a third scenario is considered where all USH values
are provided independently of the motor load. The first panel of Figure 9 shows that this
should be a more difficult situation for the functional ANOVA procedure since there is
more confusion among the curves. However, the third panel of Figure 9 shows that even in
this more general scenario, the functional ANOVA detects the difference among the mean
curves of the three different motor states with a 0 p-value.

These results open the door to consider the Dragon Transform curves as a powerful
diagnostic tool for detecting troubles in the state of the motors. The previous figures
also show that apart from an initial readjusting stage where undesired border effects are
eliminated, sustained increased values of these curves are a clear symptom of troubles
in these motors and that this seems to be always the case independently of the load
level analyzed.

Figure 7. Functional ANOVA results of the analysis of the upper harmonic (USH) trajectories with the motor under
high load.
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Figure 8. Functional ANOVA results of the analysis of the upper harmonic (USH) trajectories with the motor under low load.

Figure 9. Functional ANOVA results of the analysis of the upper harmonic (USH) trajectories with the motor under both load levels.

5. Conclusions

Although much effort has been put in recent years in developing techniques for fault
detection and diagnosis of the condition of induction motors, there are still challenges to be
solved. One of the main challenges is to solve the difficulties in the diagnosis introduced
by the inverter operation, which is widely spread presently. To solve these problems,
this paper has proposed the use of the Dragon Transform together with the statistical
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technique known as functional ANOVA. The Dragon Transform allows obtaining time-
frequency curves with sufficient resolution to highlight the trajectory of the fault harmonics.
In addition, it allows quantifying these trajectories, which opens the door to apply statistical
techniques to support the diagnosis. In this sense, the use of functional ANOVA has been
proposed to perform the diagnosis working directly with the curves obtained after the
application of the aforementioned transform.

The capability of the proposed methodology has been tested in a case study in which
an induction motor driven by an inverter has been tested under different load regimes and
in three different states of rotor bar breakage. The good results obtained both at high and
low load (especially complicated situation for the case of broken bars) have been shown.
Even the ability to diagnose correctly including different load regimes at the same time has
been proved. However, the proposed methodology should be tested with motors operating
at very low loads, although this situation may not be very common in the industry.

The methodology presented in this paper can be implemented in a cloud computing
system or dedicated mini-pc. Signal capturing does not need a high sampling frequency
as far as low-pass filters are used to avoid frequency aliasing. The ANOVA is not very
computer demanding but the calculation of the Dragon Transform requires more computing
power than a microcontroller.
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