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Abstract: Urban-induced thermal stress can threaten human health, especially during heat waves
(HWs). The growth of cities further exacerbates this effect. Here, weather research and forecasting
(WRF) with an urban canopy model (UCM) is used to assess the effects of megacities and their growth
on the thermal regime of proximal cities during heat waves. Analysis of the heat fluxes shows that
advection impacts cities downwind. Results indicate that as urban areas change size (50%–100% and
100–150% of their current size), the local 2 m temperature increases by 2.7 and 1.7 ◦C, and the 2 m
specific humidity decreases by 2.1 and 1.4 g kg−1, respectively. A small city downwind is impacted
with a 0.3–0.4 ◦C increase in 2 m temperature. Green roof is a potential mitigation strategy for these
regions (i.e., beyond the megacity). With 50% green roofs in an urban area, a 0.5 ◦C decrease in 2 m
temperature and 0.6 g kg−1 increase in specific humidity is simulated. Urbanization upwind of a
megacity will contribute to regional climate change.
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1. Introduction

Heat waves (HWs), excessively hot periods that last for several days or longer, are a key cause
of weather-related mortality [1,2]. Urban citizens are more vulnerable to HWs, given the additional
warmth in cities relative to rural surroundings, and the greater exposure of people to these conditions
given greater population densities. During heat waves, greater heat-related deaths are predicted—for
example, 148 deaths in Atlanta under a +2 ◦C scenario [3], or 700 documented in Chicago during a
1995 heat wave [4]. Epidemiological studies suggest the mortality risk increases by 3.74% during a
heat wave compared to non-heat wave periods [1].

Land cover changes and land use-related waste heat emissions have significant impacts on
the climate at local and regional scales by modifying the energy, water, and momentum exchanges
between the surface and atmosphere. These exchanges influence air temperature, moisture, wind,
and precipitation, resulting in distinct urban climates, including the well-known urban heat island
(UHI) effect [5,6]. Recent theoretical, numerical, and experimental studies suggest that these urban
effects may be enhanced during heat waves. Moreover, Li and Bou-Zeid [7] suggest that not only do
heat waves increase the ambient temperatures, but they also intensify the difference between urban
and rural temperatures. As a result, the added heat stress in cities is even higher than the sum of
the background urban heat island effect and the heat wave effect. This means cities are even more
vulnerable to HWs than other environments. A number of past studies have documented such urban
effects. For example, a high-resolution (1 km) simulation of HW events concluded that the daily mean
UHI in New York city increased the temperature by 1.5 ◦C [8]. Analysis of Beijing flux observations
found that changes in the surface energy balance under HWs are responsible for the intensification of
UHIs under HWs [9,10], with the role of wind speed being important but varying between cities [11].
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The effects of urbanization on temperature and precipitation extend to surrounding rural areas
and nearby downwind cities [12,13]. For example, numerical modelling suggests Shanghai increases
the 2 m air temperature of downwind Kunshan (10 km west of Shanghai) by 0.2–0.4 ◦C in the afternoon
and by 0.4–0.6 ◦C in the evening [14]. It has been suggested UHI effects could possibly be reduced by
1.25 ◦C (25% reduction) if upwind urban areas were replaced with natural vegetation [15]. Given the
increasing frequency of urban conglomerations, sometimes called urban archipelagos, the impact of
cities beyond their boundaries needs to be explored, especially associated with HWs.

Lowry [16] provides a framework to assess the total climate impacts (M) at a station (x) as a
function of background climate (C), local landscape impacts (L), and local urbanization impacts (E) for
different weather elements (i) for a time period (t):

Mitx = Citx + Litx + Eitx (1)

Urban impacts are easily detected if C and L do not change for the same t and x—or, if no urban
impacts on climate exist at t = 0 when Eitd = 0. In the latter case, upwind (u) − downwind (d)
differences can be determined from

Mitd −Mitu = (Citd −Citu) + (Litd − Litu) + Eitd (2)

Here, this framework is used to assess the impact of urbanization on downwind cities.
As urban expansion may bring some negative effects, various mitigation measures have been

explored, such as green roofs (GRs). Sharma et al. [17] suggest that daytime roof temperatures can be
reduced by 1–3 ◦C in the Chicago metropolitan area, and the amount will vary linearly with increasing
green roof fractions based on urbanized weather research and forecasting (uWRF) simulations. The
urban heat stress could potentially be almost completely offset if green roofs were irrigated in New
York City and Phoenix during heat wave periods [18]. Green roofs modify wind conditions, with the
siting of GRs playing an important role under windy conditions [19].

