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Abstract: A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the 

translational implications for putative epigenetic therapies targeted against them. Accumulating 

evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences 

on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self-

renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well-

established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has 

been documented in a variety of cancers, where the enzyme is, usually, associated with the more 

aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation 

of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that 

LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the 

literature on LSD1’s role in normal and cancer stem cells, highlighting the analogies of its mode of 

action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss 

current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 

inhibitors, as well as their future perspectives. 
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1. Introduction 

Epigenetic mechanisms, such as DNA methylation and post-translational histone modifications, 

regulate gene expression and hold a key role in reprogramming during normal development, as well 

as in sustaining tissue-specific transcriptional profiles. The epigenetic enzymes responsible for post-

translational histone modifications can be classified into three categories: The “writers” that add 

chemical groups to histone tails, the “erasers” that can remove them, and the “readers” that recognize 

specific histone modifications and mediate their functional outcome [1]. The “erasers” encompass the 

histone deacetylases and lysine demethylases, which mediate modifications of the local chromatin 

structure and, in this manner, participate in the epigenetic regulation of gene expression [1,2]. Recent 

studies indicate that non-histone substrates, such as DNA, RNA, or proteins, can also be targeted by 

the lysine demethylases, adding another level of complexity to their role in the regulation of vital 

cellular processes [2]. To date, about 20 human lysine demethylases have been identified, which are 

divided into two subfamilies, the flavin-dependent lysine-specific demethylases (LSDs) and the 2-

oxoglutarate-dependent Jumonji C-domain (JmjC) containing enzymes [2,3]. Members of the former 

group can demethylate only mono- or di-methylated lysine residues (see next Section 2), while the 

JmjC family members can also use tri-methylated lysine as a substrate [2]. The discovery of these 

enzymes has provided additional clues into the “puzzle” of the epigenetic regulation of several key 

biological processes, such as regulation of transcription, cell cycle, and cell fate determination [2,4]. 
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Numerous studies have revealed the important role of deregulation of epigenetic mechanisms 

in cancer [5]. Epigenetic alterations have been identified in all tumor types and, since they are 

potentially reversible, much effort has been directed towards the discovery of novel therapies that 

could restore the normal epigenetic landscape and related gene expression patterns [6]. During recent 

years, histone methylation has emerged as a pivotal player in gene regulation in cancer [7]. Several 

studies have highlighted the role of the histone lysine demethylases in the epigenetic regulation of 

cancer development and progression [2] and have portrayed them as promising therapeutic targets 

[3]. 

The lysine specific demethylase 1 (LSD1) was the first histone demethylase discovered [8] and it 

has a dual function acting both as a co-activator and a co-repressor (see below Section 2). Having 

been identified initially as a regulator of embryonic stem cells (ESCs) [9], its intense study in recent 

years has led to the delineation of its involvement in a range of physiological processes, including 

cell-cycle [10], metabolism [11], and epithelial-to-mesenchymal transition [12]. At the same time, 

LSD1 has attracted the interest of the cancer research community, since it is upregulated in numerous 

malignancies and especially in aggressive and poorly differentiated tumors [13–16]. Given the central 

role of LSD1 in stemness, it is plausible that aberrant gene expression resulting from LSD1 

dysregulation in cancer cells may be affecting pathways associated with a stem-cell phenotype. 

Indeed, a series of recent studies in various types of cancer have supported a primary regulatory role 

for the demethylase in cancer stem cells (CSCs), a small aggressive tumor subpopulation with unique 

properties. LSD1 has also emerged as an attractive therapeutic target; being an enzyme overexpressed 

in cancer, it is conceivable that its inactivation may contribute to a less malignant phenotype.  

Stem cells are present in every tissue irrespective of its developmental stage. Embryonic stem 

cells exist only at the early stages of development in the embryo and have the ability to differentiate 

towards all lineages [17]. Tissue-specific or adult stem cells appear during fetal development to 

support organogenesis and they remain in the body during adulthood with the ability to regenerate 

the tissue’s cell types [18]. Somatic cells can be reprogrammed epigenetically into induced pluripotent 

stem cells (iPSCs) that are considered equivalent to ESCs [19]. Rare tumor subpopulations with stem 

cell characteristics, such as self-renewal and capacity to differentiate, have been identified in most 

human neoplasias, and are known as CSCs [20].  

The demethylase LSD1 has been studied in all the above types of stem cells. The crucial role of 

LSD1 in mouse and human ESCs or iPSCs has been reviewed extensively elsewhere [21,22]. In this 

review we aim to provide a concise picture of the LSD1-regulated networks in normal tissue stem 

cells and their cancerous counterparts. To this end, we have surveyed the literature solely for stem 

and cancer stem cell research reports that involve LSD1. We also report on ongoing clinical trials 

testing LSD1 pharmacological inhibitors against hematological and solid cancers and discuss the 

potential of its targeting in CSCs as a new therapeutic intervention. 

2. LSD1, a Brief Overview 

The protein structure of LSD1 is highly conserved and is comprised of three major domains 

(Figure 1Α) [2,23]. The N-terminal Swi3p/Rsc8p/Moira (SWIRM) α-helical domain of LSD1 is 

different than other SWIRM domains in that it cannot bind DNA, but it participates in protein-protein 

interactions important for its function [24]. The C-terminal amine oxidase (AO)-like domain is 

involved in its enzymatic activity and consists of two lobes, that form a cavity, where demethylation 

takes place. The first lobe contains the FAD-binding motif, which is highly conserved among all 

monoamine oxidases. The FAD-dependent oxidation used by the enzyme for the removal of methyl 

groups depends on the lone electron pair of the lysine ε-nitrogen atom restricting LSD1 from 

demethylating trimethylated lysine residues (Figure 1Β). The second lobe forms the substrate binding 

sub-domain, which is larger in LSD1 than in other amine oxidases, allowing for the recognition and 

accommodation of the target methylated lysine as well as its neighboring residues [23]. In space, this 

second lobe is placed adjacently to the SWIRM domain forming a hydrophobic binding pocket that 

allows for further interactions with the substrates [23] and offers a structural base for the design of 

LSD1 inhibitors [25,26] The central Tower domain, which is not found in any other monoamine 
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oxidases, is composed of two anti-parallel helices and it protrudes from the AO domain, serving as a 

docking site for LSD1’s interacting protein partners. 

