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Abstract: The use of machine learning algorithms and modern technologies for automatic segmen-
tation of brain tissue increases in everyday clinical diagnostics. One of the most commonly used
machine learning algorithms for image processing is convolutional neural networks. We present a
new convolutional neural autoencoder for brain tumor segmentation based on semantic segmenta-
tion. The developed architecture is small, and it is tested on the largest online image database. The
dataset consists of 3064 T1-weighted contrast-enhanced magnetic resonance images. The proposed
architecture’s performance is tested using a combination of two different data division methods,
and two different evaluation methods, and by training the network with the original and augmented
dataset. Using one of these data division methods, the network’s generalization ability in medical
diagnostics was also tested. The best results were obtained for record-wise data division, training
the network with the augmented dataset. The average accuracy classification of pixels is 99.23% and
99.28% for 5-fold cross-validation and one test, respectively, and the average dice coefficient is
71.68% and 72.87%. Considering the achieved performance results, execution speed, and subject
generalization ability, the developed network has great potential for being a decision support sys-
tem in everyday clinical practice.

Keywords: brain tumor segmentation; convolutional neural network; image segmentation;

magnetic resonance imaging; machine learning; medical imaging; neural networks

1. Introduction

The advancements in modern technologies, especially in terms of novel machine
learning approaches, have an impact on many aspects of everyday life as well as many
scientific areas. In the field of medicine, which is a crucial discipline for improving a per-
son’s wellbeing, these modern technologies have enabled many possibilities for inspect-
ing and visualizing different parts of the human body. By performing medical screenings,
radiologists are able to assess the state of a given body part or organ and base further
actions on this knowledge.

In everyday clinical practice, the disease’s diagnosis is often based on the analysis of
various medical images. Visual observation and interpretation of images can depend on
the subjectivity and experience of radiologists. An accurate interpretation of these images
can be of great significance since an early diagnosis of a tumor can greatly increase the
chances of a successful recovery. Automatic segmentation and classification of multiple
changes in images, such as magnetic resonance imaging (MRI) and computer tomogra-
phy, by computer vision methods, can offer valuable support to physicians as a second
opinion [1,2].
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Object detection is a widespread problem of computer vision and deals with identi-
fying and localizing a particular class’s objects in the image. This aspect of image pro-
cessing has been an area of interest for researchers for more than a decade. It has found
its application in industry, security, autonomous vehicles, as well as in medicine [1].

Computer vision methods for image segmentation can be divided into classical im-
age processing and machine learning approach. Among machine learning approaches,
one of the most widely used image processing neural network architectures is convolu-
tional neural networks (CNN). In computer vision, CNN is used for classification and the
segmentation of features in the image. Our group already dealt with the issue of classifi-
cation, and we developed a new CNN architecture for the classification of brain tumors
from MRI images from the image database used in this paper [3]. In order to complete the
common problems in everyday clinical practice, our group also dealt with the issue of
image segmentation for tumor localization, which we described in this paper.

One type of segmentation is semantic segmentation, which aims to classify each pixel
of an image into a specific class. The output produces a high-resolution image, usually the
same size as the input image. Ronneberger et al. [4] introduced the U-Net for the segmen-
tation of biomedical images in 2015. A U-network is a CNN with autoencoder architecture
that restores the probability that an image’s pixels belong to certain classes based on the
input image and mask, representing an image with accurately classified pixels.

CNN architectures are data-hungry, and in order to train and compare one method
with another algorithm, we need a dataset that is adopted by the research community.
Several can be found in the literature. For example, the Perelman School of Medicine, Uni-
versity of Pennsylvania, has been organizing a multimodal Brain Tumor Segmentation
Challenge (BRATS) [5] online competition since 2012. The image databases used for the
competition are small (about 285 images) and are based on two levels of tumors, low and
high levels of gliomas, imaged in the axial plane. Image databases are also available after
the end of the competition and can be found in papers dealing with the problem of brain
tumor segmentation [6-11].

In addition to the database of images from the competition in the works, it is possible
to find other different databases available on the Internet [2,12-20] and databases of im-
ages collected by the authors [12,21,22]. The largest database of MRI images available on
the Internet is also the database used in this paper and contains a total of 3064 images [2].
In comparison, the largest database of images collected by Chang et al. [21] has 5259 im-
ages, but it is not available on the Internet. Compared to these two databases, the others
contain significantly fewer images, so we choose the dataset that contains 3064 images,
since more data reduce the possibility of overfitting.

Tumor segmentation on MRI images is mainly performed by grouping the most sim-
ilar image pixels into several classes [2,10,16], as well as based on establishing a pixel in-
tensity threshold [23], using super-pixel level features and kernel dictionary learning
method [11], and using different CNN architectures [6-9,23,24]. In their paper, Naz et al.
[23] presented the architecture of autoencoders for semantic segmentation of brain tumors
from images from the same database used in this paper. An autoencoder with an image
reduction of four times the input size was realized, and a pixel classification accuracy of
93.61% was achieved. For the same database, Kharrat and Neji [17] achieved a pixel clas-
sification accuracy of 95.9% using methods for extracting features from images, selecting
the right features using a Genetic Algorithm, and a Simulated Annealing Algorithm. Pixel
classification was performed using Support Vector Machines.

In this paper, we present a new convolutional neural autoencoder (CNA) architecture
for brain tumor semantic segmentation of three tumor types from T1-weighted contrast-
enhanced MRI. The network performance was tested using combinations of two databases
(original and augmented), and two different data division methods (subject-wise and rec-
ord-wise), and two evaluation methods (5-fold cross-validation and one test). The results
are presented using the histograms and mean and median values for metrics for pixel
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classification. A comparison with the comparable state-of-the-art methods is also pre-
sented. The best results were obtained by training the network on the augmented database
with record-wise data division. The experiment shows that the proposed network archi-
tecture has obtained better results than the networks found in the literature trained on the
same image database.

2. Materials and Methods
2.1. Image Database

The image database used in this paper consists of 3064 T1-weighted contrast-en-
hanced MRI images taken at Nanfang and Tianjin General Hospital in China from 2005 to
2010. It was first published on the Internet in 2015, and the last modified version was
posted in 2017 [25]. The database contains images showing three types of tumors: menin-
gioma (708 images), glioma (1426 images), and pituitary tumor (930 images). All images
were taken on 233 patients in three planes: sagittal (1025 images), axial (994 images), and
coronal (1045 images) planes. Examples of different tumor types and different imaging
planes are shown in Figure 1la. Tumors are bordered in red. The number of images per
patient varies. In addition to MRI images, the database also contains tumor masks, a bi-
nary image where 1 indicates a tumor, and 0 everything else, Figure 1b.

sagittal axial coronal sagittal

coronal

meningioma

glioma

pituitary

(a) (b)

Figure 1. Image example for each type of tumor in each of the planes from the database [25]: (a) Normalized MRI images
with bordered tumors; (b) Corresponding tumor masks.

2.2. Image Preprocessing and Data Augmentation

The MRI images found in the database are of different dimensions and are in int16
format. These images represent the network’s input layer, so they are normalized to 1 and
scaled to 256 x 256 pixels.

In order to augment the datasets, three separate methods of image transformation
were used. The first transformation is a 90° image rotation in a counterclockwise direction,
and the second is the flipping of the image about the vertical axis. The last modification
of the image is adding the impulse type of noise, the salt and pepper noise. The augmen-
tation is only applied to the training sets. It is augmented four times and consists of the
initial, unmodified images and the three modified datasets obtained through the afore-
mentioned modifications methods.

2.3. Network Performance Testing

In order to test the performance of the segmentation network, k-fold cross-validation
was used [26]. The cross-validation method divides the database into k approximately
equal subsets, one part of which is used for training and validation, and the other for
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testing. The network is then trained k times, each time using different subsets for training,
validation, and testing. In this way, it is achieved that each data is repeatedly found in
each set and the impact of imbalanced data split is minimized. Two different evaluation
approaches have been implemented, and both are based on 5-fold cross-validation, with
one fold being used for testing, one for validation, and the rest for training. The first ap-
proach is based on dividing the data into five equal parts so that the images showing each
of the tumor categories are equally represented in all parts. This approach is hereinafter
referred to as record-wise cross-validation. The second approach used in testing network
performance is based on dividing the data into five equal parts where images from one
subject can be found in only one of the parts. Thus, each of the parts contains images of
several subjects, regardless of the tumor category. Hereinafter, this approach is called sub-
ject-wise cross-validation. A second approach has been implemented to test the network’s
generalization ability in medical diagnostics [27]. The ability to generalize the network in
clinical practice is the network’s ability to accurately diagnose data on subjects about
which there is no data in the network training process. Therefore, data on individuals in
the training set should not appear in the test set. If this is not the case, complex predictors
can recognize the interrelationship between identity and diagnostic status and produce
unrealistically high classification accuracy [28].