Here, we explore the impact of urban expansion on cities during HWs, using the megacity
Hangzhou (Figure 1) and its effect on a downwind city Haining (Figure 1) through numerical
simulations. The specific objectives are to (1) analyze the effect of the upwind megacity size on
the UHI size during HW conditions, (2) assess the evolution of spatial and temporal changes of
temperature and humidity from horizontal advection from the megacity (Hangzhou) on the smaller
city (Haining), and (3) evaluate the downwind effectiveness of a mitigation option (GRs) implemented
in the upwind megacity.
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2. Methodology

2.1. Study Area

Hangzhou (30◦16′ N, 120◦ 12′ E), the capital of Zhejiang Province, is located 180 km southwest
of Shanghai in the Yangtze River Delta (Figure 1b). The city covers 4876 km2 of the 16,596 km2 total
administrative area. In 2015, the population was 9 million (80% classified as urban) [21]. The city
experiences a subtropical climate (mean annual temperature = 16.2 ◦C), with daily averages ranging
from 3.8 ◦C (winter) to 28.6 ◦C (summer) [22]. Historically, Hangzhou was renowned for its pleasant
weather [23], but in recent years there have been very hot summers (e.g., 42.8 ◦C on 10 August 2013 [21]).
The average annual rainfall (2000–2015) is about 1490 mm [21].

To analyze the impacts of upwind urban expansion on regional climate, two small cities near
Hangzhou are studied (Figure 1b): (1) Haining (50 km northeast of Hangzhou, downwind) and (2) Fuyang
(30 km southwest of Hangzhou, upwind). These two cities have approximately the same size, population,
and climate. These us allow to consider upwind and downwind impacts of the climate (Equation 2).

2.2. Heat Wave Characteristics

The HWs are characterized using daily maximum air temperature data [24,25] for the period
1 January 1979 to 31 December 2014, using the Meehl and Tebaldi [26] HW definition selected within
ExtremeFinder/Urban Multi-scale Environmental Predictor (UMEP) [27]. HWs have become more
frequent, especially after 2003, with events almost every year (Figure 2). Given that the 2013 HW had
the longest duration (31 days) and was the hottest (40.6 ◦C), we analyze that period. During this HW,
the average daily maximum temperature was 36.8 ◦C, with seven days >39 ◦C and three days >40 ◦C.
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2.3. Simulation Configuration

To investigate this, we used the weather research and forecasting model (WRF) [28], coupled with
the single layer urban canopy model (UCM). The single-layer UCM (urban canopy model) [29,30] has
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been extensively evaluated in urban areas, both offline (e.g., energy balance fluxes [31,32]) and online
(e.g., 2 m temperature [15] and fluxes [33]).

To explore the impact of changing the roof materials, the Princeton roof model (PROM) [34] within
the Princeton urban canopy model (PUCM) was used, as it allows the roof facet materials [2,35–38] to
be changed, while otherwise retaining the same physics as the UCM.

The Hangzhou area is modeled using three nested domains (horizontal grid resolutions of 9, 3,
and 1 km; Figure 1) and IGBP (International Geosphere-Biosphere Programme) -Modified, MODIS
(moderate resolution imaging spectroradiometer) 20-category land use [39]. The outer domain (d01)
covers most of eastern China; d02 includes Shanghai and most of Zhejiang, as well as a small part
of Jiangsu and Anhui provinces; and d03 covers Hangzhou, most of Shaoxing, Jiaxing, and Huzhou,
as well as part of the Zhoushan region. The analysis presented is for d03. One-way nesting with 85
sigma levels vertically below the upper boundary of 100 hPa are used in the simulations. The model is
run only for part of the HW period (00:00 UTC 30 June 2013 to 00:00 UTC 7 July 2013), with the first
40 hours being model spin-up prior to the analysis periods beginning at 00:00 LST 2 July 2013.

