Supplementary Materials: Docetaxel Combined with Thymoquinone Induces Apoptosis in Prostate Cancer Cells via Inhibition of the PI3K/AKT Signaling Pathway

(i) Densitometry Readings/intensity Ratio (DU145)
Figure S1. Western blots and densitometry analysis of pro- and anti-apoptotic markers in DU145 cells. PCa cells were treated with thymoquinone (TQ), docetaxel (DTX), or their combination (TQ+DTX) in the presence or absence of PI3Ki and AKTi inhibitors for 48 h. An equal amount of protein (30 µg) was fractionated on 4–12% polyacrylamide gels and transferred to PVDF membranes. The band intensity of pro-apoptotic (BAX, BID), apoptotic (Caspase3), PARP, and anti-apoptotic (BCL-XL) protein were analyzed by (i) densitometry readings/intensity ratio, using ImageJ software (NIH) and were normalized to the corresponding GAPDH value; and (ii) immunoblots, respectively. The results were expressed in relative folds change.
(i) Densitometry Readings/intensity Ratio (C42B)
Figure S2. Western blot and densitometry analysis of pro- and anti-apoptotic markers in C4-2B cells. PCa cells were treated with thymoquinone (TQ), docetaxel (DTX), or their combination (TQ+DTX) in the presence or absence of PI3Ki and AKTi inhibitors for 48 h. An equal amount of protein (30 µg) was fractionated on 4–12% polyacrylamide gels and transferred to PVDF membranes. (i) The band intensity of pro-apoptotic (BAX, BID), apoptotic (Caspase3), PARP, and anti-apoptotic (BCL-XL) protein were analyzed by the densitometry readings/intensity ratio using ImageJ software (NIH) and were normalized to the corresponding GAPDH value; and (ii) immunoblots, respectively. The results were expressed in relative folds change.