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Abstract: Carassius auratus gibelio is an omnivore favored for its flavor and is commonly used as a benthic 

species in traditional pond polyculture. This study investigated the effects of common aquaculture 

stressors, such as high ammonia, high nitrite, high pH, and hypoxia on the aerobic metabolism of 

C. auratus gibelio. The results showed that the standard metabolic rate (SMR) was positively correlated 

with ammonia, nitrite, and pH, while the maximum metabolic rate (MMR) was negatively correlated 

with all four stressors. Thus, aerobic scope (AS) was reduced when C. auratus gibelio was exposed to 

high ammonia, high nitrite, high pH, and hypoxia. The peak of post-prandial O2 consumption was 

positively correlated with nitrite, pH, and the occurrence of the peak metabolic rate post-prandial 

was delayed in high ammonia, high nitrite, hypoxia, and high pH conditions. These findings indicated 

that, in experimental conditions, exposure to these environmental stressors can influence aerobic 

metabolism in C. auratus gibelio. With more energy required to maintain standard metabolic rates, less 

will be available for growth. While the C. auratus gibelio is one of the most hypoxia tolerance species, 

the reduction we observed in AS caused by stressors that commonly occur in ponds and in nature will 

likely affect growth in ponds and fitness in nature. These data have provided insight into the optimal, 

fitness-maximizing thresholds for these common stressors in this species of interest.  
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1. Introduction 

When too high or too low, ammonia, nitrite, pH, and oxygen can become stressors for aquatic 

animals in traditional pond aquaculture and natural water bodies. Physiological activities of fish are 

susceptible to physical and chemical environmental stressors, which can be reflected by changes in 

metabolic activity [1–4]. 

Ammonia is excreted by fish as a nitrogenous waste product. In feed-based aquaculture, only 

20% to 40% of the nitrogen in the protein of feed used in aquaculture ponds is recovered in harvest 

biomass. The other 60% to 80% remains in the water as uneaten feed, or is deposited as feces or 

excreted as ammonia nitrogen by aquatic animals [5]. Ammonia exists as unionized ammonia (NH3) 

and ionized ammonium (NH4+) in water. The toxicity of ammonia comes from the unionized form 

(NH3), which can diffuse across gill membranes due to its lipid solubility and lack of charge. While 
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fish can excrete ammonia as NH3 across gill membranes into water [6], high environmental ammonia 

reduces the outward flux of ammonia through the gills. As a result, blood and tissue ammonia levels 

can increase and fish can experience both the chronic and acute effects of ammonia toxicity [7]. 

Ammonia produced by fish can be eliminated by bacteria that convert it to nitrite and nitrate. 

Nitrite is one of the most common toxic nitrogenous compounds in aquaculture systems, it can 

accumulate during intensive aquaculture due to the excessive use of proteinaceous feed, higher 

stocking densities, and/or imbalances between bacterial nitrification and denitrification. Elevated 

concentrations of nitrite can be toxic to aquatic animals, acting by mechanisms that have been 

investigated in various freshwater species, showing that elevated concentrations of nitrite in pond 

water can affect growth, molting, immune response [8], and ammonia excretion [9,10]. 

Dissolved oxygen (DO) is the primary limiting factor that dominates ectotherm physiology and 

behavior in aquatic ecosystems. DO regularly shows large fluctuations within the aquatic environment, 

especially in high density aquaculture. Hypoxia can result in reduced food consumption, slowed 

growth rates, reduced fecundity, or even death [11–13]. For these reasons, the impact of reduced 

environmental DO on the eco-physiology of fish must be studied and well understood. 

Likewise, pH plays an important role in the maintenance of homeostasis in aquatic animals [14]. 

High pH water can cause immediate, dramatic inhibition of ammonia excretion and a subsequent 

increase in plasma ammonia [4,14], which is potentially lethal. However, the physiological and 

behavioral responses of C. auratus gibelio to alkaline conditions have yet to be studied. 

Measurements of the mass specific rate of O2 consumption (MO2) have become common in 

research on fish biology and climate change, largely due to renewed interest and new developments 

that have related an aerobic scope (the range between minimum and maximum MO2, respectively) 

to whole-animal performance and fitness [15]. MO2 is influenced by various factors such as body mass, 

temperature, food intake, physiological state, activity level, and anabolism. The three fundamental 

metabolic variables are standard metabolic rate (SMR) [16], maximum metabolic rate (MMR), and aerobic 

metabolic scope (AS) [17]. SMR and MMR are usually calculated using measurements of oxygen 

consumption rate. The SMR is the minimum MO2, which allows for no activity, digestion, growth, or 

production of sexual products, as it represents the basic cost of being alive and is of major functional 

importance. If the MO2 is below the SMR, physiological function has been impaired in some way, and 

most species cannot survive for long in this state. The MMR, on the other end of the range, indicates 

the swimming speed and predation capability. Aerobic scope (AS), defined as the difference between 

the SMR and MMR, represents the oxygen usage capacity, which in turn indicates the total amount 

of aerobic energy available to the animal for processes including digestion, locomotion, growth, and 

reproduction. 

C. auratus gibelio, is an omnivore that is popular because of its flavor, and is commonly used as 

a benthic species in Chinese pond polyculture [18]. It is a hypoxia-tolerant species but is relative 

sensitive to high nitrite and pH levels. To provide basic data for the physiology and metabolism of C. 

auratus gibelio, its aerobic metabolism in response to high ammonia, nitrite, pH, and hypoxia were 

evaluated during acute exposure. 

2. Materials and Methods 

C. auratus gibelio were acclimatized for 2 weeks in 300 L tanks at 26.0 ± 1 °C before experiments. 

During this period, the fish were fed daily using commercial pellets. Ammonia, nitrate, and pH levels 

were monitored and 1/3 of the water was changed every day. Total ammonia was 0.13 ± 0.02 mg L−1, 

nitrate was 0.17 ± 0.02 mg L−1, and pH was 8.2 ± 0.1. Body mass and length of the fish (means ± SE) 

were 15.3 ± 2.3 g and 9.0 ± 0.6 cm, respectively, and were not significantly different between treatment 

groups. All fish were collected under permits issued by local and national authorities, and 

experimental procedures were in accordance with national animal care regulations. 
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A custom-made respirometer was used for MO2 measurement. Prior to the experiment, fish 

underwent a fasting period of 48 h, enough to ensure that they were in a post-absorptive state. In the 

intermittent flow through respirometry, water was continuously circulated through each respirometer 

using an in-line submersible pump within a recirculation loop. Each chamber (2 L) was equipped 

with a recirculation pump that only turned on when the inflow water was turned off for a 

measurement to ensure sufficient water mixing and minimize intermittent disturbance to the fish. 

The study included numerous independent treatments: (1) In the control group, fish were 

exposed to fresh holding water; (2) experimentally manipulated fish were exposed to high-ammonia 

water (0.5, 1.0, and 2.0 mg L−1), high-nitrite water (0.5, 1.0, and 1.5 mg L−1), hypoxic water (4.0 and 1.5 

mg L−1, and 8.0 mg L−1 as a control), and high pH water (9.1, 9.5, and 9.9). Ammonia was adjusted by 

adding ammonium chloride, nitrite was adjusted by adding sodium nitrite, DO was controlled by 

mixing nitrogen and oxygen, and alkaline (high pH) water was prepared by adding sodium 

carbonate and sodium bicarbonate (total alkalinity was 30.0 m mol L−1). 

2.1. Measurements of Background Respiration 

Background respiration (to account for microbial respiration) was estimated by measuring the 

oxygen consumption rate in the respirometer without fish. Background respiration was measured 

before and after the experiment. Background oxygen consumption rates were used to correct fish 

MO2 values. 

2.2. Measurement of standard metabolic rate(SMR) 

The duration of each treatment was 96 h, SMR was measured every 24 h. After an acclimation 

period (24 h), and oxygen consumption was measured every hour throughout a 96 h experimental 

period in each chamber (fish was put in the chamber singular). Dissolved oxygen (DO) was 

monitored every second using an oxygen meter (YSI 6600, measuring precision is 0.01 mg L−1), and 

the oxygen probe was calibrated before each experiment. The experiment was conducted in a dark 

environment. The fish appeared to be in excellent condition and remained quiet while measurements 

were made in the dark. Each group had three parallel replicates, with three fish in each. 