NCEP (National Centers for Environmental Prediction) FNL (final) operational global analysis
data [40] are used for both the initial and the boundary conditions. The model physical parameterization
schemes chosen are (1) two-dimensional (2D) Smagorinsky [41], the Smagorinsky [42] scheme for
horizontal diffusion; (2) the Mellor–Yamada–Janjić planetary boundary layer (PBL) scheme [43,44];
(3) the unified Noah land-surface model; and (4) the rapid radiative transfer model [45] for longwave
radiation and the Dudhia [46] scheme for shortwave radiation. The cumulus parameterization option
is off for all domains, as even the largest grid size (9 km) is less than 10 km [47], and there was no
precipitation during the simulation period. Only the roof parameters differ between the UCM and
PUCM/PROM simulations (Table 1, [2,29]). The latter allows GRs to be simulated.

Table 1. Parameters used in the simulations [38]. *Green roofs (GRs) are 0.1 m taller.

Parameter UCM (Urban Canopy Model)
(Roof)

PCUM (Princeton
Urban Canopy Model)

(Green Roof)

Roof Heat Capacity [J m−3 K−1] 1.0 × 106 1.9 × 106

Thermal Conductivity [J m−1 s−1 K−1] 0.67 1.00
Surface Albedo 0.20 0.30

Surface Emissivity 0.90 0.95
Depth of Green Roof * [m] 0.1

Fraction of Roofs that are GR 0.5

Anthropogenic Heat [W m−2] 50 (Maximum)

Diurnal Profile of Anthropogenic Heat 0.16, 0.13, 0.08, 0.07, 0.08, 0.26, 0.67, 0.99, 0.89, 0.79, 0.74, 0.73,
0.75, 0.76, 0.82, 0.90, 1.00, 0.95, 0.68, 0.61, 0.53, 0.35, 0.21, 0.18

2.4. Numerical Experimental Design

To assess the impact of expansion of the Hangzhou urban area, four different urban extents (UE)
are simulated (Figure 3):

1. UE1.0: current urban extent (IGBP-Modified MODIS 20-category data [48]);
2. UE1.5: a 1 km outward expansion in both the east–west and north–south directions (water body

grids remain unchanged), creating an urban area 152.3% of the present-day extent;
3. UE0.5: an urban contraction in both directions, to become 57% of the current extent (area is

replaced with crops, water areas unchanged);
4. UE0.0: all urban grids (Figure 3) changed to crops.

The expansion process is similar to the actual urbanization of Hangzhou [24], and some general
conclusions are obtained under this type of urban growth.
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To consider the potential of green roofs to mitigate HW effects, the GR are assumed to have
an initial soil moisture of 0.3 m3 m−3 (~50% saturation, i.e., very well irrigated), to ensure that
evaporation [48] is considered over three areal extents:

1. GRd03: GRs added to all roofs in the d03 urban grids (Figure 4a)
2. GRHZ: GRs added to all roofs in the Hangzhou urban grids only (Figure 4b)
3. GRNO: no GRs (Figure 4c).
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2.5. Evaluation of Model Performance