LSD1 exerts a context-dependent co-regulatory function in transcription (activation or 

repression) contingent on its association with distinct partners or multiprotein complexes (reviewed 

in [26]). When it is recruited by certain transcription factors, such as TLX, SNAILl, CtBP, and BRAF35 

or repressive complexes (NuRD, CoREST, RCOR2, or HOTAIR/PRC2), it demethylates the “active” 

H3K4me1/2 marks, leading to repression of gene expression [8,21]. When it is assembled in complexes 

with the androgen receptor (AR) [27] or estrogen receptor (ERa) [28], respectively, LSD1 can function 

as a transcriptional co-activator, demethylating the “inactive” H3K9me1/2 marks, and leading to 

expression of hormonally-regulated genes.  

As a result of the combinatorial retention of exons 2a and 8a, LSD1 has four isoforms, with the 

+8a containing ones being neuro-specific, meaning that they are expressed selectively in neuronal 

lineages (Figure 1) [29,30]. Interestingly, it was recently shown that the LSD1+8a isoform 

demethylates H4K20me1, promoting in this way the transcription of neuronal-specific genes, 

necessary for cognitive functions, like memory and spatial learning [31]. 

A recently recognized important function of LSD1 is the demethylation of non-histone proteins 

[21]. The first such substrate identified was the tumor suppressor p53, which, upon its demethylation 

by LSD1 at lysine 370, losses the ability to bind to 53BP1, resulting in abrogation of the pro-apoptotic 

p53-mediated transcriptional activation [34]. Other non-histone substrates include E2F-1, DNMT1, 

MYPT1, HIF-1α, and STAT3, linking LSD1 to several major biological processes, such as DNA 

damage response, apoptosis, global DNA methylation, and angiogenesis [10,35–38].  

 



Cancers 2019, 11, 1821 4 of 22 

 

  

Figure 1. The human lysine specific demethylase 1 (LSD1) enzyme. (A) The crystal structure of LSD1 

is depicted (image from Protein Data Bank, PDB-ID:2H94 [32,33]). (B) The demethylation reaction 

catalyzed by LSD1. The conversion of demethylated lysine to its monomethylated form is shown. (C) 

The four isoforms of human LSD1 are shown. The position of the three major domains, 

Swi3p/Rsc8p/Moira (SWIRM), Tower, and amine-oxidase like AOL (demethylase activity), is 

illustrated in the smaller, ubiquitous isoform of LSD1. The positions of exons 2a and 8a in the 

respective isoforms are shown in red. 

3. LSD1 as a Regulator of Tissue and Cancer Stem Cells 

The solid research results of a plethora of studies have established LSD1 as a critical regulator of 

normal hematopoiesis and neurogenesis, highlighting its involvement in the maintenance and proper 

differentiation of tissue stem cells. Consequently, in our review we discuss, in more detail, the 

findings on LSD1 functions in the stem cells of the healthy and cancerous hematopoietic and neuronal 

tissues, giving emphasis on the mechanisms, when these are known, and on the potential for 

therapeutic targeting of this demethylase.  
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3.1. LSD1 in Tissue Stem Cells 

3.1.1. LSD1 in Normal Hematopoietic Stem Cells 

An early study had reported the in vitro interaction of LSD1 with the GFI1/GFI1b transcription 

repressors that have a primary function in hematopoiesis [39]. More recently, Thambyrajah et al. 

elucidated the gene networks that were regulated by the transcriptional repressors GFI1 and GFI1b 

during embryonal hematopoiesis [40]. In mouse embryos, the first embryonic hematopoietic stem 

cells (HSCs) arise from the hemangioblasts, through an intermediate stage of rare endothelial cells 

that constitute the hemogenic endothelium, in a process called endothelial-to-hematopoietic 

transition [41]. At this developmental stage, Thambyrajah et al. found that GFI1/GFI1b transcription 

factors suppressed a large set of genes, enabling the completion of this transition that led to 

generation of the first HSCs and mature blood production [40]. A critical requirement for their action 

was the recruitment of both LSD1 and the repressive CoREST complex onto their target genes. 

Pharmacological inhibition of LSD1 phenocopied the effects of GFI1/GFI1b deficiency that impaired 

normal hematopoiesis, underscoring the significance of their interaction in this biological process 

[40]. 

This was also confirmed in adult, bone marrow-derived hematopoietic stem cells in vivo by two 

studies using distinct mouse models [42,43]. Sprussel et al. generated a shLSD1-based transgenic 

mouse model to investigate the in vivo effects of LSD1 knockdown in normal HSCs [42]. LSD1 

depletion was followed by severe impairment of hematopoiesis with extensive increase in 

granulomonocytic, erythroid, and megakaryocytic progenitors that could not reach terminal 

differentiation. This was due to de-repression of GfI1b in HSCs and progenitor cells (HSPCs, lineage-

committed precursors towards erythroid, megakaryocytic, and other lineages), and it was suggested 

that upregulation of the transcriptional repressor accounted for the failure of terminal differentiation 

of the above lineages [42]. In line with these results, there was a second report, where Lsd1 was 

conditionally inactivated in mice [43]. This study also showed that LSD1 was required for HSPC self-

renewal. Furthermore, LSD1 was indispensable for proper differentiation both at the early and late 

stages of the process. Deletion of LSD1 was associated with increased levels of H3K4me1/2 at the 

enhancers and transcription start sites of several stem- and progenitor-associated genes, leading to 

their de-repression. Interestingly, these gene expression networks involved specific Hox genes that 

control embryonic development. The gene expression changes were followed by severe defects in 

hematopoietic differentiation and terminal maturation, including the depletion of lineage-negative 

c-kit positive myeloid progenitor cells [43]. The authors suggested that this erroneous activation of a 

stem/progenitor cell signature interfered with proper differentiation, leading to impaired blood 

maturation. Of note, the work of Sprussel et al. [42] did not detect such a progenitor pool exhaustion, 

when they analyzed the long-term repopulating HSCs, however, this discrepancy might be due to 

the different silencing depth of the models used, i.e., LSD1-knockout [43] versus LSD1-knockdown 

[42]. 

Taken together, the above studies suggest that the activity of LSD1 is required in HSCs and 

HSPCs in order to finetune the balance between stem cell maintenance and differentiation 

(hematopoiesis). Dysregulation of these processes involving LSD1 is frequently observed in 

leukemias, as described later (3.2a).  

