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Simple Summary: Myelodysplastic syndromes (MDS) are a group of diseases in which bone marrow
stem cells acquire genetic alterations and can initiate leukemia, blocking the production of mature
blood cells. It is of crucial importance to identify those genetic abnormalities because some of them
can be the targeted. To date only very few drugs are approved for patients manifesting this group
of disorders and there is an urgent need to develop new effective therapies. This review gives an
overview of the genetic of MDS and the therapeutic options available and in clinical experimentation.

Abstract: Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic
disorders characterized by ineffective hematopoiesis, progressive cytopenias and increased risk
of transformation to acute myeloid leukemia. The improved understanding of the underlying
biology and genetics of MDS has led to better disease and risk classification, paving the way for
novel therapeutic opportunities. Indeed, we now have a vast pipeline of targeted agents under
pre-clinical and clinical development, potentially able to modify the natural history of the diverse
disease spectrum of MDS. Here, we review the latest therapeutic approaches (investigational and
approved agents) for MDS treatment. A deep insight will be given to molecularly targeted therapies
by reviewing new agents for individualized precision medicine.

Keywords: MDS; HMA failure; targeted therapies

1. Introduction

Myelodysplastic syndromes (MDS) constitute the paradigm of clonal hematopoietic
disorders, characterized by abnormal bone marrow cell morphology, peripheral cytopenias
and an increased risk of evolution to acute myeloid leukemia (AML) [1,2]. Patient disease
course, incidence of progression and survival outcomes are highly variable, based on
genomic features, risk stratification, symptom burden and comorbidities.

A major hallmark of MDS pathophysiology is the acquisition of genetic aberrations in
hematopoietic stem cells and progenitors leading to abnormal cell proliferation and loss of
differentiation potential. Since the last two decades many progresses have been made in
dissecting the molecular pathogenesis of MDS.

The extensive sequencing of the genomes of large cohorts of MDS patients during the
last 10 years has exponentially increased the spectrum of possibilities to identify patterns
of somatic mutations shaping the clonal architecture of these disorders, and contributing
to distinct disease phenotypes, possibly impacting patient outcomes [3–5]. A number of
genes (e.g., splicing factor 3b subunit 1 (SF3B1) and ten-eleven translocation- 2 (TET2))
have been identified as recurrently mutated in primary MDS patients, playing a role in the
pathogenesis of the disease as driver mutations. Besides these, many other somatic hits
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(passenger mutations) have been found acquired in individual cells during life, albeit with
a different pathogenic potential [4,6].

Most of the frequent somatic driver hits occur in genes clustering in functional groups
pertaining to: DNA methylation, chromatin modification, signal transduction, cohesin
complex, RNA splicing, transcription and DNA repair pathways (Table 1) [4,5,7,8].

Table 1. Genes recurrently mutated in primary or secondary myelodysplastic syndromes (MDS).

Pathway/Functions Gene Name

DNA methylation TET2, DNMT3A, IDH1, IDH2

Histone modification ASXL1, KMT2, EZH2, SUZ12, JARID2, KDM6A, PHF6, EED, EP300

RNA splicing SF3B1, SRSF2, U2AF1, U2AF2, ZRSR2, SF1, PRPF8, LUC7L2, DDX41

Cohesin complex STAG2, RAD21, SMC3, SMC1A

Transcription factors RUNX1, ETV6, GATA2, CUX1 IRF1, CEBPA, BCOR

Signal transduction PTPN11, NF1, NRAS, KRAS, JAK2, MPL, KIT, FLT3, JAK2, CALR,
CSF3R, CBL

p53 pathway TP53, PPM1D

DNA repair ATM, FANCA-L, BRCA2, RAD51

Others NPM1, SETBP1, WT1
Abbreviations: TET2: Ten-eleven translocation-2; DNMT: DNA methyl transferase; IDH: Isocitrate dehydroge-
nase; ASXL1: ASXL transcriptional regulator 1; KMT2: Histone–lysine N-methyltransferase; EZH2: Enhancer of
zeste homolog 2; SUZ12: SUZ12 polycomb repressive complex 2 subunit; JARID2: Jumonji, AT rich interactive
domain 2; KDM6A: Lysine demethylase 6A; PHF6: plant homeodomain (PHD) finger protein 6; EED: Embryonic
ectoderm development protein; EP300: E1A binding protein P300; SF3B1: Splicing factor 3b subunit 1; SRSF2:
Serine/arginine-rich splicing factor 2; U2F1/2: U2 small nuclear RNA auxiliary factor1/2; ZRSR2: Zinc finger
CCCH-type, RNA binding motif and serine/arginine rich 2; SF1: Splicing factor 1; PRPF8: Pre-MRNA processing
factor 8; LUC7L2: LUC7 like 2, pre-MRNA splicing factor; STAG2: Stromal antigen 2; SMC3: Structural main-
tenance of chromosomes 3; RUNX1: Runt-Related Transcription Factor (RUNX) family transcription factor 1;
ETV6: ETS variant transcription factor 6; GATA2: GATA binding protein 2; CEBPA: CCAAT enhancer binding
protein alpha; IRF1: Interferon regulatory factor 1; BCOR: BCL6 corepressor; JAK2: Janus kinase 2; MPL: MPL
proto-oncogene; CALR: Calreticuline; CSF3R: Colony stimulating factor 3 receptor; PTPN11: Protein tyrosine
phosphatase non-receptor type 11; NF1: Neurofibromin 1; NRAS: neuroblastoma RAS viral oncogene homologue;
CBL: Cbl proto-oncogene; PPM1D: Protein phosphatase, Mg2+/Mn2+ dependent 1D; ATM: Ataxia telangiectasia
mutated; BRCA2: Breast cancer type 2 susceptibility protein; NPM1: Nucleophosmin 1; SETBP1: SET binding
protein 1; WT1: Wilms’ tumor gene; DDX41: DEAD-box helicase 41; FLT3: FMS-like tyrosine kinase 3; PD-1:
Programmed cell death 1; and CTLA4: Cytotoxic T-lymphocyte-associated protein 4.

The level of complexity increases in the case of patients with germline mutational
configurations associated with inherited bone marrow failure (BMF) disorders, (including
dyskeratosis congenita, Fanconi anemia, Down syndrome, RASopathies, severe congenital
neutropenia, Shwachman–Diamond syndrome, and xeroderma pigmentosum), or less
classical germline syndromes predisposing to myeloid neoplasms such as those associated
with inherited GATA binding protein 2 (GATA2), Sterile Alpha Motif Domain Contain-
ing 9/9 like (SAMD9/SAMD9L), RUNX family transcription factor 1 (RUNX1), CCAAT
enhancer binding protein alpha (CEBPA), ETS variant transcription factor 6 (ETV6), DEAD-
box helicase 41 (DDX41), or Ankyrin Repeat Domain 26 (ANKRD26) mutations [9–18].
In general, while the incidence of primary MDS is usually higher in elderly individuals,
MDS/AML related to the aforementioned disorders occur in younger patients, because
of the intrinsic increased genomic instability, facilitating the acquisition of new clonal or
subclonal mutations. [19,20] Specific acquired mutations may be associated with treatment
resistance (TP53 mutations) or disease progression (neuroblastoma RAS viral oncogene
homologue (NRAS), FMS-like tyrosine kinase III (FLT3), Wilms’ tumor gene (WT1), protein
tyrosine phosphatase non-receptor type 11 (PTPN11), isocitrate dehydrogenase (IDH1/2),
and Nucleophosmin 1 (NPM1) mutations) either in primary vs. inherited contexts, and
may be present before clinical changes become apparent [21,22]. Thus, monitoring patients’
genetic profile during the disease course may be helpful for clinical management, especially
in selected high-risk patients.
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Looking at the clonal architecture of MDS within an evolutionary perspective, different
patterns may be identified, depending on whether mutations are acquired linearly until
the selection of a clone with proliferative advantage (linear model), or by divergence of
a different set of subclones from a common ancestral, with the coexistence of partially
overlapping mutations (branching model) [8,23–25].

Many environmental forces may shape the complexity of this genomic landscape. For
instance, the selective pressure created by disease-modifying therapeutic interventions may
select for resistant or high-risk clones through a bottleneck effect and contribute to AML
transformation. Nonetheless, immune-related signatures may influence clonal selection,
and vice versa, certain mutations (e.g., EP300 and TP53) may be the cause of an altered
immune environment, impacting on disease progression and treatment resistance [26].

The deep understanding of the tremendous genetic complexity is opening many attrac-
tive treatment windows for patients with MDS. Here we aim to comprehensively discuss the
genetic landscape of specific molecular aspects and dig into molecular targeted therapies.

2. Therapeutic Strategies
2.1. Hypomethylating Agents

DNA methylation is one of the most affected pathways in MDS patients. DNA methyl-
transferase enzymes (DNMT1, DNMT3A, and DNMT3B) are responsible for the conversion
of cytosine to 5-methyl-cytosine (5 mC) by adding a methyl group at the C5 position of
cytosine [27]. Conversely ten-eleven translocation (TET) enzymes, TET1, TET2, and TET3
are necessary for demethylation, catalyzing the hydroxylation of 5 methylcytosine with
the production of 5-hydroxy-methyl-cytosine (5 hmC) [28,29]. Mutations affecting genes
encoding for those enzymes and, particularly DNMT3A and TET2, are highly frequent
in MDS and AML patients, denoting their key role in the pathogenesis of myeloid neo-
plasms [30,31]. Moreover, an altered epigenome due to aberrant methylation is present
regardless the presence of somatic mutations in epigenetic regulators, suggesting conver-
gent pathophysiologic mechanisms and the importance of this pathway in hematopoietic
development [31,32].

Hypomethylating agents (HMA) 5-azacytidine (AZA) and 5-aza-2′-deoxycytidine
(decitabine, DEC), are considered the standard of care for patients with MDS. Those
molecules, together with the new generation HMA 2′-deoxy-5-azacytidylyl-(3′-5′)-2′-
deoxyguanosine (guadecitabine, GUA), act as DNMT inhibitors and re-start DNA demethy-
lation by restoring the transcription of previously silenced genes [33].

AZA is a chemical analogue of the nucleoside cytosine exerting its antineoplastic
activity through the direct inhibition of DNA methyltransferase. In particular, at low
doses AZA generates hypomethylation while at high doses is cytotoxic because of its
incorporation into DNA and RNA. This latter phenomenon leads to the disassembly of
polyribosomes and inhibition of protein synthesis, causing apoptosis.

DEC is considered a prodrug analogous to cytosine, that is transported into cells
and subsequently phosphorylated to generate the active molecule 5-aza-2′-deoxycytidine-
triphosphate [33,34]. This molecule is then incorporated into DNA by DNA polymerase dur-
ing DNA replication, and inhibits DNMT1 through the formation of a covalent bond [35,36].
At low concentrations, the drug depletes DNMTs with the result of a global DNA hy-
pomethylation while at high concentrations, DEC generates double-strand breaks and cell
death (Figure 1) [32–34].

While in the U.S. AZA and DEC are approved for all MDS patients, in Europe HMAs
are approved only for high-risk categories and AML. Although both have been shown to be
able to delay progression to AML, only AZA has demonstrated a significant improvement
in overall survival (OS) in randomized trials compared to best supportive care [37–40].
However, subsequent data from both prospective and retrospective studies did not show
the same benefits, probably because of less rigorous patient selection and adherence to
treatment schedules and duration [41,42]. Overall, less than 20% of patients achieve a
complete response (CR) that in most cases is transient, with a variable duration (6 to 24
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months) [41,42]. Importantly HMAs may show their clinical effectiveness after a minimum
of six cycles of treatment at standard doses (AZA: 75 mg/m2 per day for 7 days at 4-week
intervals, or DEC: 20 mg/m2 per day for 5 days at 4-week intervals) while their early
discontinuation can lead to rapid loss of response also in patients who previously achieved
a complete remission [43–45]. Although, for eligible patients, allogeneic hematopoietic
stem cell transplantation (allo-HSCT) is ideally recognized as the only potentially curative
strategy, outcomes of this procedure remain dismal especially in higher risk categories after
HMA failure with high relapse and treatment-related mortality rates, thus limiting the
number of patients who can potentially benefit from this therapy [46,47]. In this context,
given the paucity of effective salvage therapies, HMA failure remains an unmet medical
need especially in patients with high-risk MDS.
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Figure 1. Principal targeted therapies available in MDS. Stylized pathways are also indicated. The arrow and connector style
indicate the type of molecular effect. Majority of targeted drugs have an antagonist effect and work inhibiting a more or less
specific enzymatic/proteic function. Exceptions are represented by erythropoietin stimulating agent (ESA) (agonists of
Erythropoietin (EPO) receptor, not discussed here in detail) and APR-246, the new p53-mutated targeted agent, able to refold
the aberrant protein restoring its transcriptional activity. For description of each mechanism of action see text. Figure created
with BioRender. Abbreviations: SIRPα: Signal regulatory protein alpha; ESA: Erythropoietin stimulating agent; TGFβ:
Transforming growth factor beta; IDH: Isocitrate dehydrogenase; HDAC(i): Histone deacetylases (inhibitor); Hh: Hedgehog
polypeptides; PTCH: Protein patched homolog; SMO: Smoothened; HMA: Hypomethylating agents; DNMT: DNA methyl
transferase; NAE: Neural Precursor Cell Expressed, Developmentally Down-Regulated 8 (NEDD8)-activating enzyme; GTP:
guanosine triphosphate; GDP: Guanosine 5′-diphosphate; FLT3: FMS-like tyrosine kinase 3; PD-1: Programmed cell death 1;
CTLA4: cytotoxic T-lymphocyte-associated protein 4; HIF: Fypoxia inducible factor; TERT: Telomerase reverse transcriptase;
and TERC: Telomerase RNA component.
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See Figure 2 for a proposed management in the era of genomics and new targeted
treatments. When possible, patients should be enrolled in prospective clinical trials. With
this in mind we will address when opportune at the end of the following sections the
hypothetical subcategories of patients who could benefit from the off-label use of each
agent, if not possible to include the patient in an investigational study.

Cancers 2021, 13 6 of 22 
 

 

 
Figure 2. Precision management of MDS in the era of genomics and new tailored treatments. Diagnostic and therapeutic 
algorithm of patients with MDS according to individualized approaches taking into account the Revised International 
Prognostic Scoring System (IPSS-R) and genomic data in the choice of targeted treatments. * Standard evaluation includes: 
Complete blood count (CBC), examination of peripheral blood smear, basic chemistry panel, serological tests for CMV, 
EBV, HIV, viral hepatitis, PB19, haptoglobin, serum erythropoietin, folate, serum ferritin, iron, TIBC, TSH, LDH, PNH 
clone, bone marrow cytomorphology, cytogenetics, flow cytometry. a AZA is currently approved in U.S. for all MDS and 
in Europe for high risk MDS; DEC is approved in U.S. for high-risk MDS/AML and in Europe for AML. $ Hypothetical 
benefit of telomere length assessment # Hypothetical benefit for gene testing and histone acetyltransferases. Abbreviations: 
MDS: Myelodysplastic syndromes, RS: Ring sideroblasts, TF: Transfusion, HDAC(i): Histone deacetylases (inhibitor); 
AZA: Azacitidine; DEC: Decitabine; PRMTs: Protein arginine methyltransferases; and allo-HSCT: Allogeneic stem cell 
transplantation; CMV: cytomegalovirus; Epstein-Barr virus, EBV; Human immunodeficiency virus, HIV; parvovirus, B19, 
PB19; Total iron binding capacity, TIBC; thyroid stimulating hormone, TSH; Lactate Dehydrogenase, LDH; Paroxysmal 
Nocturnal Hemoglobinuria, PNH; Dotted box indicate investigational drugs . 

2.2. New Generation HMA 
Guadecitabine (SGI-110) is a new generation HMA, rationally designed as DEC ana-

logue, resistant to deamination by cytidine deaminase, with a longer half-life compared 
to its previous cognates. Besides the direct effect on cancer-associated methylation pat-
terns, several in vitro and in vivo studies have shown its potential in sensitizing tumor 
cells to other anticancer treatments, including immunomodulatory agents [48–50]. 

Despite promising preclinical results and encouraging data from phase I/II tri-
als,[51,52] showing overall response rates (ORR) of 51% (22% CR) and 43% (4% CR) in the 
frontline and HMA-refractory setting, according to the preliminary results of two phase 
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algorithm of patients with MDS according to individualized approaches taking into account the Revised International
Prognostic Scoring System (IPSS-R) and genomic data in the choice of targeted treatments. * Standard evaluation includes:
Complete blood count (CBC), examination of peripheral blood smear, basic chemistry panel, serological tests for CMV,
EBV, HIV, viral hepatitis, PB19, haptoglobin, serum erythropoietin, folate, serum ferritin, iron, TIBC, TSH, LDH, PNH
clone, bone marrow cytomorphology, cytogenetics, flow cytometry. a AZA is currently approved in U.S. for all MDS and
in Europe for high risk MDS; DEC is approved in U.S. for high-risk MDS/AML and in Europe for AML. $ Hypothetical
benefit of telomere length assessment # Hypothetical benefit for gene testing and histone acetyltransferases. Abbreviations:
MDS: Myelodysplastic syndromes, RS: Ring sideroblasts, TF: Transfusion, HDAC(i): Histone deacetylases (inhibitor);
AZA: Azacitidine; DEC: Decitabine; PRMTs: Protein arginine methyltransferases; and allo-HSCT: Allogeneic stem cell
transplantation; CMV: cytomegalovirus; Epstein-Barr virus, EBV; Human immunodeficiency virus, HIV; parvovirus, B19,
PB19; Total iron binding capacity, TIBC; thyroid stimulating hormone, TSH; Lactate Dehydrogenase, LDH; Paroxysmal
Nocturnal Hemoglobinuria, PNH; Dotted box indicate investigational drugs.

2.2. New Generation HMA

Guadecitabine (SGI-110) is a new generation HMA, rationally designed as DEC ana-
logue, resistant to deamination by cytidine deaminase, with a longer half-life compared to
its previous cognates. Besides the direct effect on cancer-associated methylation patterns,
several in vitro and in vivo studies have shown its potential in sensitizing tumor cells to
other anticancer treatments, including immunomodulatory agents [48–50].



Cancers 2021, 13, 784 6 of 21

Despite promising preclinical results and encouraging data from phase I/II trials [51,52]
showing overall response rates (ORR) of 51% (22% CR) and 43% (4% CR) in the frontline
and HMA-refractory setting, according to the preliminary results of two phase III studies
(NCT02907359 and NCT02920008, respectively), it is premature to admit an impact of
guadecitabine in improving significantly the survival of MDS/chronic myelomonocytic
leukemia (CMML) and AML patients [53].

Several oral formulations of HMAs are in study in MDS and AML settings for both
minimizing patient discomfort and enabling a more effective pharmacodynamics. CC-
486 (oral AZA) has shown acceptable toxicity and effectiveness in patients with MDS
and in general myeloid malignancies, with response rates of up to 46% when given on a
21 out of 28-day schedule [54,55]. CC-486 has recently been approved by the Food and
Drug Administration (FDA) under the name of Onureg® as maintenance therapy in AML
patients in first remission after intensive induction chemotherapy [56]. This molecule is
currently in evaluation in ongoing trials as post-allo-HSCT maintenance (NCT04173533) or
for patients with low-risk MDS (NCT01566695).

ASTX727, also recently FDA approved (July 2020, under the name INQOVI®) in
patients with 1- and 2-intermediate and high-risk MDS and CMML, is a combination of oral
DEC and cedazuridine, a cytidine deaminase inhibitor that prevents the DEC deactivation.
Pharmacokinetics equivalence to intravenous (IV) formulations of DEC, and its clinically
efficacy were presented in two recent American Society of Hematology (ASH) meetings,
as results of the phase III open label ASCERTAIN trial, NCT03306264, that is studying
ASTX727 for the frontline treatment of patients with high risk-MDS, CMML and AML.
ORR has been reported as high as 61% (CR 21%) with a median time to CR of 4.3 months
and median duration of response of 7.5 months [57,58].

New generation HMA (investigational): Rescue treatment for intermediate and high-
risk patients after failure of another HMA, or in selected low-risk patients after erythropoi-
etin stimulating agents (ESAs) failure.

Since the activity of HMAs as single agents is modest, combinatory therapies with
several targeted or immunomodulatory molecules have been tested and are now in clini-
cal development.

2.3. Targeted Treatments
2.3.1. Venetoclax

The B-cell leukemia/lymphoma-2 (BCL-2) inhibitor, venetoclax is to date one of the
most potent anti-apoptotic inhibitors, representing a novel promising agent. This small
molecule blocks the binding of BH3 proteins (mostly Bim) to Bcl-2, allowing the activation
of BCL2 Antagonist/Killer/BCL2 associated X (Bak/Bax) on the surface of mitochondria
leading to cell death of cancer cells because of the release of cytochrome C through a
mitochondrial outer membrane permeabilization (MOMP) process. The combinations of
venetoclax with HMAs or low-dose cytarabine has been approved for the treatment of older
or intensive chemotherapy-ineligible AML patients [59] and results from a recent published
phase III randomized trial showed the superiority of AZA + Venetoclax compared to AZA
+ placebo in previously untreated AML patients (median survival 14.7 vs. 9.6 months and
composite complete remission rates of 37% vs. 18%, respectively) [60]. A number of trials
are currently evaluating the use of venetoclax, alone or in combinations with HMAs, also
in MDS setting. Preliminary data from a phase I study showed a promising clinical efficacy
compared to historical controls in relapsed/refractory MDS [61].

Venetoclax (investigational): Rescue treatment after HMA failure in high-risk patients,
in combination with AZA. Hypothetical targeted population: High-risk treatment naïve
patients, unfit for intensive chemotherapy or allogeneic HSCT.

2.3.2. IDH INHIBITORS

IDH1 and 2 mutations are found in 5–10% of patients with MDS and in general
are associated with worse prognosis and leukemia progression [62,63]. IDH1 and IDH2
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inhibitors (ivosidenib and enasidenib) have recently shown an acceptable ORR of 42–67% in
phase I and II trials [64,65] with response rates over 50% in patients with HMA failure [64].
Olutasidenib (FT-2102) is also an IDH1 inhibitor in clinical trials. Results from phase I/II
trials of olutasidenib alone or in combination with AZA or cytarabine showed a ORR of
33% and 73%, respectively, as single agent or in the combinatory schema [66].

IDH inhibitors (investigational): High risk patients harboring neomorfic IDH1 or IDH2
mutations, in association with AZA, after HMA failure. Hypothetical targeted population:
All risk treatment naïve IDH1/2 mutated patients, unfit for intensive chemotherapy or
allogeneic HSCT.

2.3.3. FLT3 Inhibitors

Pathogenic mutations in FLT3 gene (particularly FLT3 internal tandem duplication—
(ITD)- and tyrosine kinase domain—TKD-mutations) are not a frequent event in MDS,
accounting for 0.5–2% of patients at diagnosis, but when present, they are associated with
high transformation rate and poor survival outcomes in the majority of cases [67–70].

FLT3 inhibitors represent another important potential group of targeted compounds
in MDS patients harboring FLT3 mutations. However, data concerning their safety and
effectiveness come essentially from studies recruiting AML patients.

Midostaurin is a broad-spectrum tyrosine kinase (TK) inhibitor acting on both wild
type and mutated FLT3 kynases. Alone, this compound did not show significant advan-
tages in patients with relapsing refractory AML or high-risk MDS [71,72]. However its
association with intensive chemotherapy in AML FLT3 mutated patients has been approved
based on the results of a phase III randomized trial, demonstrating a significant improve-
ment of survival in patients receiving standard chemotherapy plus midostaurin compared
to chemotherapy and placebo [73]. A phase I/II trial studying its combination with AZA
in AML and high-risk MDS patients ineligible to intensive chemotherapy showed more
modest results, with an ORR of 26% and a median time of survival of 20 weeks [74].

Sorafenib is another multitarget FLT3 inhibitor, FDA-approved for the treatment
of non-hematological malignancies such as hepatocellular, renal cell, and differentiated
thyroid cancers [75] and whose efficacy has been very recently shown in prevention of
disease relapse after allo-HSCT in patients with FLT3-ITD AML [76]. However first I/II
trials using sorafenib in combination with low doses of cytarabine in high risk MDS gave
disappointed results with around 10% of responses [77] whereas studies evaluating its
efficacy in combination with AZA were limited to AML patients [78].

Gilteritinib is a potent second generation inhibitor of both FLT3 and AXL, an oncogenic
tyrosine kinase frequently overexpressed in AML and that facilitates FLT3 activation, a
known mechanism of FLT3 tyrosine kinase inhibitor (TKI) resistance [79,80]. It has been
approved by FDA as single agent in relapsed/refractory AML with FLT3 mutations [81].
However, studies evaluating its efficacy in MDS setting are still ongoing (NCT04027309,
NCT04140487).

Quizartinib is another second-generation FLT3 inhibitor that has shown activity in
monotherapy in the relapse and refractory AML patients demonstrating composite CR
rates >40% [82–84]. However also in this case its efficacy is under investigation in MDS
patients (NCT03661307, NCT04493138, NCT01892371).

Quizartinib and Gilteritinib (investigational): FLT3 mutated patients non-responding
to HMA. Hypothetical targeted population: All high-risk FLT3 mutated treatment naïve
patients, unfit for intensive chemotherapy or allogeneic HSCT.

2.3.4. Splicing Inhibitors

Mutations in genes encoding for the different spliceosome components (SF3B1, serine/
arginine-rich splicing factor 2 (SRSF2), U2 small nuclear RNA auxiliary factor1 (U2AF1),
and zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2 (ZRSR2)) are
recurrent events in MDS and pathophysiologically can lead to an aberrant alternative
splicing through activation of incorrect splice sites or intron retention of downstream genes,
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inducing functional haploinsufficient expression in some instances, similar to chromoso-
mal deletions, epigenetic silencing, or inactivating mutations [85–87]. Giving their role
in disease pathogenesis and the fact that they often occur in heterozygous status and
in a mutually exclusive configuration, inhibition of the aberrant spliceosome machinery
represents an attractive targeted approach as shown in in preclinical models [88]. Specifi-
cally, H3B-8800, a selective and orally bioavailable modulator of normal and mutant SF3b
complex, has shown dose-dependent modulation of splicing in pre-clinical xenograft mod-
els [89] and is currently in study in an open-label, multicenter phase I trial for patients with
previously treated MDS, AML, and CMML (NCT02841540). The discovery of H3B-8800
follow a path of research efforts on natural products. Bacterially-derivatived products
have been shown to bind the SF3B complex to disrupt early stages of spliceosome cascade.
These compounds have different stabilities and include low stability-agents (FR901463,
FR901464, FR901465, herboxidienes, and pladienolides), and high stability-agents (E7107, a
pladienolide B-analog, spliceostatin A, and sudemycins). While several compounds have
only been shown to biologically alter splicing in vitro, a few compounds have been tested
in both in vitro and in vivo [90–92]. For instance, E7107 seems to induce severe splicing
inhibition in several cellular and animal models although its effects in human have not
be proven. More recently cells carrying splicing factor mutations have been found sensi-
tive to treatment with sulfonamides. Leukemia hematopoietic stem cells (HSCs) showed
sensitivity to treatment with aryl sulfonamides (e.g., indisulam). In fact, drug sensitivity
correlated with increased DDB1 and CUL4 associated factor 15 (DCAF15) expression levels.
Indisulam and other sulfonamides seem to induce the degradation of RNA binding motif
protein 39 (RBM39), leading to abnormal mRNA splicing changes (intron retention, exon
skipping) [93]. The antiproliferative effect of a novel chloroindolyl sulfonamide (E7070) in
combination with idarubicin and cytarabine is being investigated in relapsed AML and
high-risk MDS (NCT01692197). Moreover, protein arginine methyltransferases (PRMTs)
inhibitors (MS023, GSK591) influenced the growth of SRSF2 mutant cells. The clinical
activity of the PRMT5, GSK3326595, is being investigated in combination with AZA in
newly-diagnosed MDS and AML (NCT03614728).

H3B-8800 and PRMTs inhibitors (investigational): Patients of all IPSS-R risks after
HMA failure (phase I). Giving the early investigational phase, their use outside of a clinical
trial is not recommended.

2.3.5. Histone Modifiers

Heterozygous somatic mutations in genes encoding for epigenetic regulators have
been found in all subgroups of myeloid disorders, and aberrant histone modifications, such
as acetylation, play a key role in myeloid malignancy pathophysiology, underpinning the
rationale for the use of epigenetic modifiers in AML and MDS [4,94,95]. Histone deacetylase
inhibitors (HDCAi) are an interesting class of agents used also in several hematological
disorders. Designed to target histone deacetylases (HDAC), these drugs can modify
the expression pattern of numerous genes, including oncogenes and tumor suppressors,
inducing apoptosis, differentiation, and cell cycle arrest in cancer cells, although the exact
mechanism of action remains still unclear [96,97].

Although phase I and II studies evaluating those agents in monotherapy for AML and
MDS patients showed negative results and absence of acceptable response rates [98–101]
a number of trials have investigated and are currently studying of the combination of
HDACi with several agents in myeloid neoplasms. However so far, phase II studies of
various HDACi at various doses in combination with azacitidine or decitabine for MDS,
CMML, and AML patients have not shown any improved clinical outcomes [102–106].

HDACi (investigational): High risk patients after HMA failure, in association with
AZA. Hypothetical targeted population: Selected patients with aberrant acetylase mecha-
nisms (e.g., abnormal expression or mutations of genes encoding for acetyltransferases).
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2.3.6. Drugs Targeting p53 Pathway

TP53 mutations are associated with extremely poor survival outcomes and high
progression rate in patients with MDS and AML. However, a breakthrough in the treatment
of this dismal category derives from ongoing studies evaluating APR-246, an agent able to
refold the mutant p53 protein, restoring its transcriptional function. This molecule already
showed auspicious preclinical results in combination with AZA in vitro and in vivo models
of AML/MDS. [107] Two parallel French and US-based phase Ib/II trials are evaluating
this combination in HMA-naïve, TP53-mutated patients with high-risk MDS, CMML, or
AML, and preliminary results have been highly promising with ORR between 54 and
88%, in a very high-risk elderly population, generally characterized by complex karyotype
and unresponsiveness to standard treatments [108,109]. A registration phase III clinical
trial comparing AZA + APR-246 with AZA in monotherapy (NCT03745716), as well as a
phase II study evaluating the same combination as maintenance therapy after allo-HSCT
(NCT03931291) in TP53 mutated AML/MDS patients are ongoing.

APR-246 (investigational): High-risk treatment naïve patients harboring TP53 muta-
tions. Hypothetical targeted population: All risk categories of patients with TP53 mutations,
including after HMA failure.

2.4. Immunomodulatory Treatments
2.4.1. Lenalidomide

Lenalidomide is a thalidomide analog with a complex mechanism of action that has
demonstrated its clinical activity in low to intermediate-risk MDS patients with 5q-. This
molecule in fact not only exerts a direct anti-proliferative effect on leukemia blasts, by
inhibition of the cell cycle arrest and apoptosis, but is also able of a modulatory effect
on immune cells of the bone marrow microenvironment in patients with MDS. Recent
studies have also shown that lenalidomide acts through a karyotype-dependent manner
modulating the expression of genes already haploinsufficient [110–113]. A number of phase
II and III trials have evaluated this agent with various treatment schedules and associations
in MDS with or without 5q-. While very satisfying results were seen when given in
monotherapy in low risk/5q- setting, with response rates/hematological improvements in
>60–80% of patients [114–117], results in intermediate/high risk setting were dismal with
ORR of 10–30% [118–120]. Thus notwithstanding, a therapeutic benefit has been shown, in
combinations with AZA, in intermediate and high risk MDS patients, with or without 5q-,
with a significant increase in ORR and CR compared with AZA alone (ORR/CR 72/44%
vs. 49/17%) in a phase II trial [121].

Lenalidomide: Approved for low-risk patients with 5q- MDS.

2.4.2. Immune Checkpoint Inhibitors

Aberrant immune function and dysregulation of immune checkpoint (IC) molecules
represent a known pathophysiological aspect of MDS, providing the rationale for studying
the role of IC inhibitors (ICI) in those patients, especially after HMA failure [122–124].

The programmed cell death 1 (PD-1) inhibitor pembrolizumab and the cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) inhibitor, ipilimumab, have been both studied in
phase Ib/II trials in patients with intermediate/high-risk MDS who failed HMA showing lim-
ited efficacy in monotherapy (interim analysis for pembrolizumab, NCT03094637) [125,126].
A phase II study, evaluating the combination of nivolumab (anti-PD-1) or ipilimumab with
or without AZA, and is showing promising preliminary results, with an increased response
rate in patients treated with the combinatory regimens (ORR 75, 71, 35, and 13%, in patients
receiving AZA + nivolumab, AZA + ipilimumab, ipilimumab alone, or nivolumab alone,
respectively, trial: NCT02530463) [127]. In contrast, results from an ongoing large phase
II randomized trial (NCT02775903), that is evaluating untreated patients with high-risk
MDS and AML ineligible for intensive chemotherapy to AZA + durvalumab (another
programmed death-ligand 1 (PD-L1) inhibitor) or AZA alone have been unsatisfactory
without clinically meaningful difference in efficacy between the two treatment arms [128].
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T-cell immunoglobulin mucin (TIM-3) is another emerging target in immunotherapy,
present on the surface of effector T-cells, whose hyperexpression and hyperactivation
has been shown able to induce T-cell exhaustion in several cancers including myeloid
malignancies [129–131]. MBG453 is a TIM-3 antibody that is currently in study in several
disease settings. Association with DEC in a phase I study of HMA-naïve, high-risk MDS
patients showed CR of 50% (preliminary results NCT03066648) [132]. Ongoing studies are
evaluating other combinatory schema with AZA (NCT03946670, NCT03940352) in higher
risk MDS.

CD47, a surface protein normally intervening in the recognition of “self” toward the
innate immune surveillance, has been shown upregulated on the surface of cancer cells
and leukemic blasts as mechanism of immune-evasion from anti-tumor macrophagic re-
sponses [133–135]. Magrolimab is an investigational anti-CD47 monoclonal antibody which
recently received a breakthrough therapy designation from FDA, based on the positive
results of a phase Ib study evaluating its association with AZA and showing a ORR of 92%
(CR 50%) in previously untreated intermediate and high-risk MDS patients [136]. A double
blind phase III multicenter randomized study (AZA + Magrolimab vs. AZA + placebo)
has recently been registered for treatment-naive high-risk MDS patients (ENHANCE trial,
NCT04313881).

Immune checkpoint inhibitors (investigational): High-risk MDS treatment naïve pa-
tients. Hypothetical targeted population: Subgroup of patients whose immune-transcriptomic
profile is characterized by high expression of immune checkpoint molecules.

2.4.3. Anti-TGF β

Transforming growth factor-beta (TGF β) signaling is a complex pathway whose
role has been demonstrated in carcinogenesis and cancer progression as well as in the
pathogenesis of a variety of hematological disorders [137,138]. Two TGF β pathway
inhibitors, luspatercept [139] and sotatercept [140], have proved their efficacy in improving
anemia in lower-risk MDS patients, with hematological improvement rates around 60% in
two phase II studies. Of note in the sotatercept study half of the patients had a previous
HMA failure [140] suggesting that those compounds may rescue severely anemic HMA-
pretreated lower-risk MDS patients who otherwise would have very few therapeutic
opportunities. Results of a randomized phase III trial evaluating luspatercept vs. placebo
in lower risk MDS with ring sideroblasts (RS) have been published last year and showed
a significant rate of transfusion independence in 38% vs. 13% of patients (p < 0.001) with
limited adverse effects (MEDALIST trial) [141]. Based on those results luspatercept has
been recently FDA approved in this setting of patients [142]. A phase III trial evaluating
the efficacy of luspatercept vs. epoietin alpha in lower risk MDS, as well as a phase Ib/II
study combining this anti-TGF β and lenalidomide in low-risk non-del(5q) diseases, are
ongoing (NCT03682536, NCT04539236).

Luspatercept (approved): Low-risk MDS-RS with >15%of RS or with >5% of RS and
SF3B1 mutation, after ESAs failure.

2.5. Other Targeted Therapies

Rigosertib is an oral multikinase inhibitor that acts as a RAS-mimetic binding to
the proto-oncogene, serine/threonine kinase (RAF) and phosphoinositide-3-kinase (PI3K)
family proteins and disrupting their ability to bind to RAS [143,144]. What is of interest
for this compound is that, while it has a potent antimitotic and antineoplastic effect, it
seems relatively non-toxic for normal cells. Despite encouraging results of phase I trials
in MDS patients [144–146] with ORR of up to 53%, a randomized phase III trial of a
large cohort of high risk patients refractory to HMA failed to show the superiority of
rigosertib compared to best supportive therapies [147]. A synergistic effect has been seen in
association with AZA, based on the results of a phase II study showing responses of 60–90%
in HMA-refractory and naïve settings respectively. This combination is currently under
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investigation in a randomized phase III trial vs. AZA alone in treatment-naïve high-risk
MDS patients [148].

Rigosertib (investigational): High risk treatment naïve patients in combination with
AZA. Hypothetical targeted population: Subgroup of patients with an oncogenic or hy-
peractivated RAS pathway (e.g., in case of PTPN11, NRAS, KRAS, and RIT1-α gain of
function mutations).

Glasdegib is a potent and selective oral inhibitor of the Hedgehog signaling path-
way that showed its clinical activity in AML and MDS, particularly in combination with
chemotherapy. The results of phase II studies evaluating safety and efficacy of glasdegib
combined with chemotherapy in treatment naive patients with AML or high-risk MDS
have been so promising that the FDA approved this agent in combination with low doses
of cytarabine for the frontline treatment of elderly AML patients not eligible to intensive
chemotherapy [149,150]. Results of glasdegib in monotherapy in refractory MDS patients
were disappointing, with less than 10% of ORR [151]. However, a trial evaluating its
efficacy in combinatory schemes with AZA is ongoing (NCT02367456).

Glasdegib (investigational): High risk treatment naïve patients in combination with AZA.
Pevonedistat (MLN4924) is a novel inhibitor of NEDD8-activating enzyme (NAE)

able to induce aberrant proteosomal degradation of intracellular proteins leading to their
cytotoxic accumulation and apoptosis [152]. It is currently under investigation in a phase
I/II trials in combination with AZA in MDS patients refractory to HMA therapy. Interim
results were encouraging, showing an ORR of about 40–70% with significant benefits
especially for the high-risk MDS category [153,154]. Given these promising data the
randomized phase III PANTHER trial is already ongoing and testing pevonedistat + AZA
vs. AZA monotherapy for upfront treatment of high-risk-MDS, CMML, and AML patients
(NCT03268954).

Pevonedistat (investigational): High-risk patients in combination with AZA after
HMA failure.

Roxadustat (FG-4592) is an orally administered hypoxia inducible factor prolyl hy-
droxylase inhibitor (HIF-PHIs), currently FDA approved for anemia in chronic kidney
disease (CKD), based on the results of a recently published phase III study [155]. This drug
improves erythropoiesis by at least two mechanisms: (i) increasing endogenous erythropoi-
etin levels and (ii) regulating iron metabolism, through downregulation of hepcidin [156].
A phase III randomized double-blind placebo-controlled trial, is analyzing the efficacy
and safety of roxadustat to treat anemia in patients with lower-risk MDS and low RBC
transfusion burden (NCT03263091).

Roxadustat (investigational): Very low, low and intermediate-risk patients. Hypo-
thetical targeted population: MDS patients of all risk with multifactorial anemia due for
instance to concomitant CKD.

Imetelstat is a novel, first-in-class telomerase inhibitor, targeting selectively cells with
short telomere length, binding selectively the telomerase RNA component (TERC) subunit,
resulting in direct, competitive inhibition of telomerase enzymatic activity [157]. Data from
a phase II/III study show a reduction in disease burden in low risk patients refractory or
relapsed after ESA usage [158] The phase III part of the study is still ongoing (NCT02598661)
and meanwhile Imetelstat has been granted a Fast Track designation FDA for non-del(5q)
lower risk MDS refractory or resistant to ESAs.

Imetelstat (investigational): Non-del(5q) low-risk patients refractory to ESAs. Hypo-
thetical targeted population: Patients of all risks with shorter telomere length.

SY-1425 is an oral first-in-class selective retinoic acid receptor alpha (RARα) agonist
investigated as maintenance therapy or in refractory acute promyelocytic leukemia [159].
Promising results have been presented at the 62nd American Society of Hematology meet-
ing in naïve unfit AML patients (ORR 67% and 38% in patients RARα+ and RARα-) [160].
Based on the reported data, a Phase III trial in newly diagnosed high risk MDS has been
announced.
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A summary of all phase III studies discussed here for both approved and investiga-
tional targeted treatments is reported in Table 2.

Table 2. Selected phase III studies for investigational agents in MDS patients.

Agent Mechanism of
Action NCT Patient

Population Study Design Start Date Status and
Outcomes Reference

Guadecitabine

New generation
DNMT inhibitor,

resistant to
cytidine

deaminase

NCT02907359
(ASTRAL-3 trial)

MDS, CMML
after treatment

failure

Multicenter, randomized, open
label; Guadecitabine vs.

treatment of choice (low-dose
cytarabine, BSC, intensive

chemotherapy)

September
2016

Ongoing
study

ASTX727

New generation
DNMT inhibitor,
combination of

DEC and
cedazuridine

NCT03306264
(ASCERTAIN

trial)

Treatment naive
and R/R
HR-MDS,

CMML, or AML

Multicenter, randomized, open
label; ASTX727 vs. IV DEC

October
2017

Ongoing
study

CC-486
New generation
DNMT inhibitor,

oral AZA

NCT01566695

LR-MDS with
transfusion-
dependent

Anemia and
Thrombocytope-

nia

Multicenter, randomized,
double-blind CC-486 + BSC vs.

placebo + BSC

April
2012

Ongoing
study

NCT04173533

AML or
HR-MDS in CR

following
allogeneic HSCT

Multicenter, randomized,
double-blind CC-486 vs. placebo
for maintenance after allo-HSCT

November
2019

Ongoing
study

Venetoclax Bcl-2 inhibitor

NCT04628026
Newly

diagnosed AML
and MDS-EB2

Multicenter, randomized,
double-blind, Venetoclax +
chemotherapy vs. placebo

+chemotherapy

November
2020

Ongoing
study

NCT04401748
Newly

diagnosed
HR-MDS

Multicenter, randomized,
double-Blind, Venetoclax + AZA

vs. Placebo + AZA
May 2020 Ongoing

study

Ivosidenib or
Enasidenib

IDH1/2
inhibitors NCT03839771

Newly
diagnosed AML
and MDS-EB2
with IDH1/2

mutations

Multicenter, double-blind,
randomized, Ivosidenib or

Enasidenib + chemotherapy vs.
Placebo + cheotherapy

February
2019

Ongoing
study

Midostaurin or
Gilteritinib FLT3 inhibitor NCT04027309

Newly
diagnosed AML
and MDS-EB2

with FLT3
mutations

Multicenter, open-label,
randomized Midostaurin +

chemotherapy vs. Gilteritinib +
chemotherapy (followed by

maintenance for 1 year according
to the treatment arm)

July 2019 Ongoing
study

APR-246 p53 stabilizer NCT03745716

Newly
diagnosed MDS

with TP53
mutation

multicenter, randomized,
APR-246 + AZA or AZA alone

November
2018

Ongoing
study

Lenalidomide

complex
(immunomodu-
lation and cell

cicle arrest)

NCT01243476

LR and Int-1
IPSS MDS with
5q- and anemia

without the need
of transfusion

Multicenter, randomized,
double-blind Lenalidomide vs.

Placebo

November
2010

Ongoing
study

NCT01029262
(MDS-005 trial)

LR and Int-1
IPSS, transfusion
dependent MDS

without 5q-

Multicenter, randomized,
double-blind Lenalidomide vs.

Placebo

December
2009

Teminated,
Primary
endpoint
met: TI in

27%
(Lenalido-
mide) vs.

2.5%
(Placebo),
p < 0.01

Santini et al.
JCO 2016

[117]

NCT00843882 LR and Int-1
IPSS MDS

Multicenter, randomized,
Lenalidomide vs. Lenalidomide +

Epoietin alpha (Procrit)

December
2009

Terminated
study

(results not
published

yet)

MBG453 Anti-TIM3

NCT04266301
(STIMULUS-

MDS2
trial)

Treatment-naïve
intermediate,

high or very HR
IPSS-R MDS and

CMML-2

Multicenter, randomized,
double-blