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Abstract: Analysis of sweat is of interest for a variety of diagnosis and monitoring applications in
healthcare. In this work, detailed measurements of the dielectric properties of solutions representing
the major components of sweat are presented. The measurements include aqueous solutions of sodium
chloride (NaCl), potassium chloride (KCl), urea, and lactic acid, as well as their mixtures. Moreover,
mixtures of NaCl, KCl, urea, and lactic acid, mimicking artificial sweat at different hydration states,
are characterized, and the data are fitted to a Cole–Cole model. The complex dielectric permittivity
for all prepared solutions and mixtures is studied in the range of 1–20 GHz, at temperature of 23 ◦C,
with ionic concentrations in the range of 0.01–1.7 mol/L.

Keywords: dielectric spectroscopy; dielectric properties; artificial sweat; sweat electrolytes; sweat
monitoring; hydration monitoring

1. Introduction

With the increasing market in wearable devices, health monitoring, and preventive medicine,
there is growing interest in analyzing properties of biofluids in the microwave frequency range.
Dielectric properties of these fluids contribute to the understanding of microwave interaction
with biological tissues [1,2] and allow identification of opportunities for disease detection and
prevention [3–5]. This knowledge also contributes towards testing the impact of biofluids, specifically
sweat, on health monitoring devices [5,6] and consumer products [7,8]. Thus, accurate knowledge
of dielectric properties of biofluids, specifically sweat, supports the design of new sensors, wearable
devices, and therapeutic technologies.

Biofluids, including urine, blood, tears, and sweat, carry physiological biomarkers that can reflect
health status [5,6,9]. Among the different biofluids, the composition of sweat and blood are osmotically
related Tricoli et al. [5]. Although blood carries highly accurate information on the human body, sweat
has the potential for easy, fast, and noninvasive monitoring Tricoli et al. [5].

Human sweat is composed of metabolites (uric acid, urea, and lactic acid), minerals (sodium,
chloride, potassium, magnesium, zinc, iron, calcium, copper, and phosphate), as well as amino
acids [3,5,9–14]. Among these components, tracking sodium (Na+), chloride (Cl−), and potassium
(K+) can provide information on the water–salt balance in human tissues Romanov [4], hydration
levels [11–20], and the presence of cystic fibrosis [3,5,21]. Properties of sweat in the microwave
frequency range were reported in Romanov [4], which focused on comparing dielectric properties of
sweat collected from different locations on the body. The work presented in Romanov [4] used an
industrial phasometer to measure transmission magnitude and phase, which were used to calculate
dielectric properties of sweat in the range of 300 MHz to 3 GHz.
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Artificial sweat mixtures have been developed to mimic eccrine perspiration and used commercially
to test consumer products such as bank cards, textiles, jewelry, and leather [7,8]. Other studies have
used artificial sweat mixtures as test liquids when developing sensors [11–13]. Several technical
associations have released different standards describing artificial sweat formulations [7,8,10–13].
From [7,8,10–13], the major components of artificial sweat are sodium chloride (NaCl), potassium
chloride (KCl), urea, and lactic acid.

Several studies characterized the frequency-dependent properties of solutions of NaCl and KCl at
different temperatures and concentrations from 100 kHz to 40 GHz in [1–3,11,22,23]. In Gulich et al. [1],
Peyman et al. [2] and Nörtemann et al. [3], dielectric properties of NaCl and KCl solutions over the
temperature range of 10–60 ◦C and concentration range of 0.001–5 mol/L were presented in the band
from 100 MHz to 40 GHz. Moreover, the measurements in Peyman et al. [2] and Nörtemann et al. [3]
were combined with literature values to derive empirical equations to describe the dielectric behavior
of NaCl solutions using Debye and Cole–Cole models. In Lamkaouchi et al. [22], the permittivity of
aqueous solutions of NaCl at millimeter wave bands of 37, 89, and 110 GHz over the temperature range
of 0–25 ◦C was also reported. The effect of temperature, pressure, and salt concentrations (up to 6 mol/L)
on the permittivity of several aqueous salt solutions was examined in Maribo-Mogensen et al. [23].
The tested NaCl concentrations in Maribo-Mogensen et al. [23] are as high as 35% and do not represent
concentrations in biofluids. However, all data in Maribo-Mogensen et al. [23] refer to static permittivity
and the effect of varying frequency was not studied. None of the reported studies examined the
properties of mixtures or properties in the presence of other components of sweat, namely, urea and
lactic acid. In Liu et al. [11], the conductivity of different concentrations of artificial sweat (14–262 mmol)
was measured at different temperatures and at the single frequency of 100 kHz. The properties of
urea in saline solutions were studied in the 1–14 GHz band in Jensen et al. [24] as a biomarker for
dialysis treatment and kidney dysfunction. Electrical properties of lactate were reported in De los
Reyes et al. [25] for agriculture applications.