3.1.2. LSD1 in Neural Stem/Progenitor Cells (NSPCs) 

In both humans and mice, LSD1 is involved in neurogenesis through regulation of the Notch 

signaling pathway, which plays an essential role in the maintenance of neuronal stem cells (NSCs), 

and its inactivation induces their differentiation [44]. In cultures of human fetal neuronal stem 

progenitor cells (NSPCs), LSD1 activation epigenetically downregulated HEYL, a Notch target gene, 

and promoted neuronal differentiation [45]. In contrast, LSD1 inhibition led to suppression of 

neuronal differentiation and maintenance of an undifferentiated state through upregulation of HEYL 

gene expression [45]. Since Lsd1 null embryos died at d7.5 of embryonic development, the role of the 

demethylase in neurogenesis could not be deciphered in those animals [36,46]. However, Lopez et al. 
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successfully knocked down LSD1 and CoREST, through in utero electroporation, and revealed that 

their role was to suppress Notch signaling and to promote differentiation in the developing cerebral 

cortex [47]. Upon their loss, the levels of HES1, a direct Notch target, increased and those of, NGN2, 

a factor promoting neurogenesis, decreased, causing defects in neuronal differentiation and 

migration. These effects were rescued with concomitant inactivation of the Notch pathway [47]. 

Similar defects were also observed in pyramidal cortical neurons upon depletion of LSD1/CoREST 

[48].  

Another pathway in the developing brain that is affected by LSD1 is the sonic hedgehog (Shh) 

signaling pathway that has diverse functions depending on the region and developmental stage, and 

also regulates proliferation and differentiation of NSPCs [49]. In d13.5 mouse embryos, LSD1 

interacted with RCOR2 to form a co-repressor complex and epigenetically repress several genes of 

the Shh pathway, such as Shh and Dxl2, a step necessary for normal central nervous system 

development [49]. At the same developmental stage, Han et al. showed that LSD1 knockdown 

promoted cerebral cortical development and, in wild type embryos, the E3 ubiquitin ligase Jade-2 

facilitated LSD1 targeting for degradation [50]. The regulation of LSD1 levels in the developing 

mouse brain is also mediated via a feedback loop that involves mir-137, which is highly expressed in 

the brain and controls embryonic NSPC proliferation and differentiation [51], and TLX [52], an 

orphan nuclear receptor with essential role in NSPC self-renewal [53]. Mir-137 negatively regulated 

Lsd1 mRNA expression in embryonic NSPC, while itself was repressed by a complex of TLX with 

LSD1 [52]. Furthermore, LSD1 enhanced self-renewal and proliferation of ex vivo cultured NSPCs 

and of the mouse hippocampal dentate gyri brain region in vivo [54]. LSD1 was recruited, along with 

HDAC5, on the promoters of TLX downstream targets (such as p21 and PTEN) and repressed their 

expression [54]. Collectively, the above studies suggested that LSD1 was required for the self-renewal 

of NSPCs and its ablation led to premature differentiation and migration during embryonic mouse 

cortical development [47,48,50,52].  

In conditionally Lsd1 knockout rat embryos, Zhang et al. observed similar migration impairment 

and NSPC depletion [55], as others did in mice [47,49]. In that study, LSD1 was also shown to 

epigenetically repress atrophin 1 (ANT1), a protein related to the autosomal dominant neuronal 

degenerative disease dentatorubral-pallidoluysian atrophy, and, upon its loss, NSPCs could 

differentiate, an effect that was rescued upon ANT1 overexpression.  

Moreover, LSD1 is involved in neurosensory differentiation. In mouse inner ear progenitors, 

LSD1 interacted with PAX2 and recruited the NuRD complex to regulate PAX2 target genes, enabling 

the maintenance of multipotent optic progenitors prior to cell fate specification [56]. In the retina, 

LSD1 promoted terminal differentiation of the progenitor mouse rod photoreceptors through the 

epigenetic control of several genes, especially those regulated by HES1 and STAT3 and their 

downstream signaling [57]. LSD1 was shown to play an important role in the olfactory epithelium as 

well, as it was strongly expressed in the multipotent globose basal cells and during tissue 

regeneration after methyl bromide lesions [58].  

As discussed earlier, LSD1 has two neuro-specific isoforms (neuroLSD1), distinguished by the 

inclusion of the mini-exon 8a (Figure 1). In their discovery and characterization paper, Zibetti et al. 

also highlighted their important role in NSPCs [29]. In more detail, the LSD1+8a isoforms were 

expressed in all neuronal cells in rats and their levels fluctuated according to the developmental stage, 

with their predominance, over the other two isoforms, starting at the perinatal stage (d18.5) and 

lasting till post-natal day seven. Subsequently, they dropped to ~40% of total LSD1. During that 

period, neuroLSD1 seemed to control the timing of neurite morphogenesis, as its knockdown delayed 

neurite differentiation and its overexpression enhanced the premature formation of differentiated 

neurons. A few years later, the same group showed that phosphorylation of neuroLSD1 at threonine 

369 induced a conformational change that dissociated neuroLSD1 from its co-repressor partners 

(CoREST, HDAC1/2), relieving morphogenetic genes from their epigenetic repression, and, thus, 

inducing morphogenesis in cortical neurons [59]. Further in vitro mechanistic studies in cell lines and 

cultures of NSPCs shed more light into its mode of action. Neuro-LSD1 was regulated by far 

upstream-binding protein 1 (FUBP1), a single-strand DNA- and RNA-binding protein [60], and was 
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capable to demethylate only H3K9me2 at target genes, and this occurred in collaboration with 

supervillin (SVIL) [61].  

In summary, the above studies provide strong evidence that LSD1 holds a major part in fetal 

neuronal development. It regulates key developmental pathways, like Notch or Shh, and contributes 

significantly in stem cell maintenance, as well as in the timely differentiation and migration of 

neuronal precursors. Moreover, its spatiotemporal activity, during major morphogenetic events, is 

enhanced through the expression of the neuroLSD1 isoforms in certain developmental stages. 

