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Abstract: Negative air ions (NAIs) exert positive effects on human health. Urban green spaces
produce NAIs and perform valuable ecological functions; this phenomenon has attracted much
attention. However, NAIs in urban green spaces are influenced by many factors, leading to extremely
large variability in their concentrations and complicating their measurement. Therefore, we collected
observational data on NAI concentrations (NAICs), as well as on other environmental factors for
one year in Shanghai City Park. We then used this data to construct an indicator of NAI variability
(NAIV); we understand NAIV to be dependent upon NAIC, and study of the derivative can better
reflect the driving force and dominant factors of the original function. Based on a preliminary
investigation of correlation, and on a multiple linear regression analysis, we used a random forest
algorithm to evaluate the influence of various factors that affect the variability of NAIs. The results
show that “water factors,” whose main contribution is humidity, exert the most influence, followed
by “phenology factors,” whose main contribution is temperature, and “particulate factors,” whose
main contribution is PM2.5. High humidity, high temperature, and low PM2.5 concentration enrich
NAI generation and extend their lifetimes, thus helping to maintain them within a relatively stable
range. In this study, the main driving forces that govern NAI changes were shown to be humidity,
temperature and particulate matter. Our results may help to deepen our understanding of NAI
characteristics and applications in urban green spaces.

Keywords: green space; negative air ions (NAIs); variability; environmental factors; random forest
(RF); importance evaluation

1. Introduction

Negative air ions (NAIs) were discovered in 1889 by German scholars Elster and Geital [1].
When air molecules are ionized, the outer electrons of the atoms are excited and form free electrons,
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which quickly combine with neutral atoms in the air to form NAIs [2]. Subsequent research has
found that NAIs possess dust reduction properties and are beneficial to human health [3–8]. Thus,
they represent one component of air quality. Green space vegetation in cities can form NAIs through
the effects of tip discharge and photosynthesis, creating a cleaner environment for residents and
making a valuable contribution to the ecosystem [2,9,10]. Increasingly, researchers have begun to
focus on changes relating to NAIs in urban green spaces and influencing factors. However, because
of differences in observation times, locations, and methods, the current conclusions on NAIs are not
uniform, specifically in relation to the following:

(1) Patterns in daily changes of NAIs vary according to location. Retalis et al. observed the
concentration of air small ions in Athens, Greece, and found that the maximum values occurred
from 3:00–5:00 am and 1:00–4:00 pm local time (LT; LT = GMT + 2 h). The minimum values
were observed from 6:00–8:00 am and 9:00–11:00 pm [11]. After observation of four ecologically
functional areas in three major cities in the Tarim Basin in China, Zhang et al. found that the NAI
concentrations (NAICs) were highest at 9:00 am, followed by 9:00 pm, and lowest at 3:00 pm [12].
Li et al. found that the NAIC of Beijing’s typical flora generally exhibits single-peak changes.
The larger values appear between 9:00 am and 3:00 pm. The time of the minimum value varies,
but is usually at approximately 7:00 pm [13]. Zhuo et al. reported that the changes to NAICs in
Xishan, Beijing generally followed a sine function [14].

(2) Some scholars have found that the NAIC in summer and autumn is higher than that in spring
and winter [15], but others have observed the opposite [16,17].

(3) Conclusions regarding the influencing factors of NAIs are inconsistent. Temperature and wind
speed may be used as examples: Wang et al. found that when the temperature at the observation
point changes significantly, changes in NAIC varied with the observation site [18]; Wu’s research
on NAIs in typical forest recreation areas found that temperature was negatively correlated
with NAIC [10]. By contrast, the German scholar Reiter and the Chinese scholar Pan found the
correlation between air temperature and NAIC to be positive [19,20]. Wang and Retalis found
that NAIC is closely related to wind speed [11,18], but Huang found the correlation between
average air speed and NAIC to be nonsignificant through path analysis [21]. The reason for these
diverse results is that NAIs remain in the air for a short time, and the process of their generation
and extinction is complex, with many influencing factors [22]. Therefore, the concentrations of
NAIs in the air fluctuate greatly and exhibit strong variability.

