Supplemental Information for

No particle mass enhancement from induced atmospheric ageing at a rural site in northern Europe

Erik Ahlberg1,2,*, Stina Ausmeel2, Axel Eriksson2,3, Thomas Holst1, Tomas Karlsson4, William H. Brune5, Göran Frank2, Pontus Roldin2, Adam Kristensson2, Birgitta Svenningsson2

1Centre for Environmental and Climate Research, Lund University, Sölvegatan 37, 223 52 Lund, Sweden
2Division of Nuclear Physics, Lund University, Box 118, 221 00 Lund, Sweden
3Ergonomics and Aerosol Technology, Lund University, Box 118, 221 00 Lund, Sweden
4Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
5Department of Meteorology, Pennsylvania State University, University Park, PA, United States

* Correspondence: erik.ahlberg@nuclear.lu.se

Figure S1. Average size spectrum and size resolved losses in the reactor from a period when the UV lamps were off. The ratio between OFR and ambient data shows significant noise at sizes where the number concentration is low.
Figure S2. The modeled fractional fate of LVOCs in the reactor as a function of OH exposure. The model was constructed using the same principles as in Palm et al. [1]. The settings used were $k_{OH} = 1 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$, a residence time of 160 s, a condensation sink of $1.29 \times 10^{-3} \text{ s}^{-1}$ (campaign average, corresponding to a surface area concentration of $42 \mu \text{m}^2 \text{ cm}^{-3}$), eddy diffusion coefficient of 0.0042 and wall loss rate of 0.0020 s$^{-1}$. Loss to fragmentation is assumed after reaction with OH five times.

Figure S3. Total AMS and SMPS mass concentrations. The slopes of the data gives the collection efficiency of the AMS. The offset in SMPS mass (a-value) is likely from a constant error at the high end of the SMPS size spectra.
Figure S4. Overview of the campaign showing SMPS number and volume concentrations and AMS chemical composition.

Figure S5. Calculated penetration through the inlet up to the reactor as a function of diffusion coefficients and wall mass accommodation coefficient.