In order to compare the performance of the new network and other existing methods,
the network was tested without the use of k-fold cross-validation, i.e., by training the net-
work only once (one test). One test method was used with record-wise and subject-wise
approaches for data dividing. When training the network with one test method, data split-
ting is the same as with the cross-validation methods, i.e., 20% of the data are used for
testing, 20% for validation, and 60% for training.

All the methods mentioned above for testing the network were performed on original
and augmented datasets. In total, the network was tested using eight tests, combinations
of two evaluation methods (5-fold cross-validation and one test), two data division meth-
ods (record-wise and subject-wise), and two training datasets (original and augmented).

2.4. Network Architecture

Brain tumor segmentation was performed using a new network architecture with
Convolutional layers, developed in Google Colaboratory, with TensorFlow version 2.4.0.
and trained on a Graphical Processing Unit (GPU) Tesla P100. The network architecture
is modeled based on autoencoders and the U-network [4] and consists of an input, three
main blocks, a classification block, and an output, Figure 2. The first main block, Block A,
represents the encoder part of the network. It consists of two Convolutional layers that
keep the same size at the output as the input one. The reduction in Block A is made using
a MaxPool layer that halves the input size. The second block, Block B, consists of two
Convolutional layers that retain the input size and serve for additional processing of char-
acteristics, as in the U-network. Block C, the third main block representing the decoder
part of the network, is similar to Block A, except that instead of the MaxPool layer, it con-
tains a Transposed-Convolutional layer that doubles the size at the input, followed by two
Convolutional layers as in Block A. The classification block has a Convolutional layer and
a SoftMax layer that gives the probability to classify each pixel of the image.

All Convolutional layers, except for the one in the classification block, are followed
by activation function Rectified Linear Unit and Batch Normalization. These layers were
more precisely defined with GlorotNormal [29] kernel initializer and 12 parameter of
0.0001 for kernel regularizer. The Transposed-Convolutional layer was followed by Batch
Normalization and was more precisely defined with the same kernel initializer as the Con-
volutional layers.

The exit from the network represents the binary image that ideally should have the
same value for every pixel as the mask. We refer to the network output as a predicted
mask. In the end, the segmentation network’s architecture consists of an input layer, three
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Blocks A, Block B, three Blocks C, Classification Block, and Output, and it contains a total
of 39 layers and output mask and 488,770 trainable parameters, Table 1.

In the first stage of development, we focused on the U-network with a slight change
in the output. The output size was changed to be the same as the input. This network
architecture achieved subpar results. The initial modification was to remove the skip con-
nection between the layers from the encoder and decoder parts. The final model architec-
ture, including the number of layers and their parameters, was determined empirically.
The proposed network architecture is different from the standard U-network in several
aspects. Firstly, there are no skip connections, there is a smaller number of convolution
layers, i.e., blocks, the depth of convolution layers is smaller in the proposed network, and
the output of the convolution layer in the proposed network is the same size as the input,
unlike the U-net where the output of each convolution layer is 22 times smaller than the
input. With all the aforementioned differences, the proposed network architecture is
smaller than the U-net.
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Figure 2. Schematic representation of the CNA segmentation architecture containing the input layer, three Blocks A, Block
B, three Blocks C, Classification Block, and Output Layer. Block A represents the encoder, Block C the decoder. Conv
layers retain the input dimensions at the output, and Pool and Trans-Conv reduce, i.e., increase the output size. CONV —
convolutional layer; RELU —rectified linear unit activation function; BN —Batch Normalization, POOL —association layer;
TRANS-CONV —transposed convolutional layer; SOFTMAX —softmax activation layer.
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Table 1. New CNA architecture for brain tumor segmentation. All network layers are listed along with their parameters.