3.1.3. LSD1 in Other Normal Stem Cell Types 

Even though it is best studied in the hematopoietic and neuronal systems, LSD1 has emerged as 

a broader regulator of tissue stemness and differentiation, as recent reports indicate. In brief, LSD1 

was implicated in spermatogenesis [62,63] and adipogenesis [64,65], while its loss promoted 

differentiation of mesenchymal stem cells towards bone or liver [66–71]. In a different context, LSD1 

was required by the satellite cells (stem cells of muscle) for myogenic regeneration after injury [72] 

or for proper myoblast differentiation [73].  

All of the studies described above emphasize the prominent role of LSD1 in the maintenance of 

stemness and in the process of differentiation of normal stem cells. LSD1 loss attenuates the stem-cell 

pool both in the hematopoietic and neuronal lineage, but it abrogates terminal differentiation of the 

former one, while it promotes differentiation of the latter. Remarkably, the opposing regulatory 

functions of the enzyme exerted upon different sets of genes coordinate the desired physiological 

outcome at each developmental stage in a tissue-specific manner. We can speculate that this is 

achieved through the variable interacting partners of LSD1 that guide the enzyme to different target 

genes regulating cell fate. 

3.2. LSD1 and CSCs 

According to the cancer stem cell model, tumors are organized in a hierarchy, where the CSCs 

lie at the apex, capable of maintaining a stem-cell pool and generating more differentiated cells that 

form the bulk of the tumor [74]. This process draws analogies to that of normal tissue development, 

and there is a growing consensus that it is also driven by epigenetic mechanisms [75]. Notably, CSCs 

are attributed with increased resistance to conventional treatments and thus, they are considered to 

promote cancer recurrence and metastasis [76]. Several studies now implicate the unique chromatin 

state of this subpopulation in their particularly malignant properties [77–79].  

In the studies described next, we aim to underline the role of LSD1-dysregulated pathways in 

maintaining the tumor stem cell compartment and, in this way, fueling tumor growth. LSD1 has been 

extensively studied in leukemic and, recently, in glioblastoma SCs, and the emerging pattern is that 

the demethylase “locks” CSCs in an undifferentiated, therapy-resistant state. In other solid tumors, 

LSD1 seems to have a similar action, and recent reports have started clarifying the underlying 

mechanisms. Key findings of the studies discussed are summarized in Figure 2. 
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Figure 2. LSD1 regulates CSC properties. Key processes of CSCs are maintained and/or promoted by 

the function of LSD1 (shown in green circles) in the depicted types of cancer. Depletion of the enzyme 

affects stemness-related characteristics (shown in red circles). LSCs: Leukemic stem cells, GSCs: 

Glioblastoma stem cells, HCC-CSCs: Hepatocellular carcinoma CSCs, and b-CSCs: Breast CSCs 

(downward arrow: Decrease, upward arrow: Increase). 

3.2.1. LSD1 in Malignant Hematopoietic Stem Cells 

Αn aberrant epigenetic landscape is a hallmark of several leukemias [80–82]. Acute myeloid 

leukemia (AML), the most common acute leukemia, is a prime example with recurrent mutations in 

several genes encoding epigenetic enzymes (e.g., methylcytosine hydroxylase TET2, histone H3K27 

methyltransferase EZH2, DNA methyltransferase DNMT3A) or repeated chromosomal 

translocations involving the H3K4 methyltransferase mixed lineage leukemia 1 (MLL1) [80–82]. LSD1 

is not found mutated, but it is, frequently, overexpressed in myeloid, lymphoid, and 

myeloproliferative neoplasms [83], suggesting that it contributes in the pathogenesis of the disease. 

Several studies have supported the idea that this is achieved by enabling leukemic stem cells (LSCs) 

to maintain stemness, while preventing their differentiation, cell cycle arrest, and apoptosis (Figure 

2).  

In one of the earliest reports, Harris et al. demonstrated that LSD1 was indispensable for the 

maintenance of LSC potential and it was essential in sustaining an oncogenic gene expression 

program necessary for tumor progression in mouse models carrying the MLL-AF9 oncogenic fusion 

[84]. Downregulation of this oncogenic program in LSD1-knockdown LSCs was followed by 

initiation of myeloid differentiation. Interestingly, LSD1 pharmacological inhibition phenocopied the 

knockdown effects in human patient AML cells and murine models, and it also prevented the 

establishment of the disease, upon murine MLL-AF9 AML cell transplantation into sub-lethally 

irradiated CD45.1+ congenic mice [84]. In line with these results, a recent work by Cusan et al. showed 

that LSD1 inhibition induced global accessibility onto dynamic sites of chromatin and occupancy by 

the myeloid transcription factors PU.1 and C/EBPα in murine MLL-F9 cells, leading to premature 

developmental arrest at the stage of granulocyte-macrophage progenitor [85]. Both of these studies 

[84,85] underlined the fact that LSD1 attenuation released LSCs from this “premature” differentiation 
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arrest and sensitized them to anti-cancer treatments with promising results. Likewise, Schenk et al. 

showed that LSD1 inhibition resensitized AML cell lines or primary samples of non-acute 

promyelocytic leukemia AML to ATRA treatment by re-activating the all-trans-retinoic acid 

differentiation pathway, a therapeutic regimen that is usually ineffective in these types of leukemias 

[86].  

It is noteworthy that the positive outcome of the pharmacological inhibition of LSD1 in 

leukemias may not be due to the inactivation of its enzymatic activity. Recent evidence suggests that 

certain inhibitors block the interaction between LSD1 and GFI1 and that the AML cell survival is 

independent of the LSD1 demethylase activity [87,88]. Maiques-Diaz et al. and Vinyard et al. 

supported this claim by using distinct experimental approaches [87,88]. The former observed that 

both LSD1 and the LSD1-K661A mutant (demethylase dead mutant) could interact with GFI1 and 

repress a set of enhancers, co-occupied by GFI1, LSD1, and RCOR1. These enhancers controlled key 

regulatory genes of monocyte/macrophage differentiation, such as IRF8, KLF4, and MEF2C, which 

were bound by the PU.1 and CEBPA transcription factors. In addition, LSD1 inactivation by the OG86 

inhibitor disrupted this interaction in MLL translocation bearing AMLs, leading to activation of 

regulated genes within hours [87]. Vinyard et al. developed the CRISPR-superior scanning technique 

and mapped the effective structure-activity relationships (SARs). In other words, they mapped the 

mutations in the LSD1 gene that gave survival advantage to AML cells upon LSD1 inhibitor 

treatment, in order to gain insights into the connective links between mutation, protein function, and 

small molecule structure, in an effort to elucidate the mechanisms that LSD1 inhibitors use in AML 