In summary, urban green spaces significantly affect the release of NAIs. However, many studies
have examined NAIC change patterns and the factors that influence NAIC; little research has addressed
the variability of NAIs and influencing factors. Therefore, this study comprised a year-long observation
and data collection on NAIs and 11 other environmental factors in Shanghai City Park. The relationship
between NAI variability and various environmental factors was then analyzed. To some extent,
we understand NAIV as being derivative of NAIC, and study of the derivative can better reflect the
driving force and dominant factors of the original function. In particular, because the relationship
between NAIs and influencing factors is relatively complicated, we used the random forest (RF)
algorithm to rank the importance of each influencing factor, aiming to explain the key factors that affect
NAI variability and provide a reference for understanding the mechanisms of NAIC variation.

2. Materials and Methods

2.1. Sampling Site

The sampling location of this study was Zhongshan Park in the center of Shanghai, as shown in
Figure 1. Shanghai district has a subtropical monsoon climate, where rain and heat come at the same
time. In summer, the average maximum temperature is around 31 ◦C and the average precipitation
is 570 mm, while in winter, the average lowest temperature is 4 ◦C and the average precipitation
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is 181 mm [23]. The total area of the park is 21.42 hm2. The park has rich plant communities and
unique garden landscapes. It is representative of a typical urban park. The site of the experiment
was the plant community in the center of the park. The vegetation is dominated by evergreen
broad-leaved tree species, and a few coniferous species are also present, including Cinnamomum
camphora [Cinnamomum camphora (L.) Presl.], Boxwood (Euonymus japonicus Thunb), and Metasequoia
glyptostroboides (Metasequoia glyptostroboides Hu & W.C. Cheng).
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2.2. Data Collection

NAIC data in this study were collected per “the negative oxygen ion concentration observation
technical specifications” of the Forestry Industry Standards of China (LY/T 2586-2016). Data on other
factors were collected according to the observation methodology for the long-term forest ecosystem
research of the National Standards of China (GB/T 33027-2016). We adopted the Japanese COM3200
PRO (Japan COMSYSTEM INC) anion measurement instrument to monitor NAICs. The instrument
was installed separately on top of the observation house and 1.2 m away from the roof in order to
avoid splashing rain. It was equipped with a rain-proof cover and a waterproof device in the air
inlet to prevent rain and water mist from affecting the measurements. The meteorological indicators
of temperature (TEMP), air pressure (PRES), humidity (HUMI), rainfall (RAIN), wind direction
(WIND.D), wind speed (WIND.S), total radiation (SOLA), and photosynthetic active radiation (ACT)
were monitored by the automatic weather station (Beijing HC company, FRT X06 A automatic weather
station). The Thermo ScientificTM 5014 i Beta analyzer (Waltham, MA, USA) was used for PM10

and PM2.5 measurements with an air inlet 3 m above the ground. The aforementioned observation
equipment enabled automatic continuous monitoring. Data were measured every 5 min and stored on
a server.

We also supplemented the dataset with four-season canopy density data at the measurement
points. In each calendar month, we used the “sample line method” to measure canopy density,
arranging sample lines according to the two diagonal lines in rectangular zones, with canopy density
then being calculated using the following formula:

Canopy Density (CD) = L/L0 (1)

where CD represents canopy density, L represents the overall length of the crown on the diagonal,
and L0 represents the total length of the two diagonals.

From month to month, we assigned the CD value to each piece of data by using an evenly
increasing (or decreasing) method (e.g., the CD of the 1st data is 0.70 and that of the 1000th is 0.80; then,



Atmosphere 2020, 11, 706 4 of 13

the CD of the nth data between 1–1000 is equal to 0.70 + 0.1 × (n − 1)/999) to supply the canopy closure
value and include it as an influential factor in the discussion of negative air ion variation (NAIV).

2.3. Data Processing

We collected observation data from January 2019 to January 2020. For the obtained data set,
we first used the continuous NAIC data to construct the negative air ion variation coefficient (NAIVC)
as an index of NAIV, with the formula as follows:

Vn =
2 |Cn − Cn−1|

Cn+Cn−1
(2)

where Vn represents the current negative ion variation coefficient, Cn represents the current
NAIC/(N·cm−3), and Cn−1 represents the previous NAIC (from 5 min previously) (N·cm−3).

In the above formula, the variation coefficient is intended to reflect the change degree of the
current NAI concentration compared with the previous value. The shorter the time interval, the more
accurately the NAIC data will reflect the NAIV. But since our instrument could only collect data every
five minutes, our NAIVC time-scale was 5 min.

Next, we removed outliers from the data set as per the following procedure:

(1) Delete data for which the same NAIC value was obtained six times consecutively;
(2) Delete data for which Vn was calculated to be zero, and
(3) Delete data for which nonpositive values or exceptionally large values (such as 9999.99)

were recorded.

After the construction was completed, we normalized all data to eliminate the influence of
dimension. The size of the final data matrix for analysis was 70,766 × 12. All the factors we discussed
in this study and their corresponding abbreviations in the dataset are shown in Table 1.

Table 1. Abbreviations of the factors in dataset.

Factors Abbreviation

Temperature TEMP
Air pressure PRES

PM10 PM10
PM2.5 PM2.5

Wind direction WIND,D
Wind speed WIND,S

Total radiation SOLA
Photosynthetic active radiation ACT

Humidity HUMI
Precipitation RAIN

Canopy density CD
Variation coefficient Var

2.4. Data Analysis

We first used Pearson correlation analysis to calculate the correlation coefficients of NAIVC for
each individual factor, and then used factor analysis to extract factor groups for data collinearity
reduction. On the basis of factor analysis, we conducted a multiple linear regression analysis and used
the relative weight method to compare the contribution of each factor to the model. Furthermore,
we used the RF algorithm to compare and rank the importance of various factors.

The RF method was proposed by American scientist Leo Breiman in 2001 [24]. Compared
with traditional analysis methods, RF can be used more effectively for voluminous and complex,
high-dimensional data, with high model accuracy and tolerance for noise and outliers. In addition,
it performs excellently for evaluating the independent variables’ importance [25]. Due to this high-level
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performance, RF has been widely used in the field of ecology [25–28]. In particular, RF is gradually
showing up in the field of NAI research [29,30].

This study mainly used the importance assessment method in the RF regression model.
Two methods are usually used for RF variable importance scoring. The first is the calculation
of importance using the Gini index, and the second is the use of “out-of-bag” observations to calculate
importance [31]. We use R (version 3.6.1) to determine the RF importance ranking, which provides
feedback for two indicators: IncMSE and IncNodePurity. These variables correspond to the Gini
index method and the out-of-bag method, respectively; the larger the calculated value, the greater
its importance.

All analyses in this study were conducted using R (version 3.6.1).

3. Results

This section is divided by subheadings. It is intended to provide a concise description of the
experimental results, their interpretation, as well as the experimental conclusions that can be drawn.

3.1. Correlation Analysis of Environmental Characteristics and NAIVC

First, we analyzed the correlation between the NAIVC and various environmental characteristics,
as shown in Figure 2.
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This analysis shows that the correlation between NAIVC and PM10 is nonsignificant, whereas TEMP,
HUMI, RAIN, and CD are significantly negatively correlated; PM2.5, PRESS, SOLA, ACT, WIND.D,
and WIND.S are significantly positively correlated with NAIVC.

Figure 2 indicates a greater degree of collinearity among environmental factors. For example,
the correlation between temperature and pressure reaches −0.82, indicating a very good linear
relationship. Therefore, we used factor analysis to analyze and extract environmental factors for the
purpose of weakening factor collinearity.

3.2. Factor Analysis of Environmental Characteristics and Multiple Linear Regression

First, we used a scree test to calculate the optimal number of factor groups to use. The scree plots
are presented in Figure 3.



Atmosphere 2020, 11, 706 6 of 13

Atmosphere 2020, 11, x FOR PEER REVIEW 6 of 14 

 

3.2. Factor Analysis of Environmental Characteristics and Multiple Linear Regression 

First, we used a scree test to calculate the optimal number of factor groups to use. The scree plots 
are presented in Figure 3. 

 
Figure 3. Scree test of factor analysis. 

The scree test identified the optimal number of groups as five. Therefore, we took five as the 
number of factor groups and obtained the following results: 

MR1 =  0.14 PM10 − 0.09 PM2.5 + 0.95 TEMP −  0.02 HUMIx4 −  0.91 PRES −  0.15 WIND.D                                − 0.00 WIND.S + 0.01 SOLA −  0.04 ACT + 0.11 RAIN + 0.87 CD 

MR2 = −  0.02 PM10 −  0.00 PM2.5 + 0.03 TEMP −  0.12 HUMI − 0.03 PRES + 0.03 WIND.D              − 0.01 WIND.S + 1.00 SOLA + 0.64 ACT + 0.03 RAIN −  0.06 CD 

 MR3 = 0.70 PM10 + 0.88 PM2.5 − 0.03 TEMP −  0.05 HUMI − 0.07 PRES + 0.08 WIND.D               − 0.02 WIND.S −  0.01 SOLA − 0.01 ACT −  0.06 RAIN − 0.11 CD 

MR4 = 0.00 PM10 − 0.01 PM2.5 −  0.02 TEMP −  0.08 HUMI − 0.04 PRES + 0.30 WIND.D                + 0.80 WIND.S −  0.01 SOLA + 0.01 ACT + 0.07 RAIN −  0.05 CD 

MR5 = −  0.10 PM10 + 0.02 PM2.5 − 0.19 TEMP + 0.71 HUMI −  0.23 PRES + 0.04 WIND.D                − 0.02 WIND.S + 0.02 SOLA − 0.10 ACT + 0.23 RAIN −  0.02 CD 

(3)

The main components of the factor group MR1 are TEMP, PRES, and CD, and we named this 
group “phenology factors”; the main components of MR2 are SOLA and ACT, and we named this 
group “radiation factors”; the main components of MR3 are PM10 and PM2.5, and we named this 
group “particulate matter factors”; the main components of MR4 are WIND.D and WIND.S, and we 
named this group “wind factors”; and finally, the main components of MR5 are HUMI and RAIN, 
and we named this group “water factors.” The respective groups are as shown in Table 2. 
  

Formatted: MDPI_3.9_equation

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Italic

Formatted: Font: 9 pt

Formatted: Font: 9 pt

Formatted: Font color: Auto

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Not Superscript/ Subscript

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Not Italic

Formatted: Font: 9 pt, Not Italic

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt

Formatted: Indent: First line:  1 ch

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Figure 3. Scree test of factor analysis.

The scree test identified the optimal number of groups as five. Therefore, we took five as the
number of factor groups and obtained the following results:

MR1 = 0.14 PM10 − 0.09 PM2.5 + 0.95 TEMP− 0.02 HUMIx4 − 0.91 PRES− 0.15 WIND.D
− 0.00 WIND.S+0.01 SOLA− 0.04 ACT+0.11 RAIN+0.87 CD

MR2 = − 0.02 PM10 − 0.00 PM2.5 + 0.03 TEMP− 0.12 HUMI− 0.03 PRES+0.03 WIND.D
− 0.01 WIND.S+1.00 SOLA+0.64 ACT+0.03 RAIN− 0.06 CD

MR3 = 0.70 PM10+0.88 PM2.5 − 0.03 TEMP− 0.05 HUMI− 0.07 PRES+0.08 WIND.D
− 0.02 WIND.S− 0.01 SOLA− 0.01 ACT− 0.06 RAIN− 0.11 CD

MR4 = 0.00 PM10 − 0.01 PM2.5 − 0.02 TEMP− 0.08 HUMI− 0.04 PRES+0.30 WIND.D
+0.80 WIND.S− 0.01 SOLA+0.01 ACT+0.07 RAIN− 0.05 CD

MR5 = − 0.10 PM10+0.02 PM2.5 − 0.19 TEMP+0.71 HUMI− 0.23 PRES+0.04 WIND.D
− 0.02 WIND.S+0.02 SOLA− 0.10 ACT+0.23 RAIN− 0.02 CD

(3)

The main components of the factor group MR1 are TEMP, PRES, and CD, and we named this
group “phenology factors”; the main components of MR2 are SOLA and ACT, and we named this
group “radiation factors”; the main components of MR3 are PM10 and PM2.5, and we named this
group “particulate matter factors”; the main components of MR4 are WIND.D and WIND.S, and we
named this group “wind factors”; and finally, the main components of MR5 are HUMI and RAIN,
and we named this group “water factors.” The respective groups are as shown in Table 2.

Table 2. Factor groups.

Factor Group Name Content

Phenology Factor X1 TEMP, PRES, CD
Radiation Factor X2 SOLA, ACT

Particulate Matter Factor X3 PM10, PM2.5
Wind Factor X4 WIND.D, WIND.S
Water Factor X5 HUMI, RAIN

We next calculated the representative value of each factor group according to the factor
analysis result:

X1 = 0.95 TEMP− 0.91 PRES+0.87 CD
X2 = 1.00 SOLAx8 + 0.64 ACT

X3 = 0.70 PM10+0.88 PM2.5

X4 = 0.30 WIND.D+0.80 WIND.S
X5 = 0.71 HUMI+0.23 RAIN

(4)
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To better analyze and compare the importance of each factor, we introduced multiple linear
regression and used the relative weight method in the model to compare the model contribution for
each factor. We used X1–X5 as the independent variables and NAIVC as the dependent variable.
The results are shown in Table 3.

Table 3. Multiple linear regression analysis of factor groups. ***: p < 0.001

Factor Regression Coefficient (β)

Phenology −3.8 × 10−2 ***
Radiation 1.1 × 10−2 ***

Particulate Matter −3.30 × 10−3

Wind −2.60 × 10−2 ***
Water −2.60 × 10−1 ***

Residual standard error: 0.9745 on 70760 degrees of freedom; Multiple R-squared: 0.05049, Adjusted; R-squared:
0.05042; F-statistic: 752.5 on 5 and 70,760 DF, p-Value < 2.2 × 10−16.

As seen from the regression, the linear regression coefficient for particle factors and NAIVC is
nonsignificant; phenology, water, and wind factors all exhibit significant linear negative correlations
with NAIVC, whereas radiation factors exhibit positive correlations. The multiple linear regression
model fits R2 = 0.05, and the F test indicates extremely high significance. Relative weight analysis was
performed on the model’s contribution for each factor layer, and the result is shown in Figure 4.Atmosphere 2020, 11, x FOR PEER REVIEW 8 of 14 
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Figure 4. Relative weight analysis of factors X1–X5.

Relative weight analysis demonstrated a considerable contribution by the water factors group to
NAIVC, reaching approximately 70%, while the “phenology factor” contributed approximately 15%
and the remaining three groups of factors contributed little to the NAIVC weight.

Despite the use of factor analysis followed by multiple regression methods, the R2 of the multiple
linear regression model was only 0.05, which may be the reason that the relationship between NAIV
and other factors was not linear. Subsequently, we used the RF algorithm and its importance evaluation
function to further analyze the importance of each factor.

3.3. Random Forest Regression of Environmental Characteristics

Based on a factor analysis, we used NAIVC as the dependent variable and X1–X5 as the independent
variables to conduct RF regression. We selected the parameters ntree = 200 (number of trees in RF
model), mtry = 2 (number of variables tried at each split in RF model) according to the guidance of
“randomForest” package in R. The importance ranking scores are shown in Table 4 and Figure 5.
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Table 4. Random forest importance scores of factor group X1–X5.

Factor Group Name %IncMSE IncNodePurity

X1 148.7 17,235.9
X2 73.0 7269.0
X3 104.4 13,099.4
X4 69.4 10,537.4
X5 174.4 16,573.2

Type of random forest: regression; Number of trees: 200; No. of variables tried at each split: 2; Mean of squared
residuals: 0.7190017; % Var explained: 28.1.Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 14 
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Remark 1. %IncMSE represents increase mean square error, IncNodePurity represents increased node purity,
X1 represents phenology factors, X2 represents radiation factors, X3 represents particulate matter factors,
X4 represents wind factors and X5 represents water factors.

The results indicate that the water and phenology factors are the two most important sets of
factors, whereas the radiation and wind factors are the least important. The rank of factor importance
is as follows: water ≈ phenology > particulate matter > radiation ≈wind.

Considering that the RF assessment of the factor group importance was relatively general,
we further analyzed and extracted specific typical factor representatives from each factor layer
(choosing the factor with the largest coefficient in each factor group) to repeat the importance
assessment; we selected TEMP from the phenological factor group, HUMI from the water factor group,
SOLA from the radiation factor group, PM2.5 from the particle matter group, and WIND.S from the
wind factor group. NAIVC was then taken as the dependent variable and the remaining factors as
independent variables to conduct importance analyses using the RF regression model. The results are
given in Table 5 and Figure 6.

Table 5. Random forest importance scores of specific factors.

Figure %IncMSE IncNodePurity

HUMI 193.4 2852.9
TEMP 170.8 2342.4
PM2.5 121.8 2360.0

WIND.S 43.4 462.3
SOLA 75.5 1022.6

Type of random forest: regression; Number of trees: 200; No. of variables tried at each split: 2; Mean of squared
residuals: 0.105856; % Var explained: 28.5.
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The results indicate that HUMI is the factor that most strongly affects the variability of NAIs,
followed by PM2.5 and TEMP. The two factors exerting the least effect are SOLA and WIND.S. The order
of variable importance is HUMI > PM2.5 ≈ TEMP > SOLA > WIND.S.