Layer No Layer Name Block Layer Properties
1 Image Input / 256 x 256 x 1, images
2 Convolutional Block A 16 3 x 3 x 1 convolutions with stride [1 1] and padding ‘same’
3 Normalization Block A Batch Normalization
4 Convolutional Block A 16 3 x 3 x 16 convolutions with stride [1 1] and padding ‘same’
5 Normalization Block A Batch Normalization
6 MaxPool Block A 2 x 2 MaxPool with stride [2 2] and padding ‘same’
7 Convolutional Block A 32 3 x 3 x 16 convolutions with stride [1 1] and padding ‘same’
8 Normalization Block A Batch Normalization
9 Convolutional Block A 32 3 x 3 x 32 convolutions with stride [1 1] and padding ‘same’
10 Normalization Block A Batch Normalization
11 MaxPool Block A 2 x 2 MaxPool with stride [2 2] and padding ‘same’
12 Convolutional Block A 64 3 x 3 x 32 convolutions with stride [1 1] and padding ‘same’
13 Normalization Block A Batch Normalization
14 Convolutional Block A 64 3 x 3 x 64 convolutions with stride [1 1] and padding ‘same’
15 Normalization Block A Batch Normalization
16 MaxPool Block A 2 x 2 MaxPool with stride [2 2] and padding ‘same’
17 Convolutional Block B 128 3 x 3 x 64 convolutions with stride [1 1] and padding ‘same’
18 Normalization Block B Batch Normalization
19 Convolutional Block B 128 3 x 3 x 128 convolutions with stride [1 1] and padding ‘same’
20 Normalization Block B Batch Normalization
21  Transposed-Convolutional Block C 64 3 x 3 x 128 convolutions with stride [2 2] and cropping ‘same’
22 Normalization Block C Batch Normalization
23 Convolutional Block C 64 3 x 3 x 64 convolutions with stride [1 1] and padding ‘same’
24 Normalization Block C Batch Normalization
25 Convolutional Block C 64 3 x 3 x 64 convolutions with stride [1 1] and padding ‘same’
26 Normalization Block C Batch Normalization
27  Transposed-Convolutional Block C 32 3 x 3 x 64 convolutions with stride [2 2] and cropping ‘same’
28 Normalization Block C Batch Normalization
29 Convolutional Block C 32 3 x 3 x 32 convolutions with stride [1 1] and padding ‘same’
30 Normalization Block C Batch Normalization
31 Convolutional Block C 32 3 x 3 x 32 convolutions with stride [1 1] and padding ‘same’
32 Normalization Block C Batch Normalization
33  Transposed-Convolutional =~ Block C 16 3 x 3 x 32 convolutions with stride [2 2] and cropping ‘same’
34 Normalization Block C Batch Normalization
35 Convolutional Block C 16 3 x 3 x 16 convolutions with stride [1 1] and padding ‘same’
36 Normalization Block C Batch Normalization
37 Convolutional Block C 16 3 x 3 x 16 convolutions with stride [1 1] and padding ‘same’
38 Normalization Block C Batch Normalization
39 Convolutional Classification 2 3 x 3 x 16 convolutions with stride [1 1] and padding ‘same’
40 Output / Two-pixel classes, “1'—tumor; ‘0’'—other;

2.5. Training Network

The developed architecture for segmentation was trained using Adam optimizers,

with a batch size of sixteen images. The initial learning rate was set to 0.0008, and the
learning rate scheduler was defined so that every ten epochs learning rate is 0.6 times
lower. The number of maximum epochs for network training was set to 300, and the pa-
tience for early stopping was 5.

The loss function used for training this network was based on the Serensen—Dice co-

efficient (Dice), Equation (1),
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loss =1 — Dice. (€))]

The Dice coefficient compares the similarities between a segmented image and a
mask with marked pixels [30]. The Dice coefficient represents the ratio of cross-section and
union between two images, Equation (2),

|XNnY]|

Dice = 2 ¥ ———,
X+ Y]

2)
wherewith X! is the considerable sum of pixels of the segmented image, and with Y|
the sum of the mask’s pixels.

2.6. Network Performance Metrics

The developed network architecture for tumor segmentation is based on the pixel
classification method. Therefore, as the network’s output, we have a binary image (pre-
dicted mask), i.e., 256 x 256 pixels, that could be one of two classes, “1” for tumor and “0”
for everything else. In order to evaluate the network performance, we calculated five co-
efficients for each image separately. These coefficients are Accuracy (Acc), Specificity (Sp),
Sensitivity (Se), Precision (Pr) calculated by formulas presented in Equations (3)-(6), re-
spectively,

Acc = TPHTN *100% 3)
TP + TN + FP + FN
Sp = % * 100% 4
Se = 5y * 100% ()
Pr = s * 100% (6)

where TP represents true positive pixels, TN true negative, FP false positive, and FN false
negative, Table 2.

