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Abstract: Ground-level ozone is a secondary pollutant produced by photochemical reactions and it 

adversely affects plant and human health. Taiyuan City, a typical city on the loess plateau, is 

suffering from severe ozone pollution. We utilized the data from eight national environmental 

monitoring sites of Taiyuan, including concentrations of O3 and nitric oxide, and meteorological 

factors, such as air temperature and wind, to study the pollution characteristics and sources of ozone 

(O3) in Taiyuan in 2018. Results show that during 2018, the maximum value and 90th percentile of 

the maximum 8-h running average of O3 concentration were 257 μg/m³ and 192 μg/m³, respectively. 

There were 72 days where the O3 concentration exceeded the standard in 2018, which were mainly 

during April to August. The O3 concentration increased from March, reached a high level in April 

through August, and decreased significantly from September. The O3 concentrations displayed a 

typical “single peak” diurnal variation, which was high during the day with peak at around 13:00-

15:00 and low at night. From April to August, the O3 concentrations at Jinyuan was the highest, 

followed by Xiaodian and Taoyuan, and the O3 concentrations at Shanglan and Nanzhai were the 

lowest. When the O3 concentration exceeded the standard value, Jinyuan contributed the most to 

the O3 pollution of Taiyuan, followed by Taoyuan and Xiaodian. High temperature and pressure, 

south and southwest winds can lead to an increase in O3 concentration. The O3 pollution in the 

Taiyuan urban area is caused by local generation, and the transportation of polluted air masses 

containing oxides of nitrogen (NOx) and volatile organic compounds (VOCs) emitted by industries, 

such as the coking and steel plants in counties of Jinzhong City in southern Taiyuan, and Qingxu 

County, and some counties in Lyuliang City to the southwest. In addition, the mountain winds and 

low nitric oxide concentration are the main reasons for the increase of O3 concentration, often 

observed in Shanglan at night. 

Keywords: ozone concentration; temporal and spatial variation; pollution cause; mountain wind; 

cluster analysis of backward trajectories; local generation; regional transport 

 

1. Introduction 

Ground-level O3 is a major component of photochemical oxidants, which is mainly generated by 

the photochemical reactions between oxides of nitrogen (NOx) and volatile organic compounds 

(VOCs) in the presence of sunlight [1]. Therefore, the formation of O3 is influenced by meteorological 
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factors, such as solar radiation intensity and air temperature, as well as by the transport of polluted 

air masses [2–5]. O3 pollution affects not only human health, but also plant health and growth [6]. In 

recent years, O3 pollution in many areas of China has been more severe year after year with increased 

urban population and number of motor vehicles. Thus O3 has become another important pollutant 

next to PM2.5 affecting the air quality [7,8] in China.  

Taiyuan is a typical loess plateau city with an average elevation of 800 m. The highest and lowest 

altitudes are 2670 m and 760 m, respectively. It is adjacent to the Taihang Mountains on the east, 

Lyuliang Mountain on the west, Yunzhong Mountain and Xizhou Mountain on the north, and it has 

river valleys in the middle and south. Moreover, located in the south of Taiyuan, Xiaodian district 

together with the areas to its south are characterized by open terrain, and the terrain of the areas to 

the north of Xiaodian are relatively narrow. However, the northernmost part of Taiyuan, which 

shares a border with the Yunzhong Mountain, is particularly narrow, making Taiyuan a trumpet-

shaped basin shown in Figure 1. Only when the north wind blows at a high speed the air pollutants 

can be dispersed effectively. However, when the south wind blows, the polluted air masses from the 

south and southwest of Taiyuan can be transported to Taiyuan, affecting the O3 concentration in the 

urban area of Taiyuan. 

In the past two years, although the pollution of PM2.5 has been effectively controlled in Taiyuan, 

the pollution caused by O3 has been increasing year by year. The first time that ozone concentrations 

exceeded the standard in Taiyuan in 2017 was 2 May 2017 (173 μg/m³), and the first time that ozone 

concentrations exceeded the standard in 2018 was 30 March 2018 (174 μg/m³). The time when the 

ozone concentrations exceeded the standard in 2018 was earlier than the time when the ozone 

concentrations exceeded the standard in 2017, and the degree of ozone pollution in 2018 was more 

serious, causing the ambient air quality of Taiyuan City to decline. Therefore, it is particularly 

important to study the characteristics of O3 pollution in Taiyuan and explore its sources. However, 

there are still few reports available and this study aims to make clear the temporal variation and 

spatial distribution characteristics of O3 concentration in Taiyuan, explore its sources and the causes 

of O3 pollution, which will provide reference for the government to formulate effective measures and 

improve the air quality of Taiyuan. 

2. Data and Methods 

The data used in this research are collected by the eight national environmental monitoring sites 

of Taiyuan during 2018, including the concentrations of such pollutant gases as O3 and NOx (in 

standard condition, 273.15 K and 101.325 Kpa) as well as meteorological factors, such as air 

temperature and wind direction (Provided by the Taiyuan Ecological Environment Monitoring 

Center of Shanxi Province). The eight sites from north to south are Shanglan (the background site, 

not participating in the calculation of the mean value of sampling in Taiyuan), Nanzhai, Jiancaoping, 

Taoyuan, Wucheng, Jinsheng, Xiaodian, and Jinyuan, as shown in Figure 2. 
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Figure 1. Topographic map of Taiyuan. 

 

Figure 2. The eight monitoring sites in Taiyuan. 

To explore the sources of air masses and their contribution to the O3 pollution in Taiyuan, when 

the O3 concentration exceeds the standard value, the HYSPLIT model, developed by the United States 

National Oceanic and Atmospheric Administration, fed by meteorological data provided by the 

Global Data Assimilation System of the United States National Centers for Environmental Prediction 

(ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1, resolution: 1° × 1°), has been used to conduct 

backward trajectory simulations. 

3. Results and Discussion 

3.1. The O3 Pollution in Taiyuan in 2018 

3.1.1. O3 Concentrations Standard and Variation of O3 Concentrations 
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In 2018, the maximum 1-h ozone concentrations in Taiyuan was 316 μg/m³, in this year, a total 

of 253 h of ozone concentrations exceeded the standard (Grade II Standard in Ambient Air Quality 

Standard (GB3095-2012) [9], the average 1-h ozone concentrations in this standard is 200 μg/m³). The 

maximum ozone concentrations of MDA8 for the whole year is 257 μg/m³, and the MDA8 for 72 days 

in this year exceeds the standard (Grade II Standard in Ambient Air Quality Standard (GB3095-2012), 

the concentrations of ozone MDA8 in this standard is 160 μg/m³). The ozone concentrations of 

Taiyuan City is the average ozone concentration of each monitoring site in Taiyuan City (except 

Shanglan; the Shanglan monitoring site is a background site and does not participate in the 

calculation of the average value of Taiyuan City). 

Figure 3 shows the temporal variation and monthly average values of MDA8 from January to 

December, respectively. As can be seen from the two figures, MDA8 increased from March, reached 

its maximum in June, and began to decline significantly in mid-September. Overall, MDA8 was 

higher from April to August, and lower in January, November, and December. In addition, the 

temperature in July is usually the highest in a year, but due to more rainy days and less solar 

radiation, the average MDA8 in July was significantly lower than that in June. 

 

Figure 3. Monthly average of MAD8 in Taiyuan in 2018. 

In 2018, there were 70 days from April to August that the MDA8 exceeded the standard, with 

the largest number in June (20 days), and the smallest numbers in March and September (Table 1). 

Therefore, the data from April to August was selected to study the characteristics of O3 pollution. 

Table 1. The number of days that MDA8 exceeded the standard for each month in 2018. (Jan.: January, 

Feb.: February, Mar.: March, Apr: April, Jun.: June, Jul.: July, Aug.: August, Sep.: September, Oct.: 

October, Nov.: November, Dec.: December). 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

The number of 

days MDA8 

exceeded 

standard 

0 0 1 9 14 20 16 11 1 0 0 0 

3.1.2. Diurnal Variation of O3 Concentration 

The O3 concentration generally shows a typical “single peak” diurnal variation on sunny days. 