Remark 2. %IncMSE represents increase mean square error, IncNodePurity represents increased node purity,
HUMI represents humidity, TEMP represents temperature, WIND.S represents wind speed and SOLA represents
total solar radiation.

4. Discussion

4.1. Influence of Humidity (Water) on NAIV

Pearson correlation analysis, multiple linear regression analysis, and RF analysis all identified
humidity as the dominant factor in the variability of NAIs. Correlation analysis revealed humidity to
be negatively correlated with NAIVC; multiple linear regression and RF importance analysis indicated
that humidity is the most influential factor. We speculate that the reason for this is related to the
mechanism for the generation and extinction of NAIs:

• The Lenard effect induced by water can promote the formation of NAI [10].
• The molecular formula of NAIs includes O2(H2O)n, OH−(H2O)n, and CO−4(H2O)2. H2O is seen

to be a key factor in the process of NAI generation, and is directly involved in the reaction for NAI
generation [2,32].

• Water droplets in the air have a cleaning effect on atmospheric particulate matter, and this can
extend the lifespans of NAIs [33].

Based on the aforementioned observations, we found that high humidity encourages the generation
of NAIs and extends their lifespans, such that the stability of NAIs is improved and the variability of
NAIs is subsequently reduced.

In addition, the effects of precipitation are similar to those of humidity. Both affect NAI production
through the action of water. However, due to the discontinuity of precipitation data and the lag in
data collection, a deviation occurred in the analysis of rainfall, accounting for the underestimation of
its importance.

4.2. Influence of Temperature (Phenology) on NAIV

Long-term temperature changes are closely related to phenological changes; temperature is higher
during the day than at night and higher during summer than in winter. Moreover, daytime and
summer are periods of more vigorous biological activity, and the changes in the roles of NAIs are
also much more dramatic. Pressure exerts a negative linear correlation with temperature, and canopy
density reflects changes in plants during the year. As in the factor analysis, we unified TEMP, PRES and
CD into phenology factors.
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Correlation analysis and multiple linear regression both showed that temperature (phenology) is
significantly negatively correlated with NAI variability. Higher temperature means greater phenology,
which is associated with lower NAIVC; relative weight and RF importance analysis both indicated that
the influence of temperature on the NAIC is second only to that of humidity, which is also of major
importance. We analyzed the relationship between temperature and NAIV according to the following
three aspects:

• On a microscopic scale, temperature can affect the rates of NAI generation and extinction reactions;
the higher the temperature, the faster the various reactions. From this perspective, temperature
can enhance NAI variability.

• On the mesoscale, temperature is closely related to many other factors. For example, temperature
affects barometric pressure and has a collinear relationship with canopy closure. When temperature
is low, air pressure is usually high and canopy density is low, intensifying air circulation and
particle collision. Temperature thus has an inverse relationship with NAI variation.

• On a macroscopic scale, temperature and phenology are closely connected; the higher the
temperature, the more vigorous the phenological activity, and the more intensified the generation
of NAIs. As a result, dynamic changes in NAIs are more complicated. Compared to the single
mechanism of NAI change, the stability of NAIs is enhanced and variability is reduced.

Overall, the influence of temperature or phenology on the variation of NAIs is complex. Both exert
numerous influences that can affect the generation and extinction of NAIs in various manners. Therefore,
the role of temperature cannot be overlooked, and its effects vary according to scale. However, from a
long-term perspective, the higher the temperature, the lower the NAI variability.

4.3. Influence of PM2.5 on NAIV

For particulate matter, we found that PM2.5 was significantly positively correlated with NAIV,
and PM10 was the only factor exhibiting no significant correlation. In the RF importance ranking,
the influence of PM2.5 was roughly similar to that of temperature, which also plays a major role in
NAIV. We propose that relatively high PM2.5 concentrations can form aerosols in the air which can
collide with and neutralize NAIs and directly affect the extinction process of air ions [34]; therefore,
the higher the concentration of PM2.5, the faster the death rate of NAIs, reducing the lifespan of NAIs
in the atmosphere. Shorter lifetime means greater NAI variability. However, due to larger particle
sizes, PM10 is prone to sedimentation in the air and exerts weak effects on NAIs, and thus, has little
influence on the variability of NAIs.

4.4. Influence of Wind and Radiation on NAIV

Among wind factors, wind speed was shown by correlation analysis to exhibit a significant
positive correlation with NAIV. The higher the wind speed, the greater the air fluidity; this promotes
the migration, collision and extinction of NAIs, thereby increasing variability. In addition, studies have
shown that the friction of wind speed can produce NAIs [35]. Under natural conditions, the wind factor
is mutable, and thus, a sudden increase in wind speed may cause an NAIC outburst. The influence of
wind direction on NAIs is linked mainly to the location of NAI collection, which demonstrates a high
level of randomness. Relative weight and RF importance ranking showed that wind weakly affects
NAI variation. A possible reason for this is that wind does not directly participate in the generation
and extinction of NAIs. Indirect effects exert relatively little influence. The monitoring site was blocked
by a plant community, which means that the air transmission caused by wind was negligible, and thus,
that the wind factors are of little importance.

Pearson correlation showed that both total solar radiation and photosynthetic active radiation are
positively correlated with negative ion variability. However, an importance analysis indicated that the
effect of radiation is also much weaker than the effects of humidity and temperature. The reason for
this is that the promotion effect of radiation on NAIs is mostly realized through its influence on the
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physiological activities of plants, which, similar to wind factors, affect NAI changes only indirectly;
thus, they are of low importance.

4.5. Limitations of the Study

In this study, the relationship between NAIV and meteorological factors was discussed for one
particular plant community. In urban green spaces, the influences of various plant communities on
NAIs are also nonnegligible. Nevertheless, our conclusions reveal that some NAIV characteristics are
related to meteorological factors, which can be used to explain why notable differences are present in
the results of other NAI research.

The spatial and temporal variation patterns of NAIs are such that meteorological factors, especially
humidity, temperature and particulate matter concentration, vary according to region. These factors
can directly affect the NAIV, and can also indirectly affect NAIV by controlling other factors. Humidity
provides an example of this: High humidity levels exert a significant effect on the stability of NAICs.
Therefore, when subject to high-humidity weather, NAIs are not sensitive to changes in temperature
and wind speed; however, when humidity is low, the sensitivity of NAIs to wind speed and temperature
is enhanced.

Many scholars have also found that under different conditions, the relationship between NAIs
and environmental factors differs. For example, Wang et al. found that in Heilongjiang Forest Botanical
Garden, the NAIC and PM2.5 in July exhibited an extremely significant negative correlation, but this was
nonsignificant in October [36]; Xu found that the relationship between NAIs and meteorological factors
on sunny, rainy, hazy, and windy days differed notably [37]; Wang et al. found that there were seasonal
differences in the relationship between NAIC and some environmental factors in the Wudalianchi
Scenic Area. Therefore, follow-up studies of NAIs require control of meteorological background
conditions at the research site or limitation of the range of irrelevant factors in the exploration process
to more accurately and effectively understand the characteristics of NAIs.

Based on this study, the selection of green plant species and the planting methods play a key role
in maintaining NAIC stably in green spaces. Making a plant community with strong dust-retention
ability and vigorous physiological activities such as transpiration and photosynthesis, and setting
water features around the community are ways to create a high humidity, low PM2.5 concentration
environment where NAICs will not change dramatically.

5. Conclusions

This study used one-year continuous observation data from an urban park plant community to
construct an NAI variation index and discussed the relationships of the index values with meteorological
factors. We understand NAIV as being derivative of NAIC, and believe that study of the derivative can
better reflect the driving force and dominant factors of NAICs. We found water factors, whose main
contribution is humidity, and phenology factors, whose main contribution is temperature, to be the
most influential factors on the variability of NAIs, followed by particulate factors; wind and radiation
factors exerted the least influence. Under natural conditions, high humidity and temperature, and low
particulate concentration, can maintain NAICs within a relatively stable range. The reason for this is
that high humidity, strong phenology and low-concentrations of particulate matter enrich the paths of
NAI production and delay their extinction. The effects of these factors are direct. Wind and radiation
exert indirect influences on NAIs, and thus, are of low importance. This study explained the patterns
in NAI changes and the influencing factors from the perspective of variability. This deepens our
understanding of NAI characteristics and the factors that control them to facilitate better planning and
the implementation of conditions which are conducive to the production of NAIs in urban green spaces.
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