Table 2. Definition of parameters TP, FP, TN, FN between mask pixel values and predicted pixel
values.

Parameter Mask Pixel Value Predicted Pixel Value
TP 1 1
FP 0 1
TN 0 0
FN 1 0

TP —true positive, FP—false positive, TN —true negative, FN—false negative.

One more coefficient used is the Dice coefficient, already mentioned in the previous
subsection, Equation (2), only it is transferred to percent.

The calculated coefficients are presented in table format in the Result section, and the
histograms could be found in Appendix A. The table shows the mean and median values
of each coefficient.

As the segmentation of images is performed by the pixel classification method and
as the tumors in the images are insufficient in relation to the remaining images, imbal-
anced classes exist. Metrics used to keep class imbalances negligible are Se, Pr, and Dice
coefficient [31,32].
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3. Results and Discussion

The CNA architecture’s performance evaluation for segmentation was performed by
calculating the Dice coefficient and Acc, Se, Sp, and Pr for each of the test set images. The
coefficients were calculated for each image separately, therefore in Table 3, the mean and
median values of those estimated coefficients for all tests are presented. The metrics are
calculated and presented in Table 3 for the aforementioned eight tests, combinations of
two evaluation methods (5-fold cross-validation and one test), two data division methods
(record-wise and subject-wise), and two training datasets (original and augmented).

Table 3. Mean and median values of calculated coefficients for network evaluation.

s’ oot M a st sta prta it
Cross- Record-wise Original mean 99.17 99.68 69.48 70.06 68.78
validation median 99.53 99.84 83.89 83.04 82.27
. .. mean 99.22 99.70 70.27 69.02 68.96

Onetest  Record-wise  Original median 99.57 99.85 85.85 83.21 83.31
Cross- Record-wise  Augmented mean 99.23 99.69 72.31 72.36 71.68
validation median 99.58 99.86 86.28 84.51 84.97
. mean 99.28 99.71 72.65 73.96 72.87

Onefest  Record-wise ~Augmented 4.1 99.60 99.86 86.55 85.93 86.10
Cross- Subject-wise Original mean 99.05 99.69 63.75 66.98 63.82
validation median 99.49 99.87 79.28 81.45 79.05
One test Subject-wise Original mee.m 99.21 99.81 65.76 72.15 67.32
median 99.56 99.89 81.35 85.76 82.45

Cross- Subject-wise Augmented mean 99.04 99.62 67.01 65.84 64.74
validation median 99.46 99.83 83.69 80.01 79.75
. . mean 99.17 99.63 71.75 68.70 69.48

Onetest  Subject-wise  Augmented  4ion 99.51 99.81 87.95 84.11 85.09

Acc—accuracy, Se—sensitivity, Sp—specificity, Pr—precision.

According to the mean and median value for the Dice coefficient, the best results for
cross-validation and one test method of the evaluation were obtained by training the net-
work on the augmented dataset with record-wise data division. The observed difference
between the mean and the median value is that there are images in which the network
could hardly segment the tumor at all, which can be seen on the Dice coefficients” histo-
grams in the Appendix A. High values of Acc and Se coefficients are a consequence of the
already mentioned class imbalance. For these reasons, when it comes to image segmenta-
tion, it is best to observe the values and histograms of Dice, Sp, and Pr coefficients.

Some of the results of segmentation after training the network on the original data
set with record-wise data division are shown in Figure 3. Examples of tumor segmentation
with Dice coefficients higher and lower from its median value (83.31%) for each tumor
type are presented, along with an MRI image and mask. The segmented images also show
the Dice coefficient achieved for that segmentation. Even in the cases where the Dice coef-
ficient is lower, the predicted mask clearly indicates the existence and position of the tu-
mor, which shows the significant diagnostic value of our method.
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Original mask Predicted mask

Meningioma
Dice = 94.45%

Meningioma
Dice = 63.35%

Glioma
Dice = 96.38%

Glioma
Dice = 77.90%

Pituitary
Dice = 90.70%

Pituitary
Dice = 67.48%

Figure 3. Examples of segmentation after training the network on the original dataset with record-
wise data division. The original MRI image, mask, and segmented tumor are shown. The type of
tumor, as well as the Dice coefficient achieved, are also indicated.