Artificial sweat mixtures representing different hydration states were synthesized by our group
in Eldamak et al. [26] to test an antenna-based sensor for noninvasive sweat monitoring. Electrical
properties for artificial sweat mixtures representing normal and dehydrated sweat were reported
in Eldamak et al. [26]. Although varying NaCl concentrations were tested, the impact of varying
concentrations of other components of the artificial sweat solution was not explored in detail. This study
presents the dielectric properties of aqueous solutions of the significant electrolytes in sweat, mixtures
of these components, and artificial sweat mixtures representing normal and dehydration states.
The dielectric properties are measured over the range of 1–20 GHz. This paper also explores the effect
of pH level on electrical properties and provides Cole–Cole parameters for artificial sweat (normal and
dehydrated concentrations) to fit measured data.

2. Materials and Methods

2.1. Materials and Tested Solutions

The preparations of artificial sweat (AS) follow the EN1811:2011 European Standard [8,10–13].
The initial recipe in Midander et al. [8] and Callewaert et al. [10] mimics human perspiration to test
nickel release from jewelry as sweat can react with certain materials and trigger dermatitis nickel allergy
or shorten product service life [7]. This recipe included 0.5% NaCl, 0.1% urea, and 0.1% lactic acid
dissolved in 1 L of distilled water. However, this recipe was modified in Liu et al. [11], Liu et al. [12]
and Hoekstra et al. [13] to test sweat monitoring devices. Specifically, 0.1% potassium chloride (KCl)
was added to match the composition of human sweat reported in Liu et al. [12], Baker et al. [14] and
Morgan et al. [15]. The modified recipe used in Liu et al. [11], Liu et al. [12] and Hoekstra et al. [13]
was adopted in this paper.

The solution representing dehydrated sweat involved dissolving 85 mmol of sodium chloride
(NaCl), 13 mmol of potassium chloride (KCl, Fisher Scientific), 17 mmol of lactic acid (LD CARLSON
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Co., food-grade Lactic Acid 88%), and 16 mmol of urea (Jacquard, Commercial Grade) in 1 L of distilled
water. For normal artificial sweat, the proportions of components were kept in the same ratios but the
concentrations were one-tenth of those representing dehydration [11,24]. In addition, the pH level for
all tested solutions was recorded using pH indicator paper with range of 0–14. All concentrations were
in mol/L. In addition to the artificial sweat mixtures, test solutions with different concentrations of
NaCl, KCl, lactic acid, and urea and their mixtures were investigated. The single component solutions
and mixtures explored in this study are presented in Tables 1 and 2, respectively. Table 1 summarizes
single component solutions synthesized by dissolving the given amount of the tested component in 1 L
of distilled water. Table 2 summarizes mixtures under test created by dissolving the given amounts of
base and tested components in 1 L of distilled water. Properties of analyzed solutions were compared
to distilled water. The focus was on concentrations in the range of 0.01–0.2 mol, which is a common
range among all tested components.

Table 1. Single component solutions under test (synthesized by dissolving in 1 L of distilled water).