Near-surface observations at 13 China Meteorological Administration (CMA) meteorological
stations in d03 (Figure 1b) over 48 h (00:00 4 July 2013 to 00:00 6 July 2013 UTC) during this HW were
used to assess the performance of WRF–UCM (or WRF–PUCM/PROM with no GR). The correlation
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coefficients of 2 m air temperatures are mostly greater than 0.9 (Figure 5a), but the 2 m temperature is
underestimated (mean bias error (MBE) = −1.03 ◦C). This is consistent with previous findings [49,50].
This leads to overestimation of 2 m relative humidity (MBE = 14.54%), but generally reasonable
correlation coefficients (>0.8). The 10-m wind speed correlation coefficients are mostly between 0.4 to
0.8. The wind direction hit rate (HR, [51]) for within 30◦ of observed values is 45%. Unfortunately,
WRF-PROM with larger GR extents cannot be evaluated, as there are currently insufficient GRs in the
area to evaluate with meteorological observation sites available. Prior to this, WRF-PUCM/PROM
evaluations at both Tsinghua University in Beijing, China and Princeton University in New Jersey,
United States, found that PROM is able to capture the diurnal cycle of roof temperatures and the soil
moisture dynamics of green roofs with high accuracy. [38].

Of interest are the sites in Hangzhou (#10) and in the downwind city Haining (#8). For both there
is very good performance (correlation coefficients are >0.95 and >0.9, respectively) for both 2 m air
temperature and 2 m relative humidity, with consistent performance across the diurnal cycle as well.
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Figure 5. Weather research and forecasting (WRF)–urban canopy model (UCM) performance (00:00
4 July 2013 to 00:00 6 July 2013 UTC), evaluated using measurements at 13 CMA sites in Zhejiang
Province (Figure 1b) for (a) 2 m air temperature (◦C), (b) 2 m relative humidity (%), (c) 10 m wind speed
(m s−1), as well as time series of (d,e) 2 m air temperature (◦C), (f,g) 2 m relative humidity (%), and (h,i)
10 m wind speed (m s−1) for sites (d,f,h) #10 (Hangzhou) and (e,g,i) #8 (Haining). (a–c) Taylor [52]
plots are for hourly data with correlation coefficients (polar axis), with normalized standard deviation
(horizontal axis) and normalized root mean square error (RMSE) (internal circular axes). The overall,
cross-site, mean bias error (MBE) and RMSE are also indicated.
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3. Impacts of the Upwind Megacity Size

To examine the impacts of increasing city size during an HW period (Figure 6), the variables
analyzed are the surface energy balance fluxes (storage heat flux, turbulent sensible, and latent heat
fluxes) and the resulting impacts from the surface energy balance flux changes (i.e., surface temperature,
2 m air temperature, 2 m specific humidity, and 10 m wind speed). The variables are analyzed spatially,
using transects that are perpendicular to the predominantly southwesterly wind direction (Figure 3c)
(background wind, Appendix A). The spatial means (5 km) are determined from the 1 km grids for 3 h
time periods. This gives eight time series for each variable investigated.

With the expansion of the urban area (UE1.5–UE1.0 difference), the storage heat flux has an
enhanced diurnal cycle, with larger positive values during the day and larger negative values at night.
As expected, there are larger storage heat fluxes in the urban area. Similarly, the turbulent sensible
heat fluxes increase and latent heat fluxes decrease with the reduction in vegetation and therefore soil
moisture in the urban areas.
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humidity, with a more evident “dry island” as the modeled city grows. A decrease of 3.5 g kg−1 in the 
daytime of the 2 m specific humidity is simulated between UE0.0 and UE1.0 (Figure 6a). As the 2 m 
temperature increases, the specific humidity is reduced, especially during daytime when the 
temperature is relatively high. Wind speed is also affected by urbanization. The urban expansion is 
associated with larger nocturnal wind speeds. This is consistent with Kang and Lenschow’s [53] 
findings (WRF–LES (large eddy simulation) simulations) of surface heterogeneity causing larger 
winds perpendicular to the mesoscale wind direction. Similarly, in the Hangzhou simulation, high 
pressure influencing the region creates a continuous background wind that is enhanced by the urban-
induced thermal difference. The strongest wind speed difference occurs at night, associated with the 
greater thermal heterogeneity. 