The proposed CNA architecture has less than 0.5 million parameters, and training
with the augmented dataset achieves better results than training with the original dataset.
The record-wise method gives slightly better results compared to the subject-wise. Tu-
mors differ in appearance depending on their type. Additionally, the number of images
for each of the tumor types is not the same, nor is the number of patients with each tumor
type. Therefore, the subject-wise method does not affect the distribution by type of tumor
in the training and testing set, which is the reason for obtaining slightly worse results for
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the subject-wise method than the record-wise. The segmentation execution time is reason-
ably good, with an average value of 13 ms per image. Despite the advantages the devel-
oped network has, there is a drawback worth mentioning. It is regarding the small data-
base currently available and used in this paper. A well known disadvantage of the en-
coder-decoder architecture is a problem with the slow learning of the middle layer due to
gradient decrease with error propagation. The only way to fight this limitation is to make
a bigger database.

3.1. Comparison with State-of-the-Art-Methods

The proposed CNA architecture’s performance was compared with the results pre-
sented in papers that used the same database, but different methods and experimental
setup. Considering this, the presented comparison is used to put the achieved results into
context, since the same database was used. The papers listed in the tables presented their re-
sults through the average value of Acc, and in order to make a comparison, in Tables 4 and 5
only the coefficient Acc is shown. In Table 4 papers using k-fold cross-validation for the
network testing are presented. Additionally, the performances were compared with
works in which the network was not tested by k-fold cross-validation but used one test,
Table 5. It has been shown that the proposed architecture achieves better results than the
results presented in the literature.

Table 4. Comparing the results of different network architectures trained on the original database and performance were
tested via k-fold cross-validation record-wise method.

Reference k-Fold Cross-Validation/Data Division Acc [%]
Kharrat et al.[17] 5-fold; 80% data in training set, 20% in test 95.9
Proposed 5-fold; 60% data in training set, 20% in validation, 20% in test 99.17

Acc—accuracy.

Table 5. Comparing the results of different network architectures trained on the original database and performance were
tested via one test record-wise method.

Reference Data Division Acc [%]
Naz et al. [23] 70% data in the training set, 15% in validation, 15% in the test 93.61
Proposed 60% data in training set, 20% in validation, 20% in test 99.22

Acc—accuracy.

In the literature, we also found other methods that were evaluated on the same da-
taset, like Chouksey et al. [16]. They have applied a new image segmentation method that
involves several different approaches to determine the intensity threshold on which pixels
are extracted. Furthermore, they performed segmentation on several other databases,
among which was the database used in this paper, but the results show metrics and seg-
mentation for only seven images. Additionally, Kaldera et al. [33] presented the CNN ar-
chitecture for segmentation and classification of different types of brain tumors, but the
results of segmentation are presented only in the form of a few examples. In his work,
Rayhan [1] proposed a new architecture of autoencoders to segment tumors in the brain.
Still, when dividing the database, an uneven division was used, i.e., 5% of the images were
used for testing, and 0.2% of the training set, which makes up 95% of the total image da-
tabase, was used the validation set.

4. Conclusions

A new CNA architecture for brain tumor segmentation is presented in this study.
Tumor segmentation was performed based on semantic segmentation, i.e., classifications
of each pixel of the image into two categories, ‘1’ for the tumor, ‘0’ for everything else. The
network architecture is simple, with less than 0.5 million parameters. The network was
tested using eight tests, combinations of two evaluation methods (5-fold cross-validation
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and one test), two data division methods (record-wise and subject-wise), and two training
datasets (original and augmented).

The best segmentation result for 5-fold cross-validation and one test was achieved
with the record-wise method and training the network on the augmented database. The
average Dice coefficient was 71.68% and 72.87% for 5-fold cross-validation and one test,
respectively. There is a difference in results between the increased and the original data-
base. The average Acc classification of pixels on the original database is 99.17% and 99.22%
for 5-fold cross-validation and one test, respectively, and for augmented it is 99.23% and
99.28%.

To our knowledge, in the literature, no paper tested the generalization of the segmen-
tation network by dividing the data using the subject-wise method for this image data-
base. The best result achieved by dividing the data subject-wise was obtained by training
the network on an augmented database. The mean Acc classification of pixels by training
the network on an augmented image database is 99.04% and 99.17% for 5-fold cross-vali-
dation and one test, respectively. The subject-wise data division results are slightly worse
than with the record-wise data division, which was expected because the network has no
data about the respondent during the testing.