Tested Component Concentrations of Components (mol/L)

NaCl (“N”) 0.01 0.1 0.2 0.34 1.7
KCl (“K”) 0.01 0.05 0.1 0.2

Lactic Acid (“L”) 0.02 0.06 0.12
Urea (“U”) 0.016 0.05 0.1 0.2

Table 2. Mixtures under test (synthesized by dissolving in 1 L of distilled water).

Base Component Concentrations of Tested Components (mol/L)

K = 0.013 mol N 0.01 0.1 0.34 1 1.7
N = 0.1 mol K 0.01 0.05 0.1 0.2

U = 0.016 mol, L = 0.02 mol, K = 0.013 mol N 0.01 0.02 0.1 0.2
N = 0.1 mol, L = 0.02 mol, U = 0.016 mol K 0.01 0.05 0.1 0.2

N = 0.1 mol, K = 0.013 mol, U = 0.016 mol L 0.02 0.06 0.12
N = 0.1 mol, K = 0.013 mol, L = 0.02 mol U 0.016 0.05 0.1 0.2

2.2. Measurement Setup

All dielectric properties were measured using a dielectric probe and vector network analyzer
(Agilent 87050E and E8364B, respectively), as well as the associated software as shown in Figure 1a.
This technique is based on measuring reflection from an open-end coaxial probe immersed in the
solution under test (SUT) [1,27]. Standard techniques were used to calibrate the measurement system
and estimate complex permittivity from the reflection coefficient La Gioia et al. [27].

Figure 1. (a) Overall measurement setup including dielectric probe (87050E, Keysight Technologies),
vector network analyzer (E8364B, Keysight Technologies), and solution under test (SUT) and (b) dielectric
probe immersed in SUT.
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This frequency-dependent permittivity (ε(ω)*) was estimated in the range of 1–20 GHz at
temperature of 23 ◦C. The frequency-dependent conductivity (σ(ω)) estimates, representing losses in
the solutions under test, were obtained from the complex permittivity using Equation (1):

ε(ω)∗ = ε ′(ω) − j ε ′′(ω) = ε ′(ω) − j
σ(ω)

ωεo
(1)

where ω is the angular frequency, the real and imaginary parts of the complex permittivity are
denoted by ε’ and ε”, respectively, and εo is the permittivity of vacuum. A 120 mL of sample of each
prepared solution was measured using the set up shown in Figure 1. For each solution, three rounds
of measurements were performed to minimize errors and confirm consistency. Each round involved
collecting measurements at 400 equally spaced points from 1 to 20 GHz. The properties of each solution
were estimated from the average of these three measurements. Each round involved also measuring
properties of distilled water (DW) as a reference liquid.

2.3. Validation of Measurements Using NaCl Aqueous Solutions

To validate the measurements, solutions of NaCl with ion concentrations of 0.01–1.7 mol/L were
characterized in the range of 1 to 20 GHz. The recorded data at different concentrations were compared
to published data in Gulich et al. [1] as shown in Figure 2. Our measurements for solutions of NaCl
showed an increase of 3–5% calculated over the band from 1 to 10 GHz when compared to measured
and fitted data at similar concentrations, temperature, and frequency range reported in Gulich et al. [1].
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Figure 2. (a) Measured dielectric constant and (b) Measured conductivity for NaCl solutions at ion
concentrations from 0.01 to 1.7 mol/L at temperature 23 ◦C in the range of 1–20 GHz (“N” refers to
NaCl and “M” refers to mol/L).

3. Experimental Results

3.1. Single Component Solutions (KCl, Urea, and Lactic Acid)

In this section, dielectric properties of solutions of KCl, lactic acid, and urea (with concentrations
given in Table 1) were investigated. Figures 2 and 3 present dielectric properties for NaCl, KCl, lactic
acid, and urea compared to distilled water in the band of 1–20 GHz. Properties of NaCl solutions were
recorded for the larger concentration range from 0.01 to 1.7 mol. Other components were tested with
concentrations up to 0.2 mol due to safety limitations. However, these solutions had concentrations of
biological relevance.