Figure 6. Average difference in (1) storage heat flux; (2) turbulent sensible heat flux at the surface;
(3) turbulent latent heat flux at the surface; (4) surface temperature; (5) 2 m air temperature; (6) 2 m
specific humidity; (7) 10 m wind speed, with changes in urban extent UE1.0 and (a) UE0.0, (b) UE0.5,
(c) UE1.5 scenarios (Section 2.5) along cross-sections (location: Figure 3a) for eight 3 h periods (averaged
2 to 5 July 2013 local standard time LST); and land use of the cross-section for (8) before case and (9)
after case (see also Figure 3c).

Daytime surface temperature differences are warmer, but 2 m air temperature decreases, with
even larger changes at night, as urban areas absorb more heat during the day and release it at night.
This results in an increased 2 m nocturnal air temperature. Urban development also influences
humidity, with a more evident “dry island” as the modeled city grows. A decrease of 3.5 g kg−1 in
the daytime of the 2 m specific humidity is simulated between UE0.0 and UE1.0 (Figure 6a). As the
2 m temperature increases, the specific humidity is reduced, especially during daytime when the
temperature is relatively high. Wind speed is also affected by urbanization. The urban expansion
is associated with larger nocturnal wind speeds. This is consistent with Kang and Lenschow’s [53]
findings (WRF–LES (large eddy simulation) simulations) of surface heterogeneity causing larger winds
perpendicular to the mesoscale wind direction. Similarly, in the Hangzhou simulation, high pressure
influencing the region creates a continuous background wind that is enhanced by the urban-induced
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thermal difference. The strongest wind speed difference occurs at night, associated with the greater
thermal heterogeneity.

The influence of land use changes is consistent between variables along the cross-section (Figure 6a),
with the unchanged water bodies evident. Comparing Figure 6a,b, the trend for the three land use
scenarios is similar through the day. However, the location of the changes varies, from all of Hangzhou
(Figure 6a: urban expansion, UE1.0 − UE0.0) to mainly on the edge of Hangzhou (Figure 6b: UE1.0 −

UE0.5). This is as expected with the land use changes simulated. Note that the variables in the center
of Hangzhou are almost unaffected (Figure 6b,c), suggesting that the impact of urban expansion on
surrounding cities is not obvious in the direction perpendicular to the background wind.

Potential temperatures within the planetary boundary layer (PBL) change between the land
use scenarios (Figure 7), with larger differences during the day than at night. The maximum near
surface difference (0.2 ◦C) is at 13:00. The changes in potential temperatures are consistent with
PBL height changes, indicating that urban expansion modifies the thermal regime throughout the
PBL. A deeper PBL can result in enhanced heating because of entrainment. A decrease of 0.1 ◦C in
potential temperature is simulated at 23:00 near the top of the PBL (~200 m agl WRF determined), and
is attributed to the temperature inversion in the entrainment zone.
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(a) UE0.5 and UE1.0, and (b) UE1.5 and UE1.0 in Hangzhou. Height of urban boundary layer, as
diagnosed by Mellor and Yamada [44] and Janjić [45] planetary boundary layer (PBL) scheme.

4. Impacts on the Downwind Regions

The simulations show that urbanization of Hangzhou has a negative impact (i.e., warming), not
only on Hangzhou but also the surrounding area, especially downwind of Haining (Figure 1b). The
impact on Haining varies between UE0.5, UE1.0 and UE1.5 (Figure 8).

Following Lowry’s [16] methodology (Equations 1 and 2), analyzing changes in Fuyang (a small
city upwind of Hangzhou, Figure 1b) is useful to rule out other influences. In Fuyang, the urban
expansion in Hangzhou results in negligible changes to storage, as well as turbulent-sensible and latent
heat fluxes. However, differences in temperature, humidity, and wind speed from urban expansion are
much more evident in Haining (downwind of Hanghzou) than in Fuyang, highlighting the impact of
urbanization downwind. The 2 m temperature changes were mainly at night, while specific humidity
changed mainly during the day. This is consistent with the temporal pattern (Figure 6), supporting the
explanation that the cause is the expansion of Hangzhou.
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changed, nearly 30 km upwind and more than 50 km downwind. The maximum temperature 
difference downwind (0.36 °C) is almost twice of the difference at an equivalent distance upwind 
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Figure 8. Temporal (2–5 July 2013 LST) and spatially-averaged differences of diurnal (a) storage
heat flux, (b) surface turbulent sensible heat flux, (c) surface turbulent latent heat flux, (d) surface
temperature, (e) 2 m air temperature, (f) 2 m specific humidity, and (g) 10 m wind speed in Fuyang (FY,
dashed) and Haining (HN, solid; see Figure 1b) for differences between scenarios (Section 2.5): UE0.5 −

UE1.0 (blue) and UE1.5 − UE1.0 (red).

