Supplementary Materials: Modeling the 2013 Zika outbreak in French Polynesia: Intervention Strategies

Harsha Gwalani *, Faris Hawamdeh, Armin R. Mikler and Katherine Xiong

1. Basic Reproduction Number

The basic reproduction number \(R_0 \) for a disease is defined as the average number of new cases of an infection caused by one infected individual during their infectious period in a completely susceptible population [1]. The basic reproduction number for multi category compartmental models can be calculated using the Next Generation Matrix (NGM) [2]. The next generation matrix, \(K \), introduced in [3] relates the numbers of newly infected individuals in the various categories in consecutive generations [4]. The element \(K_{ij} \) of the matrix \(K \) represents the number of new cases in state \(i \) caused by a new born individual in state \(j \). A generation is defined by number of individuals infected by the previous generation. Figure S1 shows a basic example for the next generation matrix and its use in the calculation of \(R_0 \).

Calculation of \(R_0 \) using \(K \):

If the infection is introduced by a vector, then the initial generation vector, \(Q_0 = [1 \ 0]^T \). The future generations of infection can be calculated as:

\[
Q_i = K_i Q_0 = [0 \ 10]^T
\]

\[
Q_i = K^K_i Q_0 = [20 \ 0]^T
\]

\[\vdots\]

\[
Q_i = K^n_i Q_0
\]

No vectors are infected in the first generation \(Q_0 \), because there are no infected humans in the previous generation. The infections alternate between vectors and humans in each generation, therefore in order to calculate \(R_0 \), the operator \(K \) is applied to the initial generation \(n \) times (\(n \) tends to infinity) and the value is averaged across all these generations by calculating the infinite norm of the matrix \(K \).

Construction of NGM

The process of constructing the NGM for a heterogeneous epidemiological system is described in detail in [2]. The steps involve:

1. Linearize the infected subsystem to get the Jacobian matrix, \(J \).
2. Decompose the Jacobian matrix into \(T \) and \(\Sigma \), where \(T \) is the transmission part and \(\Sigma \) is the transition matrix, such that \(J = T + \Sigma \). \(T \) represents the birth of new infections and \(\Sigma \) represents all other transitions (recovery, mortality etc). \(T_{ij} \) is the rate at which individuals in state \(i \) give rise to individuals in state \(j \) and \(-\Sigma_{ji}^{-1} \) represents the time an individual in state \(j \) will spend in state \(i \) in their future life.
3. Compute \(K \) as \(-T\Sigma^{-1}\)

Calculation of Reproduction Number

\(K \) can be viewed as an iterative linear operator which when applied to the current generation results in the infections in the new generation. In case of vector-borne diseases or other diseases
\[\begin{align*}
\frac{\partial E_H}{\partial t} &= \beta V_H I_V - \alpha H E_H \\
\frac{\partial I_H}{\partial t} &= \alpha H E_H - \gamma I_H \\
\frac{\partial E_V}{\partial t} &= \beta V_H N_V I_H - (\mu_A h + \rho_A h) E_V - \alpha V E_V \\
\frac{\partial I_V}{\partial t} &= \alpha V E_V - (\mu_A h + \rho_A h) I_V
\end{align*} \] (1)

The infected subsystem involving heterogeneous populations, infections in one kind of population happen in alternate generations. Figure S1 exemplifies this phenomenon. If \(\phi_i \) denotes the \(i^{th} \) infection generation then,

\[\begin{align*}
\phi_1 &= K \phi_0 \\
\phi_n &= K^n \phi_0
\end{align*} \]

Then, the basic reproduction number \(R_0 \) for the infection is defined as \(\frac{1}{n^{th}} \) power of the growth of \(K \) in \(n \) generations (geometric mean across \(n \) generations) as \(n \) grows to infinity, \(R_0 = \lim_{n \to \infty} (||K^n||)^{\frac{1}{n}} \) which is also equal to its spectral radius or its largest eigenvalue\([4] \).

For the transmission system defined by equations 1 and equation 2, the infected subsystem consists of 4 categories \(\{E_H, I_H, E_V, I_V\} \). Since \(R_0 \) is calculated when the entire population is susceptible, \(\therefore S_H = N_H \) and \(S_V = N_V \) which leads to linear system of ODEs:

\[T = \begin{bmatrix}
0 & 0 & 0 & \beta V_H \\
0 & 0 & 0 & 0 \\
0 & \beta V_H N_V & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \]

\[\Sigma = \begin{bmatrix}
-\alpha_H & 0 & 0 & 0 \\
\alpha_H & -\gamma & 0 & 0 \\
0 & 0 & -(\mu_A h + \rho_A h + \alpha_V) & 0 \\
0 & 0 & \alpha_V & -(\mu_A h + \rho_A h)
\end{bmatrix} \]

\[-\Sigma^{-1} = \begin{bmatrix}
\frac{1}{\alpha_H} & 0 & 0 & 0 \\
\frac{1}{\alpha_H} & 1 & 0 & 0 \\
\frac{1}{\alpha_V} & 0 & 1 & 0 \\
\frac{1}{\alpha_V} & \frac{1}{\alpha_V} & \frac{1}{\alpha_V} & 1
\end{bmatrix} \]

The transmission matrix(\(T \)) and the transition matrix (\(\Sigma \)) for the system

\(R_0 \) is calculated as the largest eigenvalue of the matrix \(K = -T \Sigma^{-1} \). Estimates for the basic reproduction number \(R_0 \) ranged from 1.56-2.95 (95% CI: 2.0767-2.2026).

References