2.3. Measurement of maximum metabolic rate (MMR) 

The duration of each treatment was 96 h, MMR was measured every 24 h. MMR was measured 

using an exhaustive chase protocol, where the experimenter manually chased the fish to exhaustion (5 

min). All individuals were visibly exhausted by the end of the 5 min exercise period as highlighted by 

a lack of response to an experimenter tapping the caudal fin. This was followed by a period of exposure 

to air (approximately 1 min), with the goal of completely exhausting the fish. Measurements of MO2 began 

immediately after the fish was moved to a respirometer that was quickly sealed (within 20 s). The duration 

of the measurement was 9 min. Once MMR had been determined for each fish, the respirometers were 

set to the automated flush cycles outlined above and MO2 was measured for at least 6 h while the fish 

recovered. Each group had three parallel replicates, with three fish in each. 

2.4. Measurement of Post-Prandial MO2 

Post-prandial MO2 was measured after 96 h exposure of each treatments. Fish were fed 1% of 

their body weight daily, using the same feed as during holding. Any regurgitated pellets were 

counted and, in each case, were determined to be negligible relative to the size of the meal. Thirty 

minutes after feeding, the fish was replaced into their chamber and monitored for a further 24 h. MO2 

was measured every hour for the duration of the 96 h experimental period. Each group had three 

parallel replicates, with three fish in each. Peak post-prandial MO2 was determined for each fish that 

had continuous measurements as the highest hourly block value. Time-to-peak post-prandial MO2 

was the number of hours post-prandial it took to reach the peak value. 
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2.5. Statistical Analysis 

The lowest 10% MO2 values were used to calculate SMR. The SMR (mg/(kg h)) of each fish was 

calculated according to the following equation: 

SMR = (DOk − DOk+1)V/(t × m)  

where DOk and DOk+1 are the oxygen concentration (mg L−1) at point k and point k+1, respectively; V 

(L) is the total volume of the respirometer (2 L) minus the volume of the fish; t (h) is the interval (5/60 

h) between points k and k+1; m (kg) is the body mass of the fish. 

MMR was measured after an exhaustive chase protocol, MO2 was measured for 9 min, and MMR 

was taken as the steepest three min slope during this time. Subtracting SMR from MMR provided the 

AS value. 

Within each acclimation group, a one-way ANOVA was performed. Results were considered 

statistically significant when P < 0.05, and all results are presented as means ± SE. Statistically significant 

differences in SMR, MMR, AS, and peak post-prandial MO2, starting from the post-transfer 0 h, 

among treatments at each time point were revealed using one-way ANOVAs, followed by multiple 

sample comparisons using the Holm–Sidak method. Nonlinear regression was used to analyze the 

correlation between concentration of treatments and SMR, MMR, or AS. Differences were considered 

significantly different when P < 0.05. SAS9.3 (SAS Institute, Cary) was used for all statistical analyses. 

Line charts were created using SigmaPlot 11.0 (Systat Software, San Jose, CA, USA). 

3. Results 

3.1. Effects of High Ammonia on Aerobic Metabolism 

SMR of C. auratus gibelio increased significantly with increasing ambient ammonia (P < 0.05). The 

relationship between SMR and ambient ammonia was quadratic (Figure 1a). In the 2.0 mg L−1 ammonia 

environment, SMR increased by 20.4% compared to the control. MMR decreased significantly with 

increasing ambient ammonia (P < 0.05). The relationship between MMR and ambient ammonia was 

exponential. In the 2.0 mg L−1 ammonia environment, the MMR decreased by 10.8% compared to the 

control (Figure 1a). AS decreased significantly with increasing ambient ammonia (P < 0.05). The 

relationship between AS and ambient ammonia was quadratic. In the 2.0 mg L−1 ammonia environment, 

AS decreased by 25.0% compared to the control (Figure 1a). The time to peak post-prandial MO2 was 

delayed with increasing ambient ammonia (Figure 2a). 

3.2. Effects of High Nitrite on Aerobic Metabolism 

SMR of C. auratus gibelio increased significantly with increasing ambient nitrite (P < 0.05). The 

relationship between SMR and ambient nitrite was quadratic. In the 1.5 mg L−1 nitrite environment, 

SMR increased by 35.3% compared to the control (Figure 1b). The MMR decreased significantly with 

increasing ambient nitrite (P < 0.05). The relationship between MMR and ambient nitrite was quadratic. 

In the 1.5 mg L−1 nitrite environment, the MMR decreased by 16.7% compared to the control (Figure 1b). 

AS decreased significantly with increasing ambient nitrite (P < 0.05). The relationship between AS and 

ambient nitrite was quadratic. In the 1.5 mg L−1 nitrite environment, AS decreased by 41.5% compared 

to the control (Figure 1b). Peak post-prandial MO2 increased with increasing ambient nitrite (P < 0.05), 

and time to peak post-prandial MO2 was delayed with increasing ambient nitrite (Figure 2b). 

3.3. Effects of Hypoxia on Aerobic Metabolism 

SMR of C. auratus gibelio increased significantly with increasing ambient dissolved oxygen (P < 

0.05). The relationship between SMR and ambient dissolved oxygen was logarithmic. In the 1.5 mg L−1 

dissolved oxygen environment (hypoxic), SMR decreased by 19.7% compared to the control (Figure 1c). 

The MMR increased significantly with increasing ambient dissolved oxygen (P < 0.05). The relationship 
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between MMR and ambient dissolved oxygen was logarithmic. In the 1.5 mg L−1 hypoxia treatment, the 

MMR decreased by 30.6% compared to the control (Figure 1c). AS decreased significantly with 

decreasing ambient dissolved oxygen (P < 0.05). The relationship between AS and ambient dissolved 

oxygen was logarithmic. In the 1.5 mg L−1 dissolved oxygen, AS decreased by 35.9% compared to the 

control (Figure 1c). Peak post-prandial MO2 increased with decreasing dissolved oxygen (P < 0.05), 

showing an inverse relationship. Time to peak post-prandial MO2 was delayed with decreasing 

dissolved oxygen (Figure 2c). 

3.4. Effects of High pH on Aerobic Metabolism 

SMR of C. auratus gibelio increased significantly with increasing ambient pH (P < 0.05). The 

relationship between SMR and ambient pH was exponential. In the 9.9 pH environment, SMR increased 

by 40.0% compared to the control (Figure 1d). The MMR decreased significantly with increasing 

ambient pH (P < 0.05). The relationship between MMR and ambient pH was logarithmic. In the 9.9 pH 

environment, the MMR decreased by 23.4% compared to the control (Figure 1d). AS decreased 

significantly with increasing ambient pH (P < 0.05). The relationship between AS and ambient pH was 

quadratic. In the 9.9 pH environment, AS decreased by 61.8% compared to the control (Figure 1d). The 

peak post-prandial MO2 increased with increasing pH (P < 0.05) and had a quadratic relationship with 

pH. The time to peak post-prandial MO2 was delayed with increasing pH (Figure 2d). 

 

(a) 
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Figure 1. Standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope (AS) of 

Carassius auratus gibelio exposed to high ammonia (control, 0.5 mg L−1, 1.0 mg L−1, 2.0 mg L−1) (a), high 

nitrite (control, 0.5 mg L−1, 1.0 mg L−1, 1.5 mg L−1) (b), hypoxia (control, 4.0 mg L−1, 1.5 mg L−1) (c), and 

high pH (control, 9.1, 9.5, 9.9) (d). Values are means ± SE. Statistically significant difference among 

treatments at each time point (“*”shows the significant different from control) were revealed by a one-

way ANOVA test, followed by multiple comparisons with the Holm–Sidak method (P ≤ 0.05). 

 

 
(a) 
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(d) 

Figure 2. Post-prandial MO2 of Carassius auratus gibelio exposed to high ammonia (control, 0.5 mg L−1, 

1.0 mg L−1, 2.0 mg L−1) (a), high nitrite (control, 0.5 mg L−1, 1.0 mg L−1, 1.5 mg L−1) (b), hypoxia (control, 

4.0 mg L−1, 1.5 mg L−1) (c), and high pH (control, 9.1, 9.5, 9.9) (d).Values are means ± SE. Statistically 

significant difference among treatments at each time point (“*”shows the significant different from 

control) were revealed by a one-way ANOVA tests, followed by multiple comparisons with the 

Holm–Sidak method (P ≤ 0.05). 

4. Discussion 

While being one of the most hypoxia tolerance species, C. auratus gibelio’s AS was reduced by 

key stressors such as high ammonia, high nitrite, hypoxia, and high pH, that occur unpredictably in 

ponds and nature. A reduction in AS can lead to a reduction in growth in aquaculture ponds or 

reduced fitness in nature. The results described herein have provided novel insights into the optimal, 

fitness-maximizing thresholds of stressors for this economically valuable species. 

4.1. Effects of High Ammonia on Aerobic Metabolism 

High ammonia impaired the aerobic metabolism of Carassius auratus gibelio. AS is used for 

locomotion and growth and was reduced as a function of the increase in SMR and decrease in MMR. A 

previous study suggested that the mechanism of ammonia poisoning in fish might be that ammonia 

interferers with amino acid transport, causing the swelling of astrocytes in the brain, disrupting the 

metabolism of amino acid neurotransmitters [19]. Fish attempt to excrete ammonia by energy-dependent 

transporters, such as V-type H+-ATPase [20] and Na+/K+-ATPase [21]. So, if the C. auratus gibelio needs 

more energy to excrete ammonia to defend against hyperammonemia, its supply of energy available 

to grow will be reduced. In addition, MMR and AS both decreased after exposure to ammonia, which 

may result in difficulty getting food and being more easily caught by predators. Although peak post-

prandial MO2 was not different among treatments, delayed time-to-peak post-prandial MO2 indicated 

that C. auratus gibelio required more time for food ingestion. Due to the unforgiving nature of the wild, 

once this fish cannot meet its basic requirements, it may more easily become diseased. 

4.2. Effects of High Nitrite on Aerobic Metabolism 

High nitrite impaired the aerobic metabolism of C. auratus gibelio, which may translate to 

reduced locomotion and growth because of the increased SMR and decreased MMR, meanwhile, 

peak post-prandial MO2 and time-to-peak post-prandial MO2 both increased. The relative increase in 

peak post-prandial MO2 for C. auratus gibelio exposed to high nitrite reached a maximum of 2.1 times 
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higher than SMR. Post-prandial MO2 represents the metabolic expenditures resulting from the 

nutritive process but may also include components relating to the energy requirement for ingestion, 

which varies among fish species and has been shown to be dependent upon several factors [22–24]. 

The increase of peak post-prandial MO2 and time-to-peak post-prandial MO2 were consistent with 

low feeding rate and food conversion efficiency [25]. When metabolism increases while the AS is 

narrower, the fish becomes more sensitive to hypoxia during digestion and may reduce ingestion. 

One physiological response to nitrite is an increase in methemoglobin. The hemoglobin becomes 

oxidized and unable to bind and carry molecules of oxygen [26]. In this case, the increased SMR in C. 

auratus gibelio was a result of either the induction of mitochondria dysfunction, or the increased 

energy demand by repair mechanisms and toxicant elimination [27]. The decreased MMR might be 

one side of a “trade-off” between the metabolic costs of chemical detoxification and fish activity. 