The vertical cross-section (Figure 2, transect AB) of the difference in 2 m air temperatures between
the UE0.5 and UE1.0 scenarios has a clear nocturnal increase of more than 1 ◦C in the rural region that
has become urban (Figure 9). This impact extends into areas where land use has not changed, nearly
30 km upwind and more than 50 km downwind. The maximum temperature difference downwind
(0.36 ◦C) is almost twice of the difference at an equivalent distance upwind (0.19 ◦C). The spatial extent
of the influence upwind and the size of the temperature difference are both larger at night, which is
consistent with the diurnal cycle of air temperature change in Hangzhou. However, the extent of
influence downwind is large during the day because of stronger winds (i.e., a secondary impact in the
downwind regions). The result, between UE1.0 and UE1.5, also gets an approximate conclusion.
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Figure 9. Mean (2–5 July 2013 LST) diurnal 2 m air temperature difference (in K) between the UE0.5

and UE1.0 scenarios (Section 2.5) along line AB (see Figure 3a). The values between −0.1 ◦C and 0.1 ◦C
are masked.

Turbulent sensible heat flux increases by more than 160 W m−2 in the daytime in rural regions that
are urbanized (Figure 10). This is consistent with the changes in air temperature (Figure 9). However,
the sensible heat flux difference in the downwind urban area, where the 2 m air temperature increases,
is close to zero, suggesting that it is not driving the 2 m temperature change downwind. Similarly,
small changes occur in the storage and latent heat fluxes (Figure 8). This supports that advection is the
critical influence with regard to relative humidity changing with the increasing temperature.
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Figure 10. The same as Figure 9, but with surface turbulent sensible heat flux (W m−2). The values
between -5 W m−2 to 5 W m−2 are masked.

5. Can these Urban Expansion Impacts Be Mitigated with Green Roofs?

Green roofs (GRs) are one potential strategy to mitigate temperature effects in and downwind of a
city. Analysis of the difference between simulations when all the urban roofs in d03 are assumed to be
green (GRd03) and when none are green (GRNO) (Section 2.5) shows a reduction in sensible heat flux
(maximum 55 W m−2) and an increase in latent heat flux (maximum 85 W m−2). For both fluxes, the
largest difference occurs in the daytime. Associated with these changes in turbulent fluxes are small
reductions in surface temperature during the day and night of 1.5 ◦C and 0.5 ◦C, respectively. This
is consistent with the sensible heat flux changes. The effect of GRs is to reduce the amplitude of the
diurnal cycle of the storage heat flux. This is attributed to an increase in heat storage capacity in urban
areas by green roofs (especially while wet). Thus, in these simulations GRs do mitigate UHI effects, and
could reduce surface temperature in cities during the daytime (if sufficient water was available). The
size of the changes is potentially large enough to have an impact—for example, Anderson [1] suggests
that a 0.5 ◦C decrease in 2 m air temperature (Figure 11e) decreased mortality risk by 2.25% during
a HW in the United States. Other impacts simulated include an increase of 0.6 g kg−1, 2 m-specific
humidity, as well as a decrease of 0.4 m s−1, 10 m wind speed during the daytime. The reduction of
wind speed may improve thermal comfort with less advected heat into the urban area. However, the
higher humidity and lower wind speed may not be more pleasant.
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Figure 11. The same as Figure 6, but between GRd03 (green roofs added to all roofs in the d03 urban
grids) and GRNO (no green roofs) scenarios (Section 2.5).