It usually has the lowest concentrations at 7:00, due to the weak process of precursor conversion to 

ozone at nighttime and the strong ozone depletion effect caused by NO titration and dry 

sedimentation [10–12]. It reached its maximum around 13: 00–15: 00, and decreased from 17: 00 or 18: 

00 (Figure 4), this is because O3 is a secondary product of atmospheric photochemical reactions, and 
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high air temperature and high intensity of solar radiation are conducive to its generation. In addition, 

mixing ozone rich air from the free troposphere into the ozone depleted surface layer in the morning, 

as the nocturnal stable layer breaks up, it is also a significant factor in the shape of the diurnal cycle 

[13]. On most cloudy days, the O3 concentration exhibited the same diurnal variation as on sunny 

days, except that its maximum was significantly lower than that of sunny days (Figure 4), which was 

due to less solar radiation and lower temperature. 

 

Figure 4. Diurnal variations of O3 concentration in Taiyuan on a sunny day (6 June) and cloudy day 

(7 June and 8 June). 

3.1.3. Variation of MDA8 at Each Monitoring Site and Their Contributions to the Average of MDA8 

in Taiyuan 

Figure 5 shows the average of MDA8 at each monitoring site from April to August. The 

contribution of each monitoring site to the MDA8 is different under different levels of O3 pollution. 

When the O3 pollution was slight, Taoyuan had relatively high contribution (Figure 6a). When the O3 

pollution was moderate, Jinyuan contributed the most to the pollution (Figure 6b). Jinyuan to the 

southwest of the urban area of Taiyuan and Xiaodian to the south are on the air pollution 

transmission routes from Qingxu County, Lyuliang City, and Jinzhong City to Taiyuan. Due to the 

impact of transported air masses, the ozone reaches the peak at different times for each site, as 

evidenced by Figure 7, showing the ozone diurnal variation at each monitoring site on June 23. The 

Jinyuan and Jinsheng sites are closer, and the ozone concentration peaks reached at 13:00. For the 

Xiaodian, Jiancaoping, Taoyuan, and Wucheng sites, the ozone concentration peaks were reached at 

14:00. Nanzhai and Shanglan are located in the northernmost part, Nanzhai reached peak at 15:00, 

and Shanglan reached peak time at 17:00. There are many factories, including coking and steel plants 

in Qingxu County and Lvliang City, to the southwest of Jinyuan, and in Jinzhong City, which is 

located to the south of Xiaodian. Location of these cities are shown in Figure 14. These plants emit 

large amounts of the O3 precursors: NOx and VOCs. When winds blow from south or southwest, 

these precursors are transported to Taiyuan’s urban area, leading to O3 formation through chemical 

reactions. During the transport, or after they reach Taiyuan, O3 can be generated through chemical 

reactions, increasing O3 concentrations in the urban area of Taiyuan. Geng. F et al. [14] also observed 

that polluted air mass transport caused an increase of ozone concentrations in Shanghai.  
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Figure 5. Average MDA8 at each site in Taiyuan, from April to August 2018. 

 

Figure 6. The difference between the mean value of MDA8 of each site and that of Taiyuan at different 

O3 pollution levels (a, b) from April to August. 

 

Figure 7. Time difference of peak ozone concentrations at each site on 23 June 2018. 

3.2. Study on the Causes of O3 Pollution in Taiyuan 
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3.2.1. Temperature  

Figure 8 shows the correlation between MDA8 and the 8-h temperature value (T-8h) in the same 

period. As can be seen from the scatter plot, there is a strong positive correlation between ozone 

concentration and temperature. Because ozone is the product of a photochemical reaction between 

precursors, such as NOx and VOCs in the atmosphere, an increase in temperature contributes toward 

accelerating the production of ozone, as well as promotes the emission of VOCs from plants, both of 

which contribute to the increase of O3 production. The red-dotted line in the figure indicates the 

concentrations standard value of MDA8 is 160 μg/m³. 

 

Figure 8. Correlation between MDA8 and T-8h in the same period. 

3.2.2. Air Pressure 

Normally, the O3 concentration increases with temperature, but sometimes the O3 concentration 

may be high when the temperature is relatively low (Figure 9). For example, between 31 May and 2 

June 2018, the highest temperature was only 28.5 °C, but the O3 concentration showed a high value 

of 273 μg/m³. The same phenomenon also appeared during 8–10 May and 14–16 June in 2018. 

The Taiyuan area began to be affected by high pressure from 31 May, and on 1 and 2 June the 

high-pressure air mass gradually moved southward. During this period, the city of Taiyuan was at 

the center of the high pressure, and the structure of the atmospheric boundary layer was rather stable. 

This was not conducive to the diffusion of O3; thus, causing gradual accumulation of O3, with the 

result that the O3 concentration turned out to be the highest on 1 and 2 June (Figure 9). Wang et al. 

[15] obtained similar results in a study conducted in Fuzhou from 2009 to 2010, and the phenomenon 

was observed during 8–10 May and 14–16 June in 2018. 
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Figure 9. Variations of O3 concentration and air temperature in Taiyuan from 31 May to 2 June. 

3.2.3. Topography 

The daily variation of overall O3 concentration at eight sites was basically consistent. However, 

it was found that the nighttime O3 concentration was sometimes high at Shanglan when the other 7 

sites were low (Figure 10). 

 

Figure 10. Variation of O3 concentration at the national monitoring sites in Taiyuan during 22–24 

June.  

The Shanglan site (38°00′38.8″ N, 112°26′2.5″ E) is located on a building of Shanglan Village in 

Taiyuan. Just 150 m north of it is Erlong Mountain (about 960 m above sea level), and Shanglan is at 

the foot of the mountain. It is known that the weather in the mountains is quite different from that in 

the plains. The mountain areas are affected by valley winds during the day and by mountain winds 

at night [16,17]. This is because the air above the mountain slope is more affected by radiation cooling 

at night than at the bottom of the mountain, and its temperature drops faster. Therefore, the cool air 

above the mountain slope will flow down to the bottom. The warm air above the valley is lifted, 
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creating mountain winds that blow from the slopes to the bottom [18]. Generally, mountain winds 

are formed when the wind speed at night is greater than 1.8 m/s [19,20]. 

The height of the boundary layer at night usually drops to about 900–1000 m [21]. The altitude 

of Erlong Mountain in the north of Shanglan site is near 1000 m, so its peak is sometimes in the 

boundary layer at night. In addition, the wind often blows from the north at night at Shanglan, with 

55% of the wind speed over 2.0 m/s in April through August (Figure 11). As a result, atmospheric 

convection is more active at night and mountain winds are likely to occur. Since the O3 concentration 

increases with the height, the O3 concentration at the top of Erlong Mountain is higher than that at 

the foot of the mountain. Thus, the mountain wind can transport the high concentration O3 from the 

top of Erlong Mountain to Shanglan, resulting in an increase in O3 concentration there at night. In 

addition, the concentration of NO at Shanglan is very low at night, which is close to zero and far 

lower than that at the other monitoring sites (Figure 12). The low concentration of NO reduces the 

titration of O3, which leads to increased O3 concentration at Shanglan at night. Wang et al. [21] found 

that the O3 concentration at the top of Tai Mao Mountain (1000 m high) in Hong Kong was much 

higher than that at the foot of the mountain at night. This was thought to be caused by vertical 

diffusion bringing high O3 concentration in the middle of boundary layer to the top of Tai Mao 

Mountain, and the weak titration of low NO concentration at the top of the mountain on O3 [22]. Ren 

et al. [23] observed that the concentration of peroxides was higher at night than during the day on 

Mount Tai. They considered it to be the result of the reduction of boundary layer depth combined 

with the mountain wind at night. 

 

Figure 11. Correlation of wind direction and wind speed at Shanglan at night. 

 

Figure 12. The average concentration of NO at eight sites between 23:00 and 6:00 when the O3 

concentration was high at Shanglan at night. 
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3.2.4. Wind Direction and Regional Transport 

Figure 13 shows the relationship between hourly O3 concentrations and wind direction in 

Taiyuan from April to August in 2018 when the hourly O3 concentrations exceeded the 1-h standard 

(200 μ/m³), the hourly O3 concentrations value standard is 200 μg/m³ (Figure 13). As can be seen from 

the figure, when the O3 concentration exceeded the standard, only winds from the southeast to 

southwest by west were observed. In particular, for the south wind to the south by southwest wind, 

high concentrations of O3 appeared most frequently. The reason is that there are many coking and 

steel plants in Qingxu county and Lyuliang City in the southwest of Taiyuan and in Jinzhong City in 

the south of Taiyuan. Plenty of NOx and VOCs, the precursor of O3 emitted by these plants, can be 

transferred to Qingxu of Tiayuan (in the southwest of Taiyuan), then to the urban area of Taiyuan 

when the wind blows from the south to the southwest. These pollutants can generate large quantities 

of O3 through chemical reactions during the transmission process or after being transferred to 

Taiyuan, resulting in the increase of O3 concentration in the city. 

 

Figure 13. Correlation between O3 concentration and wind direction in Taiyuan from April to 

August. 

In order to investigate the influence of regional transmission on ozone pollution in Taiyuan, the 

TrajStat software in HYSPLIT model, meteorological data and the hourly concentrations of ozone are 

used to analyze the transport path, potential sources and their contribution to O3 concentrations [24].  

The city of Taiyuan (37°52’ N; 112°32’ E) was taken as the target site to simulate the trajectory of air 

mass (500 m above the ground) moving backward for 24 h when the O3 concentration exceeded the 

standard from April to August in 2018. A total of 3672 trajectories were simulated, and four types 

were obtained after cluster analysis, namely Trajectory A, Trajectory B, Trajectory C, and Trajectory 

D (Figure 14). The length of trajectories in Figure 14 represents the distance of transmission, and the 

proportions represent the ratios of the number of trajectories in this direction to the total number of 

trajectories. Among them, Trajectory B with the shortest length starts from Taigu County (Jinzhong 

City), passes through Yuci District and Qingxu County, and then enters the urban area of Taiyuan. It 

has the largest number of trajectories, accounting for 40%. The longer trajectories of cluster A and 

cluster D indicate that they come from a longer distance of transportation. Among them, Trajectory 

A from the southwest enters the urban area of Taiyuan after passing through Ji County (Linfen City) 

and Lyuliang City, accounting for 22%. Trajectory D from Jiaozuo City, Henan Province, passes by 

Jincheng City and Changzhi City, then goes through Taigu County and Yuci District of Jinzhong City 

and enters the urban area of Taiyuan, accounting for 23%. Cluster C from the east enters the urban 

area of Taiyuan after passing through Zanhuang County, Hebei Province and Pingding County 

(Yangquan City), accounting for 15%. 
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As shown in Figure 15, in order to study the source and transmission route of ozone in Taiyuan 

from April to August 2018. It is determined by the potential source contribution function (PSCF) 

method and concentration weighted trajectory (CWT) method based on backward trajectory analysis. 

PSCF is a simple and effective method of simulating the source of pollution. The simulated backward 

trajectory is appended with the corresponding ozone concentration value, and then the trajectory is 

meshed. The advantage of this method is that it has better resolution [25]. Subsequently, after 

optimization by Seibert et al. [26], an additional concentration method was obtained, that is, the ozone 

concentration value of each track in the grid was calculated, and then weighted according to the 

residence time. Hsu et al. [27] further refined the CWT method. Hao et al. [28] used backward 

trajectory cluster analysis, potential source contribution function (PSCF), and concentration weighted 

trajectory (CWT) methods to investigate the transport pathways and potential source regions of PM2.5 

on the west coast of Bohai Bay from 2009 to 2018. As shown in Figure 15a, it is the ozone potential 

source contribution map of Taiyuan City from April to August 2018. The darker the color, the greater 

the contribution of this area to the ozone concentrations in Taiyuan City, and the greater the 

possibility of becoming a potential source of pollution. It can be seen from Figure 15a that the local 

emissions in Taiyuan City and Jinzhong City, Luliang, and Jiaocheng are the most likely sources of 

ozone pollution in Taiyuan City. Because the PSCF method can only reflect the contribution rate of 

the potential pollution source area, but not the pollution degree, the CWT method is used to reflect 

the pollution degree of the potential pollution source. As shown in Figure 15b, it is the trajectory map 

of ozone concentration weights during April–August 2018 in Taiyuan City. The darker the color, the 

greater the ozone pollution in this area. Figure 15b shows that in addition to the local emissions in 

Taiyuan, the emissions from Qingxu County, Jiaocheng County (Lyuliang city), and Taigu County 

and Yuci district of Jinzhong City also contribute to the O3 concentration in Taiyuan. This is because 

winds from the southwest and the south can transport the air masses containing NOx and VOCs 

emitted by factories, including coking and steel plants in the above counties and cities to Taiyuan. 

There are also many factories, such as coking and steel plants in some counties south of Jiaocheng 

County (Lyuliang City) and south of Taigu County (Jinzhong City). Large amounts of NOx and VOCs 

emitted by these plants will be transported to Qingxu County, Jiaocheng County and Taigu County 

before being transported to Taiyuan City when the southwest wind or south wind blows; thus, 

leading to the increase of O3 concentration in Taiyuan city. 

In summary, the excessive hourly O3 concentration in Taiyuan City from April to August 2018 

may be caused by its local generation and the transport of polluted air masses from the southwest 

(Qingxu County and some counties of Lyuliang City) and south (some counties of Jinzhong City) of 

Taiyuan. 
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Figure 14. Result of cluster analysis of backward trajectory of airflow when O3 exceeded standard in 

Taiyuan City from April to August 2018. 

 

Figure 15. The possibility of the backward trajectories as potential sources of ozone (a), and their 

contribution to the concentration of ozone (b) in Taiyuan from April to August, 2018. 

3.3. Countermeasures and Suggestions for Control of O3 Pollution in Taiyuan 

The O3 pollution in the urban area of Taiyuan is caused by its local generation and the transport 

of polluted air masses from the southwest and south. Therefore, a reduction of NOx and VOCs 

emissions in the city can reduce O3 generation and increase the compliance rate of air quality. 

Meanwhile, it is necessary to strengthen the joint prevention and control with Lyuliang City and 

Jinzhong City so as to reduce the transmission of polluted air masses from external areas. 

4. Conclusions 

The maximum hourly concentration of O3 was 316 μg/m³, with 253 h exceeding the standard 

value in total. The maximum and 90th percentile of the maximum 8-h running average was 257 μg/m³ 

and 192 μg/m³, respectively, in Taiyuan in 2018. The O3 concentration in Taiyuan increased from 

March, reached a high value during April and August, and decreased significantly from September. 

During the year, the O3 concentration of 72 days exceeded the standard, including 56 days of mild 
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pollution and 16 days of moderate pollution, which were mainly from April to August. The O3 

concentration in Taiyuan displayed a typical “single peak” diurnal variation, which was high during 

the day, with peak around 13:00–15:00, and low at night. The peak O3 concentration was far lower on 

cloudy days than on sunny days. When moderate O3 pollution occurred in Taiyuan, Jinyuan 

contributed the most to the O3 pollution, followed by Taoyuan. When there was slight O3 pollution, 

Taoyuan contributed the most, followed by Jinyuan and Xiaodian. High temperature, high pressure, 

south and southwest winds, can lead to an increase in O3 concentration. The O3 pollution in Taiyuan 

may be caused by its local generation, and the transport of polluted air mass containing NOx and 

VOCs emitted by factories, such as coking and steel plants in Jinzhong City to the south and Qingxu 

County and Lyuliang City to the southwest. In addition, mountain winds and low nitric oxide 

concentration are the main reasons for the increase of O3 concentration at Shanglan at night. 
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