4.3. Effects of Hypoxia on Aerobic Metabolism 

Hypoxia impaired the aerobic metabolism of C. auratus gibelio, AS decreased because of the decrease 

in MMR, while peak post-prandial MO2 decreased and time-to-peak post-prandial MO2 increased in the 

hypoxic environment. SMR, MMR, and AS of C. auratus gibelio decreased when exposed to hypoxic 

conditions. We suggest, therefore, that C. auratus gibelio responses to environmental hypoxia were based 

mainly on suppressed metabolic rate. Fish of the genus Carassius evolved a specialized metabolic system 

that allows them to survive prolonged periods in hypoxia, even without oxygen by producing ethanol as 

their metabolic end-product [28]. Increased time-to-peak post-prandial MO2 indicate that although C. 

auratus gibelio survives in hypoxia by low metabolic rate, they need more time for digestion. 

4.4. Effects of High pH on Aerobic Metabolism 

High pH impaired the aerobic metabolism of C. auratus gibelio, AS decreased because of the 

increase in SMR and decrease in MMR, while peak post-prandial MO2 and time-to-peak post-

prandial MO2 both increased. SMR decreased when exposed to high pH, this was likely because high 

pH water affected ion equilibriums and ammonia excretion [29,30]. If excretion of ammonia was 

limited, the fish would need more energy to force excretion or utilize other energetically expensive 

ways to excrete ammonia, which would cut into the energy available for growth. Meanwhile, high 

pH and alkalinity could cause an acid base imbalance, such as respiratory alkalosis [4], thus 

demanding greater energy to cope with the disturbance. The relative increase in peak post-prandial 

MO2 for C. auratus gibelio exposed to high pH reached a maximum of 2.2 times higher than SMR, 

along with extremely narrow AS, which may result in difficulty getting food and a low ingestion rate. 

This is consistent with our findings about the growth performance of fish in alkaline water [31]. These 

findings give us some hint that extra oxygen should be provided when farming the fish in high pH 

water, especially during the feeding and ingestion period. 

Author Contributions: conception and design of research, Z.Y., Q.L. and X.Z.; performed experiments, Z.Y., 

X.Z., P.G., K.Z.; analyzed data, Z.Y. and X.Z.; interpreted results of experiments, Z.Y., Q.L. and X.Z.; prepared 

figures, Z.Y.; drafted manuscript, Z.Y. and X.Z.; edited and revised manuscript, Z.Y., X.Z., Q.L., K.Z. and P.G. 

All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by National key R&D program of China (NO. 2018YFD0900603) and Special 

Scientific Research Funds for Central Non-profit Institutes (No.2016HY-ZD0601, No. 2019ZD0602). 

Conflicts of Interest: The authors declare no conflict of interest. 

Reference 

1. Ren, Q.; Li, M.; Yuan, L.; Song, M.; Xing, X.; Shi, G.; Meng, F.; Wang, R. Acute ammonia toxicity in crucian 

carp Carassius auratus and effects of taurine on hyperammonemia. Comp. Biochem. Physiol. C Toxicol. 

Pharmacol. 2016, 190, 9–14, doi:10.1016/j.cbpc.2016.08.001. 



Biology 2020, 9, 27 11 of 12 

 

2. Moyson, S.; Liew, H.J.; Diricx, M.; Sinha, A.K.; Blust, R.; De Boeck, G. The combined effect of hypoxia and 

nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio). Comp. 

Biochem. Physiol. A Mol. Integr. Physiol. 2015, 179, 133–143, doi:10.1016/j.cbpa.2014.09.017. 

3. Miao, L.H.; Lin, Y.; Pan, W.J.; Huang, X.; Ge, X.P.; Zhou, Q.L.; Liu, B.; Ren, M.C.; Zhang, W.X.; Liang, H.L.; 

et al. Comparative transcriptome analysis reveals the gene expression profiling in bighead carp 

(Aristichthys nobilis) in response to acute nitrite toxicity. Fish Shellfish Immunol. 2018, 79, 244–255, 

doi:10.1016/j.fsi.2018.05.012. 

4. Yao, Z.; Guo, W.; Lai, Q.; Shi, J.; Zhou, K.; Qi, H.; Lin, T.; Li, Z.; Wang, H. Gymnocypris przewalskii decreases 

cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the 

saline-alkaline lake Qinghai. J. Comp. Physiol. B 2016, 186, 83–95, doi:10.1007/s00360-015-0939-z. 

5. Zhou, L.; Boyd, C. Ammonia Nitrogen Management in Aquaculture Ponds. Aquaculture Magazine 2015. 

6. Evans, D.H.; Cameron, J.N. Gill ammonia transport. J. Exp. Zool. 1986, 239, 17–23. 

7. Liew, H.J.; Sinha, A.K.; Nawata, C.M.; Blust, R.; Wood, C.M.; De Boeck, G. Differential responses in 

ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high 

environmental ammonia in three freshwater teleosts. Aquat. Toxicol. 2013, 126, 63–76, 

doi:10.1016/j.aquatox.2012.10.012. 

8. Gao, X.Q.; Fei, F.; Huo, H.H.; Huang, B.; Meng, X.S.; Zhang, T.; Liu, B.L. Impact of nitrite exposure on 

plasma biochemical parameters and immune-related responses in Takifugu rubripes. Aquat. Toxicol. 2020, 

218, 105362, doi:10.1016/j.aquatox.2019.105362. 

9. Alcaraz, G.; Espina, S. Effect of nitrite on the survival of grass carp, Ctenopharyngodon idella (Val.), with 

relation to chloride. Bull. Environ. Contam. Toxicol. 1994, 52, 74–79, doi:10.1007/bf00197360. 

10. Bath, R.N.; Eddy, F.B. Transport of nitrite across fish gills. J. Exp. Zool. 1980, 214, 119–121, 

doi:10.1002/jez.1402140115. 

11. Cottingham, A.; Huang, P.; Hipsey, M.R.; Hall, N.G.; Ashworth, E.; Williams, J.; Potter, I.C. Growth, 

condition, and maturity schedules of an estuarine fish species change in estuaries following increased 

hypoxia due to climate change. Ecol. Evol. 2018, 8, 7111–7130, doi:10.1002/ece3.4236. 

12. Domenici, P.; Steffensen, J.F.; Marras, S. The effect of hypoxia on fish schooling. Philos. Trans. R. Soc. Lond. 

B Biol. Sci. 2017, 372, 20160236, doi:10.1098/rstb.2016.0236. 

13. Mendez-Sanchez, J.F.; Burggren, W.W. Hypoxia-induced developmental plasticity of larval growth, gill 

and labyrinth organ morphometrics in two anabantoid fish: The facultative air-breather Siamese fighting 

fish (Betta splendens) and the obligate air-breather the blue gourami (Trichopodus trichopterus). J. Morphol. 

2019, 280, 193–204, doi:10.1002/jmor.20931. 

14. Yao, Z.; Lai, Q.; Hao, Z.; Chen, L.; Lin, T.; Zhou, K.; Wang, H. Carbonic anhydrase 2-like and Na+-K+-ATPase 

alpha gene expression in medaka (Oryzias latipes) under carbonate alkalinity stress. Fish Physiol. Biochem. 

2015, 41, 1491–1500, doi:10.1007/s10695-015-0101-6. 

15. Clark, T.D.; Sandblom, E.; Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: 

Respirometry, relevance and recommendations. J. Exp. Biol. 2013, 216, 2771–2782, doi:10.1242/jeb.084251. 

16. Chabot, D.; Steffensen, J.F.; Farrell, A.P. The determination of standard metabolic rate in fishes. J. Fish Biol. 

2016, 88, 81–121, doi:10.1111/jfb.12845. 

17. Peck, M.A.; Moyano, M. Measuring respiration rates in marine fish larvae: Challenges and advances. J. Fish 

Biol. 2016, 88, 173–205, doi:10.1111/jfb.12810. 

18. Yun, B.; Yu, X.; Xue, M.; Liu, Y.; Wang, J.; Wu, X.; Han, F.; Liang, X. Effects of dietary protein levels on the 

long-term growth response and fitting growth models of gibel carp (Carassius auratus gibelio). Anim. Nutr. 

2015, 1, 70–76, doi:10.1016/j.aninu.2015.05.003.  

19. Ip, Y.K.; Chew, S.F. Ammonia production, excretion, toxicity, and defense in fish: A review. Front. Physiol. 

2010, 1, 134, doi:10.3389/fphys.2010.00134. 

