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Abstract: (1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to 
study cortical and corticospinal function. However, responses to TMS are subject to significant 
intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters 
the excitability of the sensorimotor system and may contribute to the variability in TMS outcome 
measures. The increasing prevalence of recreational substance use poses a significant challenge for 
executing TMS studies, but there is a lack of clarity regarding the influence of these substances on 
sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, 
caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and 
interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational 
substances modulates TMS measures of excitability. Despite the abundance of research in this field, 
we identify knowledge gaps that should be addressed in future studies to better understand the 
influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need 
for TMS studies to take into consideration the history of participant substance use and to control for 
acute substance use prior to testing. 

Keywords: transcranial magnetic stimulation; caffeine; alcohol; nicotine; cannabis 
 

1. Introduction 

Transcranial magnetic stimulation (TMS) has been extensively used to non-invasively probe the 
motor system in healthy and clinical populations to study the neural mechanisms of human 
movement and evaluate neuroplasticity. TMS paradigms are used to acquire measurements of 
corticospinal, intracortical and transcallosal excitability (Figure 1). Importantly, exogenous 
substances are capable of influencing the physiological state at the time of testing and may change 
cortical and corticospinal excitability as measured by TMS-evoked responses. Exogenous substances 
include recreational drugs such as nicotine, alcohol, cannabis, caffeine and other controlled 
substances. It is common for TMS studies to enroll university students as participants out of 
convenience. However, consumption of recreational substances such as alcohol [1], nicotine [2], and 
cannabis [3] peaks in young adults between the ages of 18–29. 
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Figure 1. Transcranial magnetic stimulation-electromyography (TMS-EMG) outcome measures. 
Black lines indicate traces following a single pulse of TMS. Grey lines indicate traces following nerve 
stimulation (NS) and TMS paired together or following a conditioning stimulus (CS) and test 
stimulus (TS) pair. (A) Unilateral measures. TMS delivered to the left motor cortex results in a 
motor-evoked potential (MEP) recorded from a muscle in the right-hand using EMG. Delivering 
TMS during isometric contraction of the right-hand muscle leads to an interruption of voluntary 
contraction known as the cortical silent period (CSP). Short-latency afferent inhibition (SAI) and 
long-latency afferent inhibition (LAI) occurs when electrical peripheral NS is delivered prior to the 
TMS pulse, at interstimulus intervals (ISIs) of 20–25 ms or 200–1000 ms, respectively. Short-interval 
intracortical inhibition (SICI) is measured when a subthreshold CS is delivered 1–6 ms prior to a 
suprathreshold TS. The resulting MEP is inhibited, compared to the MEP obtained following the TS 
alone. Long-interval intracortical inhibition (LICI) is measured when a suprathreshold CS is 
delivered 50–300 ms prior to a suprathreshold TS, leading to inhibition of the MEP. Intracortical 
facilitation (ICF) is measured when a subthreshold CS is delivered 6–30 ms prior to a suprathreshold 
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TS, leading to facilitation of the MEP. Short-interval intracortical facilitation (SICF) is measured when 
a suprathreshold CS is delivered 1.1–1.5 ms, 2.3–2.9 ms, or 4.1–4.4 ms prior to a subthreshold TS, 
leading to facilitation of the MEP. (B) Transcallosal measures. Delivering TMS to the left motor cortex 
during isometric contraction of the left-hand muscle leads to an interruption of voluntary contraction 
known as the ipsilateral silent period (iSP). Interhemispheric inhibition (IHI) is measured when a 
suprathreshold CS is delivered to the right motor cortex prior to a suprathreshold TS delivered to the 
left motor cortex, leading to inhibition of the MEP. Short-latency IHI (SIHI) occurs at ISIs of ~10 ms 
and long-latency IHI (LIHI) occurs at ISIs of ~40 ms. 

Safety guidelines for TMS delivery suggest screening participants for consumption of alcohol 
and drugs that lower seizure thresholds [4]. However, there are no official guidelines regarding the 
screening of other common, recreational substances including cannabis, nicotine and caffeine. At 
present, it is unclear whether or how short-and long-term use of these substances are capable of 
inducing changes in neuronal excitability that is reflected in TMS measures or their variability. In 
this review, we consider research investigating acute and chronic use of recreational substances on 
TMS outcome measures for the purpose of identifying knowledge gaps that, if filled, may lead to 
new guidelines to improve the reliability and safety of TMS research. In this review, our use of the 
term “chronic use” refers to those with current or previous addiction or substance abuse. The review 
focuses on recreational substance use of alcohol, cannabis, caffeine and nicotine, and their impact on 
measures of corticospinal and cortical excitability. 

2. Methods 

A literature search was conducted using PubMed and EMBASE electronic databases from 1980 
through August 2020. Separate searches were conducted for each substance of alcohol, cannabis, 
nicotine, and caffeine. The following search terms were used: 

1. (transcranial magnetic stimulation) AND ((alcohol) or (alcoholism) or (ethanol)); 
2. (transcranial magnetic stimulation) AND ((nicotine) or (tobacco)); 
3. (transcranial magnetic stimulation) AND (caffeine); 
4. (transcranial magnetic stimulation) AND ((cannabis) or (THC) or (marijuana)). 

Inclusion/Exclusion Criteria 

Selected studies were required to meet the following inclusion criteria: 

1. Studies assessed one or more of the following TMS measures: motor-evoked potential (MEP), 
resting motor threshold (RMT), active motor threshold (AMT), short-interval intracortical 
inhibition (SICI), intracortical facilitation (ICF), short-interval intracortical facilitation (SICF), 
long-interval intracortical inhibition (LICI), interhemispheric inhibition (IHI), short-latency 
afferent inhibition (SAI), long-latency afferent inhibition (LAI), cortical silent period (CSP), 
ipsilateral silent period (iSP), or TMS-evoked electroencephalography (EEG) potentials. 

2. Primary research articles (i.e., original research) only. 
3. Article was written in English. 

Studies assessing the influence of neuroplasticity-inducing protocols (e.g., repetitive 
transcranial magnetic stimulation, rTMS; paired associative stimulation, PAS; transcranial direct 
current stimulation, tDCS) on cravings or symptoms relating to chronic substance use were excluded 
as this was outside the scope of this review. For reviews on this topic, refer to Gorelick et al. [5], 
Hanlon et al. [6], Hauer et al. [7], or Mostafavi et al. [8]. Further, studies assessing the influence of 
substance use on the magnitude of corticospinal change following neuroplasticity-inducing 
protocols were excluded. Refer to Figure 2 for the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) flow diagram. Details of all studies considered in this review are 
found in Table S1. 
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram. 

3. Alcohol 

3.1. Acute Effects of Alcohol 

Table 1 shows the effects of alcohol on TMS measures. There is a general consensus that acute 
alcohol intake facilitates gamma aminobutyric acid (GABA) neurotransmission and reduces 
glutamatergic neurotransmission [9,10]. Acute ethanol exposure increases GABA-mediated chloride-ion 
currents [11–13], increases cortical GABA-mediated inhibition [14], and facilitates the effects of GABAA 
receptor (GABAAR) agonists [15]. In contrast, ethanol inhibits N-methyl-D-aspartate (NMDA) 
receptor activity [16,17] and reduces glutamate release [18–20]. 
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Table 1. Effects of alcohol on TMS measures. 

Study AMT RMT MEP CSP iSP SAI LAI SICI ICF SICF LICI SIHI LIHI N100 N45 Notes 
Ziemann et al. [21] ○ ○ ○ ▲ – – – ▲ ▼ – – – – – – Acute intake 
Ziemann et al. [22] – ○ ○ – – – – – – ▼ – – – – – Acute intake 

Conte et al. [23] 
– ○ ○ ▲ – – – – – – – – – – – Acute intake in controls 
– ○ – ○ – – – ○ ○ – – – – – – Alcoholics vs. controls 

Hoppenbrouwers et 
al. [24] 

– – ▼ – – – – – – – – ▼* – – – Acute intake; * significant 
in females only 

Loheswaran et al. 
[25] 

– – ○ – – – – – – – – – – ▼* – Acute intake in alcoholics; 
* acquired in DLPFC 

Kähkönen et al. [26] – – – – – – – – – – – – – ▼* – 
Acute intake; * acquired in 

M1 
Muralidharan et al. 

[27] – ○ – ▼ ▼ – – – – – – – – – – 
High-vs. low-risk for 
alcohol dependence 

Nardone et al. [28] ○ ○ – ○ – – – ○ ▲ – – – – – – AWS vs. alcoholics and 
controls 

Muralidharan et al. 
[29] – ○ ○ – – – – – – – – – – – – High-vs. low-risk for 

alcohol dependence 

Naim-Feil et al. [30] ▼ ▼ ▼ ○ – – – ○ ○ – ▼* – – – – 
Alcoholics vs. controls;  

* LICI acquired in DLPFC 

Kaarre et al. [31] – ○ – – – – – – – – – – – – ▲ Heavy alcohol use in 
adolescence vs. controls 

Quoilin et al. [32] – – ▼ – – – – – – – – – – – – Alcoholics vs. controls 
▲ increase; ▼decrease; ○ indicates no change; − indicates did not assess; * refers to stipulations outlined in the right-hand column; AMT: active motor threshold; 
AWS: Alcohol Withdrawal Syndrome; CSP: cortical silent period; DLPFC: dorsolateral prefrontal cortex; ICF: intracortical facilitation; iSP: ipsilateral silent period; 
LAI: long-latency afferent inhibition; LICI: long-interval intracortical inhibition; LIHI: long-latency interhemispheric inhibition; M1: primary motor cortex; MEP: 
motor-evoked potential; N100: TMS-evoked electroencephalography potential at 100 ms latency; N45: TMS-evoked electroencephalography potential at 45 ms 
latency; RMT: resting motor threshold; SAI: short-latency afferent inhibition; SICF: short-interval intracortical facilitation; SICI: short-interval intracortical 
inhibition; SIHI: short-latency interhemispheric inhibition. 
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Acute ethanol intake does not induce changes in RMT [21,22] or AMT [21], suggesting that 
ethanol does not modulate the excitability of the lowest threshold neurons in the primary motor 
cortex (M1). Furthermore, several studies demonstrate no effect of ethanol intake on MEPs 
[21,22,25]. However, it is not known if ethanol impacts the variability in MEPs. 

The TMS findings from Ziemann et al. [21] reflect the consensus that acute alcohol intake 
facilitates GABAergic neurotransmission and reduces glutamatergic neurotransmission. A single 
dose of ethanol administered to healthy individuals increased SICI [21], suggesting an upregulation 
of GABAAR activity [33], and reduced ICF [21], suggesting a downregulation of NMDA receptor 
activity [33]. Further, ethanol increased the CSP [21,23], which may reflect an increase in GABAB 
receptor (GABABR) [33] and/or GABAAR activity [34]. Acute ethanol intake reduced the TMS-evoked 
N100 potential following stimulation of the dorsolateral prefrontal cortex (DLPFC) [25] and M1 [26]. 
The N100 potential is modulated by both baclofen (a GABABR agonist) and benzodiazepines 
(positive allosteric modulators of the GABAAR) [35]. Several studies suggest that upregulation of 
GABABR activity may serve as a homeostatic mechanism to regulate the sensitivity of GABAARs to 
ethanol [36–38]. Therefore, modulation of the N100 potential likely reflects the complex mechanisms 
through which ethanol exerts its pre-and postsynaptic effects via GABABRs and GABAARs, 
respectively. To our knowledge, no study has assessed the influence of alcohol intake on the 
amplitude of the N45 potential. However, given that the N45 potential is reflective of GABAAR 
activity similar to SICI [35], this may suggest that alcohol intake would reduce the N45 potential. 
Finally, SICF is reduced following ethanol consumption [22]. This suggests that ethanol exerts its 
effects at the level of I-wave generating interneurons, which are thought to be regulated by 
GABAergic mechanisms [39]. 

Alcohol reduced short-latency interhemispheric inhibition (SIHI) in healthy females, but not 
males [24]. This aligns with evidence that alcohol has a larger physiological impact in females. 
Females are more susceptible to alcohol-related cognitive impairments than males [40–43], likely 
because females reach higher peak blood alcohol levels than males even when adjusting for 
difference in weight [44]. Circulating levels of sex steroid hormones also interact with ethanol. 
Specifically, testosterone injection inhibits ethanol-induced impairments in spatial memory [45] and 
estradiol increases the sensitivity of dopaminergic neurons in the ventral tegmental area (VTA) to 
ethanol [46]. Therefore, future research investigating the effect of alcohol on TMS should consider 
the influence of biological sex. 

Summary 

In summary, findings from the TMS literature appear to indicate that acute intake of alcohol 
increases SICI and CSP, while reducing ICF, SICF, SIHI, and the TMS-evoked N100 potential (Table 
1). However, the acute administration of alcohol does not modulate MEP amplitude, and so does not 
appear to influence the corticospinal excitability. 

3.2. Chronic Effects of Alcohol 

Chronic alcohol exposure has the opposite effect of acute exposure characterized by a reduction in 
GABAergic neurotransmission and an increase in glutamatergic neurotransmission [9,10,47]. Chronic 
alcohol exposure reduces the sensitivity of GABAARs [48–50], the density of cortical GABAARs 
carrying α1-and α5-subunits [51,52] and blunts the effect of GABAAR agonists [37,53]. Furthermore, 
chronic alcohol exposure increases NMDA receptor-mediated excitatory post-synaptic potentials 
and glutamate release [19]. The dichotomy between the acute and chronic effects of alcohol may be 
due to physiological changes in the dopaminergic reward pathway that occur during the transition 
to chronic alcohol consumption [54]. Acutely, ethanol stimulates dopamine release in a 
dose-dependent fashion within the nucleus accumbens (NAc) [55–59]. Chronically, ethanol lowers 
circulating dopamine levels by increasing the rate of dopamine re-uptake in the NAc and the 
sensitivity of the D2 autoreceptor, which acts to inhibit dopamine release [60]. 

Alcohol-dependents exhibit reduced RMT, AMT, and MEPs compared to healthy controls [30,32]. 
In contrast, other studies report no chronic-related effects on RMT, AMT or MEPs [23,28,31]. 
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Importantly, Naim-Feil et al. [30] recruited participants on the basis that they had successfully 
completed a detoxification program within the past two years. This indicates that while thresholds 
are not altered in chronic alcoholics, the physiological changes resulting from detoxification induced 
changes in thresholds. However, it is unknown if and for how long these physiological changes 
persist beyond two years. 

In young adults who exhibited alcohol-dependence in adolescence, TMS-evoked N45 potentials 
were larger compared to controls [31]. This suggests an upregulation of GABAAR activity [35], which 
does not follow the expected chronic effects of alcohol [9,10,47]. Alcohol-dependence during a stage 
of development may have led to different physiological changes compared to the effect of 
alcohol-dependence in adulthood. 

Several studies have reported no difference in SICI between alcohol-dependents and controls, 
suggesting that chronic alcohol intake does not modulate GABAAR activity within M1 [23,28,30]. The 
underlying effect of alcoholism on different subunits of the GABAARs may explain why alcohol 
dependence leads to an increase in the N45 potential but no change in SICI, which are both 
modulated by GABAAR activity. The N45 potential is increased by agonists to the α1-subunit [35], 
while SICI likely reflects GABAARs with α2/3-subunits [33,61,62]. This may suggest that 
alcohol-dependence has a physiological effect only on specific subunits of the GABAAR (i.e., the α1 
subunit). LICI is reduced within the DLPFC of alcohol-dependents compared to healthy controls, 
which suggests hyperexcitability of the prefrontal cortex as a result of reduced GABABR activity [30]. 

The chronic effects of alcohol on SAI and LAI have yet to be investigated. Unlike SICI, SAI is 
likely modulated by GABAARs containing the α1-subunit [62]. Similar to SAI, LAI is also modulated 
by the GABAAR agonist lorazepam [63]. If chronic alcohol intake specifically alters functioning of 
GABAARs with the α1-subunit, it can be hypothesized that it would lead to an alteration in SAI and LAI. 

Chronic ethanol exposure does not have an effect on CSP [23,28,30]. However, these studies 
may have been underpowered to expose an effect due to the relatively small sample sizes used 
[23,28,30]. Individuals at high-risk for alcohol dependence exhibit shorter CSP and iSP [27], but no 
difference in RMT or the % maximum stimulator output (%MSO) to evoke a 1 mV amplitude MEP in 
comparison to low-risk individuals [29]. This suggests that those predisposed to alcohol dependence 
may have inherited an imbalance of excitation/inhibition. Future studies should investigate if these 
predisposed changes in physiology also lead to differential effects of acute alcohol intake on cortical 
function. Evidence for a potential effect comes from in vitro studies, where rodent strains bred for 
high ethanol sensitivity exhibit greater effects of ethanol on GABA-receptor chloride conductance 
compared to low-alcohol sensitive rodents [9,64,65]. 

One important consideration is the dependency on alcohol at the time of testing. Compared to 
both controls and chronic alcoholics, individuals with alcohol-withdrawal syndrome exhibit 
increased ICF [28], which may reflect hyperexcitability as a result of chronic exposure. However, 
there is no difference in SICI between controls and alcoholics when individuals are not tested during 
withdrawal [23,30]. Overall, the effects of chronic alcohol consumption appear to be dependent 
upon an individual’s physiological state at the time of testing. 

Summary 

Based on the findings reviewed herein, chronic alcohol consumption appears to modulate 
intracortical circuitry underlying SICI, ICF, SICF and CSP (Table 1). Overall, the effects of chronic 
alcohol consumption appear to be dependent upon an individual’s physiological state at the time of 
testing—whether individuals are alcohol-dependents with versus without withdrawal symptoms in 
adulthood, were previous dependents in adolescence, recently completed detoxification, or have a 
familial history of alcohol dependence. This widespread effect clearly demonstrates the considerable 
impact that long-term consumption of alcohol has on neurophysiology. 
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4. Cannabis 

According to the World Health Organization, ~2.5% of the global population consumes cannabis 
annually. Accompanying its legalization, the prevalence of cannabis use has risen by 15% in Canada [66] 
and 25% in the United States [67]. Long-term cannabis use is a risk factor for the development of 
schizophrenia [68] and neurocognitive impairments [69], and leads to structural changes such as 
increased cortical thickness [70–72] and cerebellar volume [73,74], and reduced hippocampal [75–77] 
and prefrontal cortex volume [77]. As such, it is essential to further our understanding of the impact 
that cannabis has on TMS measures. 

In the brain, cannabis exerts its effect on cannabinoid type 1 receptors (CB1Rs), which 
presynaptically modulate GABA, glutamate, dopamine and acetylcholine levels. Animal studies 
show that CB1R agonists enhance dopaminergic neurotransmission in the basal ganglia [78,79] and 
mesolimbic pathway [80], leading to a reduction in prefrontal cortical activity [80]. CB1R agonists 
inhibit the release of GABA from pyramidal neurons in the prefrontal cortex [81], hippocampus and 
the VTA [80,82–84], and reduce glutamatergic neurotransmission in the prefrontal cortex [85], 
hippocampus [86,87], and NAc [88]. Finally, cannabinoids reduce acetylcholine release in the 
prefrontal cortex and hippocampus [89,90]. 

In humans, acute administration of delta-9-tetrahydrocannabinol (∆-9-THC) increases striatal 
dopamine release [91–93]. Cannabis addiction follows the neurobiological model of addiction 
proposed by Koob and Volkow [94], marked by dysregulation of neural circuitry within the 
mesocorticolimbic dopamine system, amygdala and prefrontal cortex [95]. Chronic cannabis 
exposure leads to a reduction in dopamine synthesis capacity in the striatum [96,97]. GABABR agonists 
and GABA reuptake inhibitors enhance the symptoms from acute ∆-9-THC intake [98,99], and 
long-term cannabis use reduces GABAergic function in the anterior cingulate cortex (ACC) [100,101]. 
Cannabis users also exhibit reduced glutamate levels in the basal ganglia [102], prefrontal cortex 
[103] and ACC [100,101]. Overall, evidence from animal models and humans clearly demonstrates 
diverse neurobiological effects of cannabis across brain regions. 

The effects of cannabis on TMS measures can be seen in Table 2. In a case study with one 
participant comorbid for Tourette’s syndrome and attention deficit hyperactive disorder (ADHD), 
∆-9-THC increased CSP length and SICI but did not affect RMT or the stimulation intensity to evoke 
a MEP of 1 mV [104]. This suggests that ∆-9-THC modulates intracortical inhibitory circuits within 
M1. However, this was observed in a single participant and may not generalize to larger sample 
sizes. In addition, the patient studied was consuming additional medications, making it harder to 
interpret the results [104]. The acute effects of cannabis on TMS measures should be tested in future 
studies. 
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Table 2. Effects of cannabis on TMS measures. 

Study. AMT RMT MEP CSP iSP SAI LAI SICI ICF SICF LICI SIHI LIHI Notes 
Hasan et al. [104] – ○ ○ ▲ – – – ▲ – – – – – Acute intake 

Fitzgerald et al. [105] ○ ○ ○ ○ – – – ▼ ○ – ○ – – 
Heavy and light cannabis users vs. 

non-users 
Martin-Rodriguez et 

al. [106] 
○ ○ ○ – – – – ▼ – – – – – CUD and daily cannabis users vs. 

non-users 

Wobrock et al. [107] – ○ – – – – – ▼ ▲ – – – – Schizophrenia cannabis users vs. 
non-users 

Flavel et al. [108] – ○ ○ ○ – – – – – ○ ○ – – Cannabis users vs. nonusers 

Goodman et al. [109] 
– ○ – ○ – – – ▲ ○ – ○ – – 

Schizophrenia cannabis users vs. 
non-users 

– ○ – ○ – – – ▼ ○ – ○ – – Control cannabis users vs. nonusers 

Russo et al. [110] ○ ○ ○ ○ – ○ ○ ▲ ▼ – – – – MS patients on 1 month of Sativex 
Leocani et al. [111] – ○ ○ – – – – ○ ○ – – – – MS patients on 1 month of Sativex 

Calabrò et al. [112] – – ▲ – – – – ▼ ▼ – – – – 
MS patients on 6 weeks of Sativex + 

gait training 
▲ increase; ▼ decrease; ○ indicates no change; – indicates did not assess; CUD: cannabis use disorder; MS: multiple sclerosis. 
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Fitzgerald et al. [105] reported that both heavy and light cannabis users show reduced SICI 
compared to controls, which has since been replicated [109]. Similarly, Martin-Rodriguez et al. [106] 
recently showed that SICI is reduced in daily cannabis users and participants with cannabis abuse 
disorder compared to healthy controls. This is in line with other research suggesting that cannabis 
inhibits GABAergic neurotransmission [80–82,100,101]. In contrast, Flavel et al. [108] reported no 
difference in SICI between cannabis users and non-users. Discrepancies between these findings may 
relate to methodological differences. Specifically, Flavel et al. [108] tested a sample of individuals 
who were comorbid for chronic use of alcohol in addition to cannabis, whereas the other studies 
controlled for comorbid alcohol abuse [105,106,109]. Furthermore, the sample size used in Flavel et 
al. [108] was likely underpowered to detect a group difference in SICI. Neither study reported a 
difference in RMT, MEPs, CSP, or ICF between users and non-users [105,106,108,109]. Furthermore, 
there were no reported group differences in AMT [105,106] or LICI [105,109]. These findings suggest 
that, within M1, long-term cannabis use modulates GABAAR, but not GABABR or NMDA receptor 
function. 

It is notable that all TMS studies showing an effect of cannabis abuse on SICI also reported that 
the cannabis group had significantly fewer years of education compared to controls [105,107,109]. 
The detrimental effects of cannabis on education outcomes may be influenced by other factors such 
as childhood adversity, family structure, and socioeconomic status [113,114]. It is currently 
unknown if intracortical inhibition is related to years of education, intelligence, or other 
sociocultural factors like socioeconomic status. Further longitudinal research is required to 
determine if education is a significant modifier of SICI. 

Other studies investigating the chronic effects of cannabis use have been conducted in 
participants diagnosed with schizophrenia, as one third of schizophrenia patients report using 
cannabis daily [115]. These individuals experience more severe psychotic symptoms in response to 
∆-9-THC [116], whereas the antipsychotic properties of cannabidiol (CBD) improves symptoms of 
schizophrenia [117,118]. Schizophrenia patients comorbid for cannabis abuse demonstrate increased 
ICF and reduced SICI compared to schizophrenia patients that do not use cannabis [107]. In contrast, 
Goodman et al. [109] reported that schizophrenia patients dependent on cannabis show increased 
SICI compared to non-users. This may be attributable to the inclusion of a sample of schizophrenia 
patients with a longer disease duration and a stricter criterion for defining cannabis abuse. 

Sativex, an oromucosal spray containing ∆-9-THC and CBD, is commonly administered to 
multiple sclerosis (MS) patients for pain relief. MS patients treated with Sativex show no change in 
AMT, RMT or MEPs [110,111], or sensorimotor excitability as shown by no change in SAI or LAI [110]. 
Russo et al. [110] showed that Sativex reduces SICI and increases ICF, while Leocani et al. [111] 
showed no change in SICI or ICF after Sativex treatment. 

In a recent study, Calabrò et al. [112] assessed the influence of cannabis on motor function 
following robot-aided gait training. Specifically, two groups of MS patients underwent 6 weeks of 
gait training along with administration of a THC:CBD oromucosal spray added onto ongoing oral 
antispastic therapy or oral antispastic therapy only. Those treated with THC:CBD demonstrated 
greater increases in MEP amplitude and greater decreases in SICI and ICF within the APB muscle 
following gait training. However, when obtained from the tibialis anterior (TA) muscle, a similar 
magnitude of MEP increase, SICI and ICF decrease were observed in both groups following gait 
training. These changes in cortical and corticospinal excitability were also accompanied by changes 
in function. Specifically, those treated with THC:CBD showed greater improvements in muscle 
stiffness, functional independence, ambulation, quality of life, and global disability following gait 
training compared to the group not treated with THC:CBD. Therefore, these results show that 
cannabis administration can potentiate rehabilitative outcomes following motor training. 

Summary 

Overall, chronic cannabis use appears to have no effect on corticospinal excitability but does 
impact SICI. Specifically, chronic exposure to cannabis consistently modulates SICI in healthy 
individuals and those diagnosed with schizophrenia. However, the effects of cannabis on other TMS 
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measures including SAI, LAI, SICF, IHI and iSP have yet to be investigated. In addition, there is a 
gap in the knowledge regarding the acute effects of cannabis, within both long-term users and 
non-users. 

5. Nicotine 

Nicotine induces an inward depolarizing current by acting on nicotinic acetylcholine receptors 
(nAChRs) on one of two binding sites: 𝛼4𝛽2 and 𝛼7-subunits [119]. Low doses of nicotine act on both 
binding sites, while higher doses act predominantly on 𝛼7-containing nAChRs due to the rapid 
desensitization of the 𝛼4𝛽2-containing nAChRs [120,121]. Acutely, nicotine-induced activation of 
nAChRs leads to depolarization of glutamatergic neurons expressing the 𝛼7-nAChRs and 
GABAergic neurons expressing non-𝛼7-nAChRs [122]. However, repeated nicotine exposure leads 
to the desensitization of non-𝛼7-nAChRs on GABAergic neurons with no significant desensitizing 
effect on 𝛼7-nAChRs on glutamatergic neurons [120,122]. This translates to net excitation of 
mesolimbic dopaminergic neurons [120,122]. However, the net result of nicotine on 
excitation/inhibition balance varies across brain regions [123], leading to inhibition or disinhibition 
of pyramidal neurons [124]. Chronic exposure also leads to reduced cortical perfusion [125], reduced 
microstructural integrity of cerebral white matter [126], and increased dendritic arborization within 
M1 [127]. 

TMS can be used to gauge the effects of nicotine on motor function, although the reported 
results are mixed (Table 3). In healthy non-smokers, acute nicotine intake had either not changed 
SICI and SAI [128] or increased SICI and SAI [129]. SAI is reduced by muscarinic antagonists [130] 
and increased by acetylcholinesterase inhibitors [131,132], demonstrating its involvement in the 
cholinergic system. Therefore, increased SAI following nicotine intake likely reflects the 
upregulation of nAChR activity, whereas increased SICI may reflect the nAChR-modulation of 
GABAergic neurotransmission [62]. Orth et al. [128] may not have shown a significant effect of 
nicotine on SICI or SAI because of the low dose of 2 mg nicotine that was administered, whereas 
Grundey et al. [129] administered a higher dose of 16 mg. Furthermore, nicotine was administered in 
the form of gum [128] compared to a nicotine patch [129]. Approximately half of the nicotine 
administered in gum form is absorbed, reducing its effectiveness as an intervention compared to a 
nicotine patch [133–135]. Regardless, these studies showed no effect of nicotine on thresholds, MEP, 
CSP, SICF or ICF in non-smokers [128,129]. 
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Table 3. Effects of nicotine on TMS measures. 

Study AMT RMT MEP CSP iSP SAI LAI SICI ICF SICF LICI SIHI LIHI Notes 

Grundey et al. [129] 
○ ○ ○ – – ▲ – ▲ ○ ○ – – – Non-smokers after acute intake 
○ ○ ○ – – ○ – ○ ▲ ○ – – – Smokers after acute intake 
○ ○ ○ – – ○ – ○ ▼ ○ – – – Smokers vs. non-smokers 

Orth et al. [128] 
○ ○ – ○ – ○ – ○ ○ – – – – Non-smokers after acute intake 
○ ○ – ○ – ○ – ○ ○ – – – – Tourette’s after acute intake 

Lang et al. [136] ○ ○ ▼ ▲ – ▲ ○ ○ ▼ – ○ – – Smokers vs. non-smokers 
Khedr et al. [137] ○ ○ ▲ ○ ○ – – – – – – – – Smokers vs. non-smokers 

▲ increase; ▼ decrease; ○ indicates no change; – indicates did not assess. 
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In smokers, acute nicotine intake also had no effect on MEPs [138,139]. Alternatively, acute 
nicotine intake increased ICF in smokers and did not modulate SAI or SICI [129]. These findings may 
be explained by the evidence mentioned above, where chronic exposure to nicotine may lead to the 
desensitization of non-𝛼7 nAChRs that modulated GABAergic neurotransmission, while 
glutamatergic neurotransmission remains elevated [120]. 

Relative to non-smokers, smokers exhibited no difference in thresholds [129,136,137], iSP [137], 
SICF [129], SICI [129,136], LAI or LICI [136], but did show increased SAI [129] and reduced ICF [129,136]. 
Studies have reported that MEPs in smokers are either elevated [129,137], reduced [136], or not 
different to controls [136,140]. Lavendar et al. [140] likely did not see an effect of chronic nicotine 
exposure on MEPs as they only tested the %MSO required to evoke a 1 mV MEP while Grundey et 
al. [129] showed that, across a range of stimulation intensities, smokers only exhibit elevated MEPs 
at high intensities of 150% RMT only. Similarly, Lang et al. [136] showed that resting MEPs obtained 
at 110%, 120% or 140% RMT were not different between groups, while only MEPs obtained during 
active contraction were reduced in smokers compared to non-smokers. Additionally, CSP is either 
increased [136] or not different from non-smokers [137,140]. Discrepancies across studies may be a 
result of the different contraction levels maintained during CSP acquisition, which varied from 30–
50% maximum voluntary contraction (MVC) [136], 50% MVC [137] or 10% maximum voluntary 
force (MVF) [140]. 

Summary 

Acute nicotine intake appears to modulate SAI and SICI in non-smokers with no effects on 
corticospinal excitability. In smokers, chronic nicotine exposure modulates corticospinal excitability, 
CSP, SAI and ICF compared to non-smokers. However, SICI, LICI, SICF, iSP and LAI appear to be 
similar between smokers and non-smokers. As such, screening for both recent and chronic nicotine 
intake is important to consider in future TMS research. 

6. Caffeine 

Health Canada recommends 400 mg/day as an upper limit for caffeine intake in adults, as 
moderate caffeine intake of 400 mg/day is not associated with toxicity or adverse health effects [141]. 
Nevertheless, caffeine is considered to be a psychostimulant, and is known to affect brain function 
even when consumed at levels below the recommended upper limits. At low doses (20–200 mg), 
caffeine enhances attention, reaction time, and motor coordination [142–145]. At high doses (250–500 
mg), caffeine increases unpleasant feelings of tension, irritability, and anxiousness, and reduces the 
amplitude of alpha and beta waves recorded with EEG [146]. 

Caffeine exerts its psychomotor effects by inhibiting adenosine receptors, specifically the A1 
and A2A receptor subtypes [147–149]. A1 receptors are expressed in the hypothalamus, 
hippocampus, basal ganglia, and cortex; A2A receptors are localized in the striatum, NAc and 
olfactory bulb [150]. Caffeine also induces a presynaptic increase in glutamate release and reduces 
miniature excitatory post-synaptic currents via the blockade of 
α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) ionotropic glutamate receptors 
[151]. However, it is unlikely that regular caffeine intake in humans would have a significant effect 
on glutamate ionotropic receptors, as this effect was found under extreme conditions of caffeine 
toxicity [151]. Research suggests dopamine’s involvement in eliciting the psychostimulant effects 
that follow caffeine intake. The motor and discriminative stimulus effects of caffeine are diminished 
when dopamine is depleted or when dopamine receptors are blocked [152,153]. Moreover, the 
presence of caffeine increases dopaminergic transmission, which is linked to an increase in arousal 
and motivation, coupled with enhanced serotonin release and increased post-synaptic serotonergic 
input [150]. 

The effect of caffeine on TMS measures are shown in Table 4. First, acute caffeine intake has no 
effect on threshold [154–158]. Multiple studies have reported no change in resting MEPs following 
caffeine intake, at intensities ranging from 100–150% RMT [154–161]. Bowtell et al. [162] also found 
no change in resting MEPs following caffeine intake, while MEPs obtained during maximal 
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contraction were potentiated by caffeine. However, Specterman et al. [163] found that 68 mg of 
caffeine increased resting MEPs from 30–90 min after intake. This effect was potentiated when 
participants were administered Lucozade, an energy drink containing 68 g of caffeine and 46 g of 
glucose. Notably, these finding were obtained from a small sample of four and six participants, 
respectively. Alternatively, caffeine has been demonstrated to potentiate post-exercise facilitation of 
MEPs on multiple occasions [158,159,161]. 
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Table 4. Effects of caffeine on TMS measures. 

Study AMT RMT MEP CSP iSP SAI LAI SICI ICF SICF LICI SIHI LIHI Notes 
Kalmar et al. 

[159] – – ○ – – – – – – – – – – Acute intake 

Orth et al. [154] ○ ○ ○ ○ – – – ○ ○ – – – – Acute intake 
Specterman et 

al. [163] 
– – ▲ – – – – – – – – – – Acute intake 

Cerqueira et al. 
[156] – ○ ○ ▼ – – – – – – – – – Acute intake 

de Carvahlo et 
al. [157] – ○ ○ ▼ – – – ○ ○ – ○ – – Acute intake 

Concerto et al. 
[158] 

– ○ ○ ○ – ○ ○ ○ ▼ – – – – Acute intake 

Hanajima et al. 
[160] – – ○ * – – – – – – – – – – Acute intake; * 

between-subject comparison 

Kalmar et al. 
[161] 

– – ○ * – – – – – – – – – – 
Acute intake; * trending 

increase after caffeine intake, 
but not significant 

Bowtell et al. 
[162] – – ▲ * ○ – – – – – – – – – 

Acute intake; * caffeine only 
potentiated MEPs obtained 
during maximal contraction 

Mesquita et al. 
[155] 

○ – ○ ▼ – – – ○ * ○ – – – – 
Acute intake; * SICI reduced in 
caffeine and placebo condition 

▲ increase; ▼ decrease; ○ indicates no change; – indicates did not assess; * refers to stipulations outlined in the right-hand column. 
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Acute caffeine intake has no reported effect on SAI and LAI [158], or SICI [154,157,158]. One 
study reported a reduction in SICI following caffeine intake, although a similar finding was also 
observed in the placebo condition [155]. This suggests that the change in SICI was not due 
exclusively to the effects of caffeine. 

Most studies have reported no effect of caffeine on ICF [154,155,157]. However, Concerto et al. [158] 
found a decrease in ICF after administration of a sugar-free energy drink, which contained caffeine as the 
main active ingredient. The authors attributed this effect to taurine, which is present within energy 
drinks in significant concentrations. Taurine is a free amino acid that modulates GABAAR activity 
[164,165] and glutamatergic neurotransmission [165–167]. In a follow-up study, Infortuna et al. [168] 
found that taurine alone was not capable of modulating ICF. The reduction in ICF reported by 
Concerto et al. [158] may be attributed to time of testing, as TMS measures were acquired 45 min 
following ingestion of the energy drink. Studies reporting no effect of caffeine on ICF performed 
testing at least 1 h following caffeine administration [154,155,157]. 

CSP is either reduced [155–157] or not affected by caffeine [154,158,162]. Studies reporting a 
decrease following caffeine intake obtained CSP at low TMS intensities of 110% RMT [156,157]. 
Alternatively, studies reporting no change in CSP used higher intensities of 120–175% AMT 
[154,162] or 150% RMT [158]. Indeed, Cerqueira et al. [156] showed that only CSP obtained at 110% 
RMT and not 150% RMT was reduced following caffeine intake. Mesquita et al. [155] revealed a 
reduction in CSP following caffeine intake at a higher intensity of 130% RMT, although this was 
acquired in the soleus muscle. CSP length increases with increasing TMS intensity [169]. It is possible 
that the neuromodulatory effects of caffeine are not capable of inducing a change in CSP at higher 
TMS intensities. 

Summary 

Based on these findings from the literature, caffeine does not appear to have a significant 
modulatory effect on motor thresholds, MEPs, SAI, LAI, SICI or LICI. However, studies acquiring 
CSP or ICF should consider restricting caffeine prior to testing. At present, it is unknown if caffeine 
leads to a change in interhemispheric measures of IHI or iSP, and it is currently unknown whether 
cortical excitability is different between habitual versus non-habitual coffee consumers. 

7. Current Gaps in Knowledge 

There are several notable gaps in the research reviewed. Notably, as seen in Table 1 through 
Table 4, the acute and chronic effects of recreational substances on several measures are unknown. 
For example, the acute and chronic effects of alcohol on measures such as LICI, LAI, SAI, IHI and iSP 
are unknown. Furthermore, the effects of chronic cannabis use on SAI, LAI, SICF, IHI and iSP have 
yet to be tested. Therefore, until further investigation can be undertaken, studies employing all of 
these TMS measures should screen participants for recent recreational substance use. 

The time-course of substance effects on TMS measures has not been thoroughly investigated. 
Future studies examining the effect of acute substance intake on TMS measures should include 
multiple post-intake measurements to determine how long the substance exerts an observable effect 
of motor physiology. Furthermore, it would also be useful to have information about blood plasma 
levels of substances over time, and how this related to TMS measures. For drugs consumed orally, 
the variability in gastric emptying due to food constituents in the stomach may contribute to 
variability in the time course of effects. 

In extension, the time course of variation in TMS measures within chronic substance users, 
users undergoing withdrawal, and those in recovery is unknown. Studies examining the effect of 
chronic exposure on TMS measures should include samples at different points of withdrawal or 
recovery to determine if and when motor function normalizes. For example, the studies reviewed in 
Table 4 instructed participants to refrain from caffeine intake for some time before TMS testing in 
order to better identify the effects of the administered caffeine dose. A side effect of prolonged 
abstinence from caffeine is the emergence of withdrawal symptoms [170]. It is unknown whether 
corticospinal or cortical excitability is altered during periods of caffeine withdrawal in habitual 
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coffee consumers. Concrete testing is needed to fully elucidate whether the physiological state of 
withdrawal or recovery has a differential impact on TMS measures compared to periods of chronic 
substance use. 

There has been limited investigation into the interaction between biological sex and recreational 
substance use on TMS measures. However, biological sex appears to be a determinant of the brain’s 
response to cannabis and nicotine. Female cannabis users have lower glutamate and glutamine 
levels in the dorsal striatum [171] and impaired frontal dopaminergic neurotransmission [172] 
compared to controls. Male cannabis users do not show this effect [171,172]. It is unknown whether 
differences in neurotransmitter profiles between male and female cannabis users are reflected within 
TMS outcome measures. Furthermore, females are less sensitive to nicotine [173] and are less 
responsive to nicotine replacement therapies [174]. This suggests that nicotine induces differential 
changes in physiological state between biological sexes. Future TMS studies should determine 
whether there is an interaction between acute or chronic nicotine or cannabis exposure and 
biological sex on outcome measures. 

Fitzgerald et al. [105] divided cannabis consumers into groups of light and heavy consumers, 
and showed that both groups experienced reduced SICI. This indicates that infrequent consumption 
can still lead to persisting changes in cortical excitability. However, the cross-sectional design of this 
study prevented the quantification of the average dose consumed by participants. Importantly, no 
studies have assessed the dose-dependent effects of substance use on TMS measures, except for 
Cerquiera et al. [156] who found that both 200 mg and 400 mg of caffeine reduced CSP. Therefore, 
future studies should examine the dose-response relationship between recreational substances and 
TMS metrics, which would more suitably tested with an intervention study. 

We can attribute 60–70% of the variance in nicotine dependence to genetic factors [175]. There 
are a number of molecular variants that have been linked to nicotine dependence [176]. For example, 
individuals expressing variations in CHRNA4, CHRNA5, and CHRNB4, which code for nAChRs 
subunits, exhibit greater nicotine dependence [177–179], greater number of cigarettes smoked per 
day [180,181], and increased vulnerability to smoking [182]. Studies should investigate if individuals 
expressing these variants, or variants related to dependence on other recreational substances, show 
altered cortical excitability relative to individuals expressing the wildtype alleles. 

Specifically related to cannabis research, an important consideration for future studies is the 
effect that different strains of cannabis have on neurophysiological function. The two main 
ingredients of cannabis are ∆-9-THC, the psychoactive component, and CBD, the non-psychoactive 
component. These components may have differential effects on brain function [183,184]. Specifically, 
∆-9-THC intake reduced striatal activation while CBD increased striatal activity during a word 
retrieval task [183]. ∆-9-THC and CBD had similar opposing effects on task-related amygdala, 
hippocampal, temporal and occipital activation [183]. Future studies should account for the 
differential effects of CBD and ∆-9-THC in TMS research. 

Substance abuse is often comorbid with other psychiatric conditions, as exemplified by the 
comorbidity of schizophrenia and cannabis use. Further, those with alcoholism may present 
comorbidities for depression [185], bipolar disorder [186], or Wernicke–Korsakoff syndrome [187]. 
Due to the prevalence of comorbidities in those with substance use disorders, it is important that 
future TMS studies assessing the chronic effects of recreational substances take care to screen 
participants for existing comorbidities. Furthermore, studies should also continue to assess the 
interactions between substance use and comorbid psychiatric disorders, and how this changes 
neurophysiological function. 

It is unknown whether the reliability of TMS measures is impacted by recreational substances. 
While intake of recreational substances did not significantly change TMS outcome measures in some 
cases, we cannot conclude that they had no effect on the variability of these measures. Finally, eight 
of the 21 intervention studies reviewed did not include a placebo control (see Table S1). As such, the 
results of these studies should be interpreted with caution. Future studies should continue to 
employ placebo-controlled and blinded study designs to increase outcome validity.  
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8. Conclusions 

According to the studies reviewed herein, both acute and chronic use of recreational substances 
appear to modulate the excitability of the motor system, reflected by a change in TMS outcome 
measures. Overall, we note that most studies suffered from a small sample size and did not report 
power or sample size calculations. Heterogeneity stemming from participant demographics and 
parameters used to acquire TMS outcome measures also limits our interpretation of these studies. 
However, the results do suggest that there is a need for future studies to take into consideration the 
history of substance use and to control for acute substance use at the time of testing. 

Although there is not enough information to provide definitive screening guidelines, our 
assessment of the literature suggests that this information can still be implemented in TMS screening 
tools. However, preliminary screening guidelines may include excluding participants with a history 
of chronic recreational substance use and acute use within the 24 h prior to testing, even though the 
influence of abstinence duration following intake still needs to be determined. Finally, the 
information provided in this review allows for a retrospective assessment of datasets demonstrating 
a causal effect of substance use on TMS measures. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-3425/10/10/751/s1: Table 
S1: TMS studies investigating the effects of recreational substance use. 
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