Comparing the new CNA architecture with existing ones that used the same image
database and metrically presented the results was also presented. It has been shown that
the proposed CNA architecture for segmentation achieves better results than the results
presented in the literature. Additionally, the network has good generalization ability, and
the execution time required for segmentation is quite good, with an average value of 13 ms
per image, implying its effectiveness as an effective decision-support system in order to
help medical workers in everyday clinical practice.

In the future, our group plans to combine the already developed CNN architecture
for the classification of brain tumors [3] with the presented CNA architecture for segmen-
tation of brain tumors and adapt both networks for use in real-time and real-life condi-
tions during brain surgery [34], by classifying and accurately localizing the tumor. Since
both architectures are small, their adaptation to working in real-time would be possible.
Itis planned that the developed architecture for segmentation will be tested on other med-
ical image databases and an increased number of subjects. In order to improve the draw-
backs, in the future we will expand the dataset with additional images and appropriate
segmentation masks. To achieve this, we have started a cooperation with two medical
institutes. Additionally, for future work we will consider using other classifiers for the
Classification block, such as the classifier based on the KNN algorithm, the enhanced
KNN, Support Vector Machine and random forest [35-37].
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Appendix A Histogram Results

Results after 5-fold cross-validation are also presented using normalized histograms,
Figures A1-A8. The histogram, in this case, represents the distribution of the number of
images in relation to the range of the obtained calculated metric. In that manner, the his-
togram preserves the distribution of coefficients by images.
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In Figure A1 histogram of the Dice coefficient for segmentation results is presented
for a test set, after training the network on the original database with 5-fold cross-valida-
tion with record-wise division method. The histograms Acc, Se, Sp, and Pr for segmenta-
tion results on the test set, training network on the original database with 5-fold record-
wise cross-validation are presented in Figure A2.
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Figure A1. Dice coefficient histogram for segmentation results on a test set for a network trained on
the original database with 5-fold record-wise cross-validation.
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Figure A2. Histograms of metrics for segmentation results on a test set for a network trained on the
original database with 5-fold record-wise cross-validation. Acc—accuracy; Se—sensitivity; Sp—
specificity; Pr—precision.
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The histogram of the Dice coefficient for the segmentation results on the test set, train-
ing the network on the augmented database with 5-fold record-wise cross-validation, is
shown in Figure A3.
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Figure A3. Dice coefficient histograms for segmentation results on a test set for a network trained
on the augmented database with 5-fold record-wise cross-validation.

In Figure A4, the histograms Acc, Se, Sp, and Pr for segmentation results are shown
on a test set for a network trained on the augmented dataset with 5-fold record-wise cross-
validation. An improvement of all five coefficients is achieved by expanding the training
dataset compared to the original dataset.

Histograms for segmentation results on the test set for the network trained on the
original database with 5-fold subject-wise cross-validation are shown in Figures A5 and Aé.
Observation of the histogram of all five coefficients shows a slight deterioration in relation
to the network’s training with the record-wise data division.

In Figures A7 and A8, histograms for the Dice coefficient and Acc, Se, Sp, and Pr for
segmentation results are shown on a test set for a network trained on the augmented da-
tabase with 5-fold subject-wise cross-validation. By increasing the database, improvement
of coefficients is achieved compared to the network training on the original database with
subject-wise data division. However, it is still slightly worsened than record-wise data
division.
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Figure A4. Histograms of metrics for segmentation results on a test set for a network trained on the
augmented database with 5-fold record-wise cross-validation. Acc—accuracy; Se —sensitivity; Sp—
specificity; Pr—precision.
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Figure A5. Dice coefficient histograms for segmentation results on a test set for a network trained
on the original database with 5-fold subject-wise cross-validation.
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Segmentation metrics
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Figure A6. Histograms of metrics for segmentation results on a test set for a network trained on the
original database with 5-fold subject-wise cross-validation. Acc—accuracy; Se—sensitivity; Sp—
specificity; Pr—precision.
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Figure A7. Dice coefficient histograms for segmentation results on a test set for a network trained
on the augmented database with 5-fold subject-wise cross-validation.
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Segmentation metrics
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Figure A8. Histograms of metrics for segmentation results on a test set for a network trained on the
augmented database with 5-fold subject-wise cross-validation. Acc—accuracy; Se—sensitivity; Sp—
specificity; Pr—precision.
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