The results also indicate that GRs modify the potential temperature and PBL height (Figure 12).
The GRs in upwind cities (GRHZ scenario, Figure 12a) result in a reduction of potential temperature
(0.2 ◦C) and a decrease in the daytime PBL height (~50 m). Effects such as this are important to explore
in the context of air quality. The GRs could alleviate the thermal effects of urban expansion on the
downwind cities. The maximum potential temperature difference in Haining was 0.25 ◦C (GRHZ and
GRNO scenarios, see Figure 12b), which is greater than the change in Hangzhou itself. As the timing of
maximum differences vary (Hangzhou 13:00, Haining 17:00), this suggests the mitigation in Haining is
due to advection. The GRs decrease the wind speed in downwind cities.

The green roofs greatly reduce the air temperature of Hangzhou and the downwind city Haining,
and can be used to mitigate thermal effects of regional urban expansion. This result is expected to have
important implications for planning scenarios and decisions regarding where mitigation strategies
have maximum effects, both locally and regionally (downwind).
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scenarios, in (a) Hangzhou and (b) Haining (see Figure 1b).

6. Concluding Remarks

This study investigates the impacts of upwind urbanization on the UHI effects of downwind cities,
by conducting numerical simulations in the Yangtze River Delta Region for the heat wave conditions of
2013. Four scenarios of Hangzhou’s extent are modelled. From analysis of these results, the following
conclusions are drawn:

• Without the urban surface of Hangzhou, the 2 m temperature is 5 ◦C lower at night, and the 2 m
specific humidity is 3.5 g kg−1 higher during the daytime, compared to the current urban extent
(UE1.0).

• With increasing urban expansion, an increase of nighttime 2 m air temperature of 2.7 ◦C for UE0.5

to UE1.0, and 1.7 ◦C for UE1.0 to UE1.5, as well as a 2.1 g kg−1 and 1.4 g kg−1 decrease, respectively,
of daytime 2 m specific humidity are predicted.

• Greater heat flux heterogeneity caused by urban areas leads to an increase of 1.0 and 0.8 m s−1 for
10 m wind speed in Hangzhou.

• Comparison of the conditions for a small city upwind (Fuyang) and downwind (Haining) of the
megacity (Hangzhou) indicates large impacts from upwind urban expansion on regional climate.

• Given the predominant southwesterly winds, the urbanization in Hangzhou increases 2 m air
temperature in Haining by about 0.3 ◦C between UE0.5 and UE1.0, and 0.4 ◦C between UE1.0 and
UE1.5, while the increases are about 0.05 ◦C and 0.1 ◦C, respectively, for Fuyang.

• The strongest and widest warming effect appears at 0700 LST, and the weakest effect occurs in the
afternoon. Similar results are predicted for 2 m specific humidity and 10 m wind speed.

The driving heat flux changes in Haining are less than 5 W m−2, but vary by hundreds of W m−2

in Hangzhou. This suggests that it is advection that give rise to the atmospheric changes in Haining.
One mitigation strategy (green roofs) is examined in the upwind megacity. From the simulations,

the following conclusions are drawn:

• Green roof coverage of 50% in the d03 area could reduce the daytime 2 m air temperature in
Hangzhou by 0.5 ◦C, and increase the 2 m specific humidity by 0.6 g kg−1. Such changes effectively
alleviate the UHI effect and the “dry island” effect within Hangzhou.

• Green roofs in Hangzhou can relieve the thermal stress in the downwind city Haining by decreasing
the potential temperature by 0.25 ◦C.
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• The strongest mitigation effects appear at 1300 LST in Hangzhou and 1600 LST in Haining.

Overall it is concluded:

• City location is important within an urban cluster as a modifier of urban microclimate.
• Green roofs may have the potential to mitigate some of the urban effects in a chain of cities.
• There are differential effects in cities and linked impacts in proximal cities.
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Appendix A

The prevailing wind for the whole HW period was from the southwest. The wind speed at 10 m
reached 8 m s−1 during the daytime (Figure A1). Thus, Haining was always downwind of Hangzhou
in the study period.
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