Biosensors 2020, 10, 62 5 of 13

Biosensors 2020, 10, x FOR PEER REVIEW 5 of 13 

(a) (b) 

Figure 3. Measured dielectric properties for KCl, lactic acid, and urea solutions at ion concentrations 
0.01 to 0.2 mol/L at temperature 23 °C in the range of 1–20 GHz: (a) dielectric constant and (b) 
conductivity. In all figures in this paper, “K” refers to KCl, “L” to lactic acid, “U” to urea, and “M” 
refers to mol/L. 

3.2. Dual Component Solutions (NaCl and KCl) 

For the given measurements shown in Figure 1 and Figure 2, NaCl and KCl had greatest impact 
on complex permittivity (ε’ and ε”) and conductivity values. Thus, it is interesting to study mixtures 
of these two components. In this section, two groups of measurements were presented.  

The first group starts with a KCL concentration of 0.013 mol (corresponding to dehydrated 
artificial sweat) to 1 L of distilled water. NaCl was added to this given solution in concentrations in 
the range of 0.01–1.7 mol/L as shown in Table 2. The second group had fixed NaCl concentration of 
0.1 mol (corresponding to dehydrated artificial sweat), whereas KCl was added in the range of 
0.01–0.2 mol/L as shown in Table 2. Properties of both groups are presented in Figures 4 and 5. From 
measurements shown in Figure 4a, with a base of 0.013 mol/L of KCl, the dielectric constant of 
mixtures did not showed significant change compared to distilled water until the NaCl 
concentration of 0.1 mol/L. Dielectric constant of solutions with a base of 0.1 mol/L of NaCl showed 
changes starting at KCl concentrations of 0.05 mol/L (Figure 5a). On the other hand, conductivity 
values were altered by adding either KCl or NaCl with concentrations as low as 0.01 mol/L as shown 
in Figures 4b and 5b. 

Figure 3. Measured dielectric properties for KCl, lactic acid, and urea solutions at ion concentrations 0.01
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In all figures in this paper, “K” refers to KCl, “L” to lactic acid, “U” to urea, and “M” refers to mol/L.

3.2. Dual Component Solutions (NaCl and KCl)

For the given measurements shown in Figures 1 and 2, NaCl and KCl had greatest impact on
complex permittivity (ε’ and ε”) and conductivity values. Thus, it is interesting to study mixtures of
these two components. In this section, two groups of measurements were presented.

The first group starts with a KCL concentration of 0.013 mol (corresponding to dehydrated
artificial sweat) to 1 L of distilled water. NaCl was added to this given solution in concentrations in the
range of 0.01–1.7 mol/L as shown in Table 2. The second group had fixed NaCl concentration of 0.1 mol
(corresponding to dehydrated artificial sweat), whereas KCl was added in the range of 0.01–0.2 mol/L
as shown in Table 2. Properties of both groups are presented in Figures 4 and 5. From measurements
shown in Figure 4a, with a base of 0.013 mol/L of KCl, the dielectric constant of mixtures did not showed
significant change compared to distilled water until the NaCl concentration of 0.1 mol/L. Dielectric
constant of solutions with a base of 0.1 mol/L of NaCl showed changes starting at KCl concentrations
of 0.05 mol/L (Figure 5a). On the other hand, conductivity values were altered by adding either KCl or
NaCl with concentrations as low as 0.01 mol/L as shown in Figures 4b and 5b.
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mol/L and NaCl with fixed concentration of 0.1 mol/L at temperature 23 ◦C in the range of 1–20 GHz:
(a) dielectric constant and (b) conductivity (“M” refers to mol/L).

3.3. Artificial Sweat Mixtures

3.3.1. Artificial Sweat Dielectric Properties

In this section, dielectric properties of artificial sweat solutions were investigated. Artificial sweat
samples with concentrations described in Section 2.1 were synthesized. Two concentrations were
considered, representing sweat concentration for normal (termed diluted) and dehydrated individuals.

Table 3 shows values of complex permittivity (ε* = ε’-j ε”) and conductivity for artificial sweat
mixtures and distilled water at 2.45 GHz. From measurements shown in Figure 6, the dielectric constant
of diluted sweat with 0.01 mol/L of NaCl was similar to distilled water in the 1–20 GHz band. However,
diluted sweat exhibited greater conductivity in the lower frequencies of the band compared to distilled
water. On the other hand, dehydrated sweat with NaCl concentrations of 0.1 mol/L showed distinct
values for both dielectric constant and conductivity over the whole band. Moreover, the measured
dielectric properties of the prepared artificial sweat mixtures showed similarity in values with those
recorded for real sweat in Romanov [4].

Table 3. Electrical properties for distilled water (DW) and artificial sweat solutions at 2.45 GHz.

Tested Solution ε’ ε” σ

Distilled water 77.8 9.8 0.012599
Diluted sweat (13 mmol/L) 76.4218 11.2541 0.015295

Dehydrated sweat (131 mmol/L) 73.9557 20.29 0.03443
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NaCl, 0.01% for each urea, lactic acid, and KCl), and dehydrated sweat (0.5% NaCl, 0.1% for each urea,
lactic acid, and KCl.

3.3.2. Effect of pH

The proposed artificial sweat mixtures had measured pH level of 4 after adding the lactic acid.
The pH level of this solution was not in the rated range for human sweat. Ammonia and sodium
hydroxide were mentioned in the recipes reported in Midander et al. [8], Callewaert et al. [10] and
Liu et al. [12] as a means of adjusting pH level of artificial sweat from 4 to 6.5. These additives are
components of artificial sweat from a physiological point of view. In this work, pH was adjusted
to 6.5 using sodium bicarbonate instead of ammonia or sodium hydroxide due to safety limitations.
The dielectric properties of dehydrated sweat mixtures with pH level of 4 and 6.5 were recorded.
Measurements showed maximum variations of 3% in dielectric properties for solutions with pH level
4 or 6.5.

3.3.3. Cole–Cole Model for Artificial Sweat Mixtures

In this section, the measured frequency-dependent dielectric properties for artificial sweat
mixtures representing normal and dehydrated states were fitted to a single pole Cole–Cole model as
in Gulich et al. [1], Peyman et al. [2] and Nörtemann et al. [3]. The model is the sum of a relaxation
function and a contribution from conductivity as presented in Equation (2) as:

ε̂ = ε∞ +
εs − ε∞

1 + (jωτ)1−α
+

σi

jωεo
, (2)

where, εs and ε∞ are limit of the permittivity at low and high frequencies, εo is the permittivity of free
space, τ is the relaxation time, α is the distribution parameter describing the symmetrical broadening
of the relaxation loss peak, and σi is the ionic conductivity. The relaxation function describes the loss
peak and the decrease in ε’ Gulich et al. [1]. If α is set to 0, the model is reduced to Debye model.
Both Cole–Cole and Debye model were tested to fit the measured dielectric properties of artificial
sweat in both diluted and dehydration states. However, with the given measurements (1–20 GHz),
Cole–Cole model was a better fit for the loss peak observed at higher frequencies. The deviation from
the Debye model (α , 0) was connected with the correlations of the reorienting dipoles. According to
the Jonscher’s relationship, the alpha parameter reflects stronger long-time correlations.

Table 4 shows the calculated Cole–Cole model parameters for artificial sweat representing normal
and dehydrated states, while Figure 7 shows the fitted data. ε∞ was calculated as 5.1398 using equation
in Peyman et al. [2] and La Gioia et al. [27], which was a function of measurement temperature
and concentration.
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Table 4. Cole–Cole parameters of artificial sweat mixtures obtained by fitting the experimental data
collected from 1 to 20 GHz and at 23 ◦C to a Cole–Cole model.

Tested Solution Concentration εs τ α σi

Diluted sweat 13.1 mmol/L 77.8 8.15 ps 0.005 0.31
Dehydrated sweat 131 mmol/L 75.4 8.1 ps 0.015 1.53

Figure 7. Measured and fitted: (a) real part of complex permittivity (ε’). (b) Imaginary part of complex
permittivity (ε”) for diluted artificial sweat (0.05% NaCl, 0.01% for each urea, lactic acid, and KCl) and
dehydrated artificial sweat (0.5% NaCl, 0.1% for each urea, lactic acid, and KCl).

3.3.4. Variation of Components Concentrations

The artificial sweat mixture consists of NaCl, KCl, urea, and lactic acid. In this section, the effect
of varying one component in the presence of the other three components was studied. The constant
components are set at the concentrations appropriate for dehydrated sweat. The variable component is
adjusted over the range of 0–0.2 mol/L. This range is chosen as it is common for all tested components.
Figures 8 and 9 show the effect of varying NaCl and KCl, respectively. Variations of lactic acid and
urea were also tested in the range of 0–0.2 mol/L in the presence of other three components where no
changes were observed.
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Figure 9. Measured dielectric properties for KCl solutions at ion concentrations from 0.01 to 0.2 mol/L
with a base of 0.1 mol/L NaCl, 0.016 mol/L urea, and 0.02 mol/L lactic acid at temperature 23 ◦C in the
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4. Discussion

In this paper, artificial sweat is prepared at concentrations representing different hydration states.
Normal (termed diluted) and dehydrated sweat with overall concentrations of 13.1 and 131 mmol/L,
respectively, are synthesized and characterized in the range of 1–20 GHz. The measurements in Figure 6
show distinct values of dielectric properties at different hydration states. Changing pH level from 4
to 6.5 does not alter the electrical properties of prepared mixtures. Moreover, measured diluted and
dehydrated artificial sweat samples are fitted to a Cole–Cole model with parameters shown in Table 4.
The measurements and models are useful tools for designing and testing sweat-based applications.

To explore the influence of components of the solutions, two sets of data are recorded and plotted
in Figures 10 and 11. The given concentrations are chosen to represent different hydration states.
To study the effect of changing concentration, properties of solutions at different concentrations are
compared at 2.45 GHz. This is a frequency of operation for different wireless and sensing applications,
as well as wearable devices [28–33]. The first set of data in Figure 10 presents the real and imaginary
part of the dielectric constant of solutions formed from single components at 2.45 GHz. With these
concentrations, Figure 10 shows that NaCl has the greatest effect on changing dielectric constant,
followed by urea, KCl, and lactic acid. On the other hand, NaCl has the greatest impact on varying
conductivity, while urea has the least compared to distilled water values. The second set of data in
Figure 11 shows comparison of dielectric properties (real and imaginary part at 2.45 GHz) for solutions
of different mixtures of components with given range of concentrations shown in Table 5.

Figure 10. Measured complex permittivity: (a) real part (ε’) and (b) imaginary part at 2.45 GHz
for aqueous solutions of single component (N = 0.01, 0.1 mol, K = 0.013 mol, L = 0.017 mol, and
U = 0.016 mol). DW is distilled water.
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Figure 11. Measured complex permittivity: (a) real part (ε’) and (b) imaginary part at 2.45 GHz Figure 6.
(N = 0.1 mol, K = 0.013 mol, L = 0.017 mol, and U = 0.016 mol).

Table 5. Component solutions under test (synthesized by dissolving in 1 L of distilled water).

Component (N = 0.1 mol, K = 0.013 mol, U = 0.016 mol, and L = 0.017 mol)

Single component solutions: N = 0.01 mol, N = 0.1 mol, K, L, U

Dual component solutions: N + K, N + L, N + K

Three component solutions: N + KL, N + UL, N + KU, UKL

Four component solution: N + UKL

The given results show that interaction between components forming mixtures could have an
effect on determining the properties of the aqueous solutions. Dielectric properties of the mixture of
urea, KCl, and lactic acid are comparable to distilled water, however, change remarkably by adding
0.1 mol/L of NaCl. On the other hand, urea, lactic acid, and the combination of lactic acid and urea
slightly increase dielectric constant of aqueous solution of 0.1 mol/L NaCl.

As for conductivity, NaCl solutions and the dual solution of NaCl and KCl have the highest values.
However, when NaCl is mixed with urea, lactic acid, or combination of both, the mixture of urea,

lactic acid, and KCl shows higher conductivity values compared to single component solutions (K,
L, and U). However, the conductivity is still lower than 0.1 mol/L solution of NaCl. To validate the
given results, solutions of single and combined components are also characterized at 1, 5, and 10 GHz.
The recorded data are compared to results at 2.45 GHz. Measurements of permittivity and conductivity
at different frequencies show similar variations to those at 2.45 GHz.

Further analyses for changing NaCl and KCl concentrations in the presence of other components
are presented in Figures 12 and 13. Figure 12 shows comparison of properties for solely NaCl, NaCl
with 0.013 mol/L KCl, and NaCl with 46 mmol/L of combined KCl, urea, and lactic acid. KCl with
concentration of 0.013 mol/L does not alter the dielectric constant of NaCl solutions but does increase
the conductivity. With 46 mmol/L of combined KCl, urea, and lactic acid, NaCl solutions show changes
in properties, such as decrease in dielectric constant and increase in conductivity. Figure 13 shows
comparison of properties for solely KCl, KCl with 0.1 mol/L NaCl, and KCl with 118 mmol/L of
combined NaCl, urea, and lactic acid. After adding 0.1 mol/L of NaCl, the properties of the KCl
solutions change. On the other hand, adding lactic acid and urea with 0.1 mol/L of NaCl show increased
conductivity and similar permittivity when compared to mixtures of KCl and 0.1 mol/L NaCl.

In a large number of wearable devices and biosensors, the sensing decision depends on recording
changes in electrical properties of tested solutions and biofluids. Thus, it is crucial to record and analyze
the variations of complex permittivity values with frequency. These values and trends would help in
designing biosensors with high sensitivity for sweat monitoring applications. Moreover, the above
measurements verify that NaCl, a dominant sweat component [10–15], has greatest effect on changing
dielectric properties for sweat mixtures.
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Figure 12. Measured (a) real part of complex permittivity (ε’) and (b) conductivity versus concentration
at 2.45 GHz for aqueous solutions of NaCl, NaCl with K = 0.013 mol/L, NaCl with K = 0.01 mol/L,
L = 0.02 mol/L, and U = 0.01 mol/L (“M” refers to mol/L).

Figure 13. Measured (a) real part of complex permittivity (ε’) and (b) conductivity versus concentration
at 2.45 GHz for aqueous solutions of KCl, KCl with N = 0.1 mol/L, KCl with N = 0.1 mol/L, L = 0.02 mol/L,
and U = 0.01 mol/L (“M” refers to mol/L).

5. Conclusions

This paper provides a novel set of measurements to literature indicating solutions of biologically
relevant concentrations of NaCl, KCl, urea, lactic acid, and their mixtures in the band of 1–20 GHz,
at temperature of 23 ◦C, with ionic concentrations in the range of 0.01–1.7 mol/L. NaCl, KCl, urea,
and lactic acid represent the four major sweat components. Most of the reported literature examines
properties of solutions of single components, specifically NaCl or KCl. However, mixtures of the four
major sweat components are studied in detail for the first time in literature. The data presented in this
study will allow understanding of microwave interaction with biological tissues, designing and testing
new sensors, wearable devices, and therapeutic technologies.

Moreover, this paper presents a novel set of data indicating frequency-dependent electrical
properties of artificial sweat (representing normal and hydrated states) and the effect of changing
pH level on measured electrical properties. Measured dielectric properties of artificial sweat at both
states are fitted using Cole–Cole model. The model parameters describing artificial sweat mixtures
are also calculated for the first time in literature in this paper. Additional testing using mixtures of
artificial sweat components linked changes in dielectric properties of artificial sweat with varying
NaCl concentrations in comparison to property changes obtained when concentrations of other sweat
electrolytes were varied (e.g., potassium chloride (KCl), urea, and lactic acid). These data are of highly
relevance in designing and testing hydration and sweat monitoring devices.



Biosensors 2020, 10, 62 12 of 13

The data presented in paper are not limited to hydration monitoring but may find application in
understanding microwave interactions with human tissues and designing and testing of biosensors
and consumer products.
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