[88]. They, too, concluded that LSD1’s enzymatic action was not advantageous to the AML cells, but, 

it was rather the interaction of LSD1 with the transcriptional repressors GFI1 and GFI1b that 

promoted the disease [87,88]. These findings were in agreement with Cusan et al. ([85], see above) 

and were also supported by the results of Maes et al., who found that, upon pharmacological LSD1 

inhibition, in human AML cell lines, activation of certain genes associated with 

macrophage/monocytic differentiation, like S100A12, ANXA2, and LY96, preceded detectable 

changes in local histone marks or global H3K4me2 levels, leading to blast differentiation and reduced 

self-renewal and growth [89]. Finally, another report in acute erythroid and acute megakaryoblastic 

leukemia pointed towards this direction, which showed that the LSD1 inhibitor T-3775440 acted by 

disrupting the LSD1-Gfi1b interaction in vitro, leading to growth inhibition and differentiation; 

however, the authors did not address the role of LSD1’s demethylase activity in the process [90].  

As discussed earlier, there are 4 LSD1 isoforms (Figure 1) with two of them being neuro-specific 

[29]. Wada et al. tried to determine the contribution of each isoform into the regulation of HSCs and 

LSCs and gauge the potential of LSD1 overexpression to drive malignant transformation [91]. Their 

results demonstrated that the shorter LSD1 isoform contributed to the enhanced stemness and self-

renewal of HSCs and progenitor cells, while the neuro-specific isoforms were absent from both 

normal and transformed hematopoietic cells. Moreover, they found that the levels of LSD1 in normal 

HSCs were markedly lower than in LSCs. Finally, overexpression of the shorter LSD1 isoform 

upregulated several genes (including genes of the Hox family and Gfi1b) and suggested that it acted 

in vivo as a “founder abnormality” by driving HSCs out of quiescence and to their expansion and by 

generating preleukemic HSCs that were primed towards the T-cell lineage. These preleukemic HSCs 

were prone to develop T-cell lymphoblastic leukemia/lymphoma in a transgenic mouse model upon 

a second hit, such as γ-irradiation, although they admitted that, upon a different second hit, an 

alternative outcome may arise [91].  

As is the case with their normal equivalents, LSCs require the activity of LSD1 for stemness 

maintenance but, here it also sustains their tumorigenic potential and/or drug resistance. Thus, the 

pharmacological inhibition of LSD1 either targeting its enzymatic activity or its interaction with other 

important factors provides a novel, highly promising, therapeutic approach, as also discussed later. 

3.2.2. LDS1 in Glioblastoma Stem Cells 

Glioblastoma, the most common brain cancer in humans, is one of the deadliest human cancers 

and is considered incurable, despite all efforts and aggressive treatment schemes [92]. Glioblastoma 
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cells harbor numerous genetic aberrations, but the main driving force behind tumor progression and 

lethality is suggested to be the CSC-subpopulation [93]. The role of LSD1 in these cells has only 

recently been investigated and has turned out to be a critical one for their maintenance (Figure 2). 

In one of the first studies in the field, Suva et al. identified a core set of neurodevelopmental 

transcription factors—POU3F2, SOX2, SALL2, and OLIG2—that could reprogram the bulk of 

differentiated glioblastoma cells to induced stem-like tumor propagating cells [94]. Notably, RCOR2, 

an interacting partner of LSD1, was shown to be a target of these transcription factors and it could 

replace OLIG2 in the reprogramming cocktail. Knock-down of LSD1 in tumor propagating cells led 

to reduced cell survival, almost complete abolishment of their self-renewal capacity in vitro and loss 

of tumorigenicity in vivo. On the other hand, it had no effect on the proliferation or viability of 

differentiated glioblastoma cells. Similar results were obtained when normal human astrocytes, 

tumor propagating cells and differentiated glioblastoma cells were treated with S2101, a synthetic 

LSD1 inhibitor, which selectively affected only the cell viability of tumor propagating cells, 

suggesting that LSD1 could be a putative therapeutic target in tumor stem-like cells in glioblastoma 

patients [94].  

The results of Sareddy et al., who investigated two LSD1 inhibitors (NCL-1 and NCD-38), also, 

pointed towards this direction [95]. They showed that LSD1 was overexpressed in glioblastoma stem 

cells (GSCs isolated from primary specimens and its inhibition reduced their self-renewal potential 

and viability in vitro, while it induced apoptosis and differentiation. The two inhibitors also reduced 

tumor growth in a mouse model of glioblastoma and specifically the NCD-38 improved overall 

survival. To provide a mechanism for the action of the LSD1 inhibitors, the authors examined the 

gene expression profile of treated GSCs and discovered induction of genes of the unfolded protein 

response (UPR) pathway, which is responsible for the protection of cells from hazardous misfolded 

proteins and protein aggregates. They suggested that UPR activation might be implicated in the 

phenotypic effects of LSD1 inhibition in GSCs, without, however, further substantiating their claim 

[95].  

Repression of BMP2 and CDKN1A has been reported to be essential for stemness maintenance 

of GSCs [96,97]. Two studies uncovered different mechanisms that LSD1 utilized to silence these 

genes and suppress differentiation [98,99]. In the first study [98] they showed that increased nuclear 

levels of the β isoform of glycogen synthase kinase 3 (GSK3β) were responsible for the stabilization 

and accumulation of LSD1 by mediating its phosphorylation, a prerequisite for its binding and 

subsequent deubiqitination by ubiquitin-specific protease 22 (USP22). Stabilized LSD1 repressed the 

expression of BMP2, CDKN1A, and GATA6, which in turn promoted the stemness and tumorigenicity 

of GSCs in vitro and in vivo, respectively. The GSK3β-USP22-LSD1 axis was validated in a cohort of 

clinical specimens from Grade IV GBM patients, where all three proteins showed increased levels of 

nuclear expression, significantly higher than their levels in a set of low-grade astrocytomas [98]. In 

the second study [99] the authors demonstrated that LSD1 participated in a co-repressor complex 

along with TLX and RCOR2 that was recruited by the SWI/SNF chromatin remodeling complex 

through the DPF1 and DPF3 adaptors [99]. A series of in vitro and in vivo experiments convincingly 

showed that this multi-protein complex played a major role in maintaining the stemness and 

promoting the tumor-initiating capacity of GSCs, probably through the repression of BMP2 and 

CDKN1A. 

The above studies describe a prominent loss of stemness, induction of differentiation and 

apoptosis and/or blockade of tumorigenicity as the key outcomes of LSD1 attenuation in GSCs. These 

are remarkable results especially considering that glioblastoma is fueled by the pool of cancer stem 

cells. Targeting these cells through LSD1 inhibition emerges as a promising therapeutic tool against 

a largely untreatable human cancer with a strong aberrant genetic profile.  

3.2.3. LSD1 in Hepatocellular Carcinoma Stem Cells 

Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies 

worldwide. The work of Lei et al. provided the first evidence that the LGR5+ HCC cells possess all 

typical CSC properties, including increased drug resistance [100]. LGR5+ cells, isolated from biopsies 
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or cell lines, expressed higher levels of LSD1, which enhanced stemness by inducing the expression 

of key stemness genes, like SOX9, NANOG, LGR5, CD90, and CD24. On the other hand, LSD1 

inhibition attenuated the expression of the aforementioned genes and the self-renewal and drug 

resistance potential of HCC-CSCs. Further mechanistic insights were provided when the β-catenin 

repressors (namely Prickle 1, APC, and Sfrp5) were identified as LSD1 targets. It was, thus, proposed 

that the β-catenin pathway was activated by LSD1 and regulated the stemness and chemoresistance 

of hepatic LGR5+ CSCs [100]. In a later study, the pharmacological inhibition of LSD1 in sorafenib-

resistant HCC cells was investigated both in vitro and in vivo [101]. LSD1 inhibition downregulated 

the Wnt pathway through derepression of its upstream negative regulators, mentioned above, 

leading to reduced stemness and resensitization to sorafenib and providing a potential therapeutic 

approach [101]. 

More recently, Liu et al. confirmed several of the above results, including the contribution of 

high LSD1 levels to stemness and tumor growth, in a differently isolated HCC-CSC population 

(based on Nanog levels) [102]. Moreover, they investigated the regulation of LSD1 in HCC-CSCs and 

provided evidence that Notch signaling induced SIRT1 expression leading to LSD1 deacetylation, 

activation and stabilization. Finally, they provided in vivo evidence that the tumor 

microenvironment—through activated cancer-associated fibroblasts—stimulated Notch3 signaling, 

which, in turn, enhanced LSD1 expression to facilitate tumor growth [102].  

Taken together, the above findings verify the prominent role of LSD1 in promoting stemness 

and chemoresistance in HCC-CSCs and highlight the promising therapeutic response upon its 

pharmacological inhibition (Figure 2). Of particular note is the last report [102], which calls attention 

to the fact that the contribution of the tumor microenvironment in the progress of HCC strongly 

involves the induction of LSD1 expression. 

3.2.4. LSD1 in Breast Cancer Stem Cells 

Breast cancer is a frequent malignancy in the female population, strongly associated with 

increased mortality [103]. Although LSD1 has been extensively investigated in breast cancer, little is 

known about its role in breast CSCs (b-CSCs) (Figure 2).  

In contrast to the interplay of USP22 with LSD1 in GBM [98], breast cancer cells utilize USP28 to 

stabilize LSD1 through deubiqutination [104]. Wu et al. showed that the USP28-LSD1 axis in b-CSCS 

led to enhanced self-renewal and mammosphere formation in vitro, as well as increased tumor 

growth in vivo [104]. Interestingly, LSD1 was found to epigenetically regulate the expression of 

differentiation-related genes (like p21Cif/Waf1, Hnf4, HoxA10, and FoxA2) by directly silencing their 

promoters, while its effects on stemness genes (like Sox2 and Oct4) was, rather, indirect [104]. In a 

recent report, the authors demonstrated that LSD1 knock-down nearly abolished the CD44+/CD24− 

CSCs in EMT-induced breast cancer cells [105]. They also offered preliminary evidence that LSD1 

was implicated in drug resistance, as they found it to be over-expressed in chemoresistant breast 

cancer cell lines and tumor cells that survived in mouse xenografts after prolonged docetaxel 

treatment and displayed increased levels of stemness genes, EMT regulators and resistance markers. 

Interestingly, combination treatment of mouse xenografts with the drug and an LSD1 inhibitor led to 

reduction of tumor volume [105]. Similar data on LSD1 regulation of b-CSCs and its therapeutic 

potential were also obtained by our group [106]. LSD1 knock-down and pharmacological inhibition 

impaired the stemness properties and significantly reduced the number of CD44+-CD24- CSCs in 

vitro. These results were also confirmed in mouse xenografts, where LSD1 inhibition reduced tumor 

growth and led to a significant decrease of the tumor CSC-subpopulation. Orthotopic 

xenotransplantation of shLSD1 breast cancer cells into mice failed to lead to tumor development, 

suggesting that LSD1 depletion severely affected the tumor-initiating capacity of CSCs. More 

interestingly, by in vitro manipulation of the LSD1 levels, we showed that it conferred increased 

chemoresistance to breast cancer cells. Using a 3D tumorsphere system, we also demonstrated that 

combined administration of an LSD1 inhibitor (2-PCPA or GSK-LSD1) and a conventional drug 

(doxorubicin or paclitaxel) had a synergistic effect and led to a significant reduction in their number, 

while it targeted the CSC-subpopulation [106]. 
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The positive contribution of LSD1 in EMT induction has been well characterized in a range of 

malignancies by several studies [12]. In breast cancer, LSD1 is recruited by either Snail or Slug to 

repress E-cadherin or BRCA1 and promote EMT and metastasis, and its phosphorylation at serine 

112 by PKCα is a crucial step in this process [107–110]. While investigating the role of UTX in b-CSCs, 

Choi et al. revealed that it co-operated with LSD1/HDAC1, in order to silence EMT-transcription 

factors, competing against the c-Myc/MLL4 complex [111]. In this study, the UTX expression levels, 

which are usually downregulated in cancers, were the critical factor for the negative regulation of 

EMT by LSD1. Specifically, UTX facilitated the binding of LSD1 onto EMT-transcription factor 

promoters, where MLL4 was consistently bound. When UTX levels were high, LSD1 was recruited 

and outcompeted MLL4-activating methylation leading to EMT repression, while low UTX 

expression prevented LSD1 binding and sustained EMT progression [111]. 

The above studies provide another prime example of the contribution of LSD1 in maintaining 

tumor subpopulations in an undifferentiated and chemoresistant state. As in previous cases, there is 

a persistent pattern that LSD1 inhibition can be of therapeutic value and, in combination with 

standard chemotherapeutic drugs, could provide a more effective alternative in the fight against 

breast cancer. 

3.2.5. LSD1 in Other Types of CSCs 

A limited number of studies have been performed in other types of CSCs, they confirm, 

however, the link between LSD1 and cancer stemness. In colorectal carcinoma, there is a positive 

correlation between the immunohistochemical expression of LSD1 with LGR5, an established stem 

cell marker of this tissue [112]. Stem cell derived tumors, such as embryonic carcinomas, 

teratocarcinomas and seminomas, are exceptionally vulnerable to LSD1 inhibition with severe 

growth impairment [113,114]. Moreover, in ovarian teratocarcinoma cells, LSD1 inactivation 

promoted CSC differentiation [115]. Finally, it was reported that LSD1 regulated the expression of 

SOX2, which controlled growth, differentiation and survival of a range of putative CSCs of breast, 

lung, prostate and ovarian origin [116].  

The studies described in this section provide compelling evidence for the contribution of LSD1 

in the maintenance of the tumor CSC-compartment, however, little is, still, known about the 

associated gene networks it regulates. The other valid argument put forth by these studies is the 

therapeutic value of LSD1 blockade (discussed next Section 4). Despite the intense research in the 

field of discovery of LSD1 pharmacological inhibitors, only recently have we started getting a better 

grasp of their therapeutic mode of action. It appears that disruption of the non-enzymatic function of 

LSD1 may be equally important as the inhibition of its demethylase activity in producing therapeutic 

effects both in leukemias [87,88] and in solid tumors [117,118]. 

4. LSD1 as a Therapeutic Target in Cancer Treatment 

Epigenetic dysregulation is now believed to be a hallmark of cancer [119] and numerous 

epigenetic inhibitors have been developed and have been undergoing clinical trials [120,121], in the 

hope of developing novel, more successful therapies. However, the first generation of epigenetic 

drugs (non-selective DNMT and HDAC inhibitors) were poorly effective in solid tumors and, also, 

highly toxic [121]. Since then, more active and selective ones have been produced and administration 

schemes have been optimized [120,121]. In more detail, novel DNMT inhibitors have become safely 

effective after dozing optimization in recent years [120,121]. The highly toxic, old HDAC inhibitors 

have been replaced by second generation ones with increased selectively, targeting distinct isoforms, 

since the toxicity of the initial ones was attributed to their broad activity across isoforms [120,121]. 

Preclinical and clinical studies suggest that combinatorial regimes, involving epigenetic drugs and 

conventional chemotherapy or immunotherapy, could produce an additive therapeutic outcome 

[83,120,121].  

Regarding LSD1 inhibitors, the FDA-approved anti-depressant Tranylcypromine was a broad 

monoaminoxidase (MAO) inhibitor [83,120–123]. Recent efforts have generated several derivatives 

of Tranylcypromine with reduced MAO-inhibitory activity and increased LSD1 specificity 
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[25,122,123]. Chemical modifications of the (±) trans-2-phenylcyclopropylamine (2-PCPA or parnate 

or tranylcyclopromine) scaffold has been used for the development of most of the LSD1 inhibitors 

under clinical evaluation (e.g., the N-alkylated 2-PCPA derivatives ORY-1001, GSK2879552 and ORY-

2001 shown in Tables 1 and 2). In addition, several other small molecules have been synthesized as 

potent LSD1 inhibitors and they have exhibited safer metabolic profiles in preclinical and clinical 

studies, such asthe SP-2577 (Seclidemstat) synthetic inhibitor [83,120–123]. The available structures 

and effectiveness/potency values of these LSD1 inhibitors are given in Figure 3. These inhibitors are 

currently used in clinical trials in hematological (Table 1) and solid cancers (Table 2) as discussed 

next Section 5. 

 

Figure 3. An overview of the available LSD1 inhibitors under clinical evaluation (data retrieved from 

[122,123] and tranylcypromine [124], ORY-1001 [89], GSK2879552 [125], and SP-2557 [126]). 

A paradigm of the therapeutic benefit that can be derived from the targeting of LSD1 emerges 

from the preclinical studies in leukemias discussed earlier. These findings underscore the need to 

block LSD1‘s function in LSCs as a means to achieve a better therapeutic response. Administration of 

LSD1 inhibitors as a monotherapy [84,85,87,90], or in combination with other epigenetic or anti-

cancer drugs [86,89] seem to yield promising therapeutic results. Interestingly, such schemes are now 

being tested in the clinic against various types of leukemias (Table 1). 

Table 1. List of clinical trials with LSD1 inhibitors in human blood and bone marrow malignancies 

[127–129]. 

Code Title Status Conditions Interventions 

DRKS00006055 

Phase I/II study of sensitization of non-M3 

acute myeloid leukemia (AML) blasts to 

all-trans retinoic acid (ATRA) by 

epigenetic treatment with 

tranylcypromine (TCP), an inhibitor of the 

histone lysine demethylase 1 (LSD1)   

Recruiting 

AML and 

Myelodysplastic 

syndrome 

TCP| ATRA| AraC 

EUCTR2013-

002447-29 

A phase I study of Human 

Pharmacokinetics and Safety of ORY-1001, 

and LSD1 inhibitor, in relapsed or 

refractory acute leukaemia (AL) 

Not 

Recruiting 

Refractory or 

Relapsed acute 

leukaemia  

ORY-1001 

EUCTR2018-

000482-36 

A pilot study to assess the safety, 

tolerability, dose finding and efficacy of 
Ongoing AML 

ORY-

1001|Etoposide| 
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ORY-1001 in combination with azacitidine 

in older patients with AML in first line 

therapy 

Carboplatin| 

Cisplatin   

NCT02717884 

Study of Sensitization of Non-M3 AML 

Blasts to ATRA by Epigenetic Treatment 

With Tranylcypromine (TCP) 

Recruiting 

AML and 

Myelodysplastic 

Syndrome 

TCP| ATRA| 

cytarabine 

NCT02842827 

IMG-7289, With and Without ATRA, in 

Patients With Advanced Myeloid 

Malignancies 

Completed 

AML and 

Myelodysplastic 

Syndrome 

IMG-7289| ATRA 

NCT03136185 IMG-7289 in Patients With Myelofibrosis Recruiting 

Myelofibrosis| 

PPV-MF| PET-

MF| PMF 

IMG-7289 

Similarly, in the solid tumor preclinical reports covered in this review, treatment schemes with 

LSD1 inhibitors alone [95,101,115] or in combination with other drugs [105,106,130] produced 

impressive results with therapeutic potential that is reflected in the long list of ongoing clinical trials 

in a range of human cancers (Table 2).  

Table 2. List of clinical trials with LSD1 inhibitors in human solid tumors [127–129]. 

Code Title Status Conditions Interventions 

NCT03514407 
A Study of INCB059872 in Relapsed 

or Refractory Ewing Sarcoma 
Recruiting 

Relapsed Ewing 

Sarcoma 
INCB059872 

NCT03600649 

Clinical Trial of SP-2577 

(Seclidemstat) in Patients With 

Relapsed or Refractory Ewing 

Sarcoma 

Recruiting Ewing Sarcoma SP-2577 

EUCTR2018-

000469-35 

A pilot study to assess the safety, 

tolerability, dose finding and efficacy 

ORY-1001 in combination with 

platinum-etoposide chemotherapy in 

patients with relapsed, extensive-

stage disease small cell lung cancer 

Ongoing 

Relapsed, 

extended-stage 

disease small cell 

lung cancer 

ORY-1001 

EUCTR2017-

002838-23 

Randomized, double-blind, placebo-

controlled, 3-arm, 36 weeks parallel-

group study to evaluate the safety 

and tolerability of ORY-2001 in 

patients with Relapsing-Remitting 

Multiple Sclerosis and Secondary 

Progressive Multiple Sclerosis  

Authorised 

Relapsing-

Remitting Multiple 

Sclerosis and 

Secondary 

Progressive 

Multiple Sclerosis  

ORY2001 

NCT03505528 

An Early Phase Study of Abraxane 

Combined With Phenelzine Sulfate 

in Patients With Metastatic or 

Advanced Breast Cancer 

Recruiting 
Metastatic Breast 

Cancer 

Nanoparticle 

albumin-bound 

paclitaxel| 

Phenelzine 

Sulfate 

NCT02712905 

An Open-Label, Dose-

Escalation/Dose-Expansion Safety 

Study of INCB059872 in Subjects 

With Advanced Malignancies 

Recruiting 

Solid Tumors and 

Hematologic 

Malignancy 

INCB059872| 

ATRA| 

azacitidine| 

nivolumab 

NCT03895684 

Phase 1 Trial of the LSD1 Inhibitor 

SP-2577 (Seclidemstat) in Patients 

With Advanced Solid Tumors 

Not yet 

recruiting 

Advanced Solid 

Tumors 

SP-2577 

Seclidemstat 

Since LSD1 depletion seems to affect the CSC pool, it is reasonable to assume that, at least part 

of the therapeutic effects observed in these clinical trials, are due to targeting of these cells. However, 

it should be pointed out that these clinical studies do not include functional assays that can assess 

this parameter yet. Similarly, in most of the pre-clinical studies on LSD1 inhibition [83,131,132] the 

outcome is usually evaluated through its bulk characteristics i.e., tumor growth/volume, survival, 

dosing, and toxicity, leaving the effect on the CSC content elusive, with a few exceptions [105,106]. In 
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our opinion, the solid findings provided by the basic research reports we presented herein prove that 

the regulation of CSCs by LSD1 is an important aspect of its role in cancer and it should be evaluated 

in all preclinical and clinical future studies.  

Irrespective to the exact molecular mechanisms, it is a fact that LSD1 inhibition suppresses 

disease progression and therefore, raises hopes for more effective cancer treatments. In this context, 

novel approaches and combinatorial schemes that involve LSD1 inhibitors are underway. For 

example, numerous novel inhibitors (called chimeric or hybrid) have been designed, so that single 

molecules can be directed against multiple targets [133]. This new class of epigenetic inhibitors 

includes the LSD1/HDAC hybrid inhibitors that target simultaneously LSD1 and HDAC1 or 

HDAC1/2[134–136]. Such drugs guarantee the combined effect at multiple targets in the very same 

cell, apart from the more favorable pharmacokinetic or pharmacodynamic parameters or their more 

predictable and less complex metabolism [133]. Other novel therapeutic approaches involve 

combinatorial treatment regimens that utilize epigenetic agents to prime the activity of the second 

agent [121]. As such, LSD1 inhibition in non- acute promyelocytic leukemia AML promotes myeloid 

differentiation, which facilitates an ATRA-driven therapeutic response [86], which, otherwise, was 

ineffective (see 3.2a). Remarkably, some of them have reached clinical evaluation (Tables 1,2).  

5. Conclusions 

Since the discovery of the epigenetic regulation of gene expression, a new level of complexity 

has emerged in numerous research fields, spanning from stem cell and developmental biology to 

cancer biology. Epigenetic mechanisms can reprogram a terminally differentiated cell to iPSC, or a 

healthy cell to a malignant one without permanent genetic alterations (e.g., pediatric tumors like 

ependymona [137]). Given the largely common biological background of healthy and cancerous 

tissues, the lessons learned from normal physiological processes, such as development, can be 

applied to the discovery of the deregulated pathways in malignancies. This review tried to emphasize 

this fact and to highlight the similarities of LSD1 function in healthy and malignant SCs, since their 

maintenance seem to be subject to common biological processes, albeit deregulated in the case of 

cancer. The general notion that LSD1 enhances stemness in normal stem and progenitor cells is fully 

preserved in CSCs, where the same genes/pathways are in play, but deregulated. For example, the 

interplay between LSD1 and the GFI transcription factors during normal hematopoiesis is also seen 

in leukemias. The TLX-LSD1/RCOR2 axis is functional both in NSPCs and GSCs, where it positively 

regulates stemness gene expression (Sox2, Oct4). Finally, the frequently promoting effect of LSD1 

inhibition on the differentiation of normal SCs is increasingly used as a therapeutic approach in the 

most undifferentiated and aggressive human malignancies (AML, glioblastoma, or HCC) 

[121,131,132] with promising preclinical outcomes, validating their entry into clinical trials (Tables 1,2). 
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