20. Nawata, C.M.; Hung, C.C.; Tsui, T.K.; Wilson, J.M.; Wright, P.A.; Wood, C.M. Ammonia excretion in 

rainbow trout (Oncorhynchus mykiss): Evidence for Rh glycoprotein and H+-ATPase involvement. Physiol. 

Genom. 2007, 31, 463–474, doi:10.1152/physiolgenomics.00061.2007. 

21. Chew, S.F.; Hiong, K.C.; Lam, S.P.; Ong, S.W.; Wee, W.L.; Wong, W.P.; Ip, Y.K. Functional roles of Na+/K+-

ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon 

schlosseri. Front. Physiol. 2014, 5, 158, doi:10.3389/fphys.2014.00158. 

22. Bucking, C.; Fitzpatrick, J.L.; Nadella, S.R.; Wood, C.M. Post-prandial metabolic alkalosis in the seawater-

acclimated trout: The alkaline tide comes in. J. Exp. Biol. 2009, 212, 2159–2166. 



Biology 2020, 9, 27 12 of 12 

 

23. Clark, T.D.; Brandt, W.T.; Nogueira, J.; Rodriguez, L.E.; Price, M.; Farwell, C.J.; Block, B.A. Postprandial 

metabolism of Pacific bluefin tuna (Thunnus orientalis). J. Exp. Biol. 2010, 213, 2379–2385, 

doi:10.1242/jeb.043455.  

24. Nie, L.J.; Fu, S.J. Metabolic, behavioral, and locomotive effects of feeding in five cyprinids with different 

habitat preferences. Fish Physiol. Biochem. 2017, 43, 1531–1542, doi:10.1007/s10695-017-0390-z. 

25. Sun, H.; Li, J.; Tang, L.; Yang, Z. Responses of crucian carp Carassius auratus to long-term exposure to nitrite 

and low dissolved oxygen levels. Biochem. Syst. Ecol. 2012, 44, 224–232, doi:10.1016/j.bse.2012.06.011. 

26. Tilak, K.S.; Veeraiah, K.; Raju, J.M. Effects of ammonia, nitrite and nitrate on hemoglobin content and 

oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). J. Environ. Biol. 2007, 28, 45–47. 

27. Lin, Y.; Miao, L.H.; Pan, W.J.; Huang, X.; Dengu, J.M.; Zhang, W.X.; Ge, X.P.; Liu, B.; Ren, M.C.; Zhou, Q.L.; 

et al. Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead 

carp, Aristichthys nobilis. Fish Shellfish Immunol. 2018, 76, 126–132, doi:10.1016/j.fsi.2018.02.015. 

28. Fagernes, C.E.; Stenslokken, K.O.; Rohr, A.K.; Berenbrink, M.; Ellefsen, S.; Nilsson, G.E. Extreme anoxia 

tolerance in crucian carp and goldfish through neofunctionalization of duplicated genes creating a new 

ethanol-producing pyruvate decarboxylase pathway. Sci. Rep. 2017, 7, 7884, doi:10.1038/s41598-017-07385-

4. 

29. Wilkie, M.P.; Wood, C.M. Nitrogenous Waste Excretion, Acid-Base Regulation, and lonoregulation in 

Rainbow Trout (Oncorhynchus mykiss) Exposed to Extremely Alkaline Water. Physiol. Zool. 1991, 64, 1069–

1086, doi:10.1086/physzool.64.4.30157957.  

30. Yao, Z.; Yi, X.; Lai, Q.; Zhou, K.; Gao, P. Fish nitrogen excretion in saline-alkaline water: A review. Mar. 

Fish. 2018, 40, 740–751. 

31. Yao, Z.L.; Lai, Q.F.; Zhou, K.; Rizalita, R.E.; Wang, H. Developmental biology of medaka fish (Oryzias latipes) 

exposed to alkalinity stress. J. Appl. Ichthyol. 2010, 26, 397–402, doi:10.1111/j.1439-0426.2009.01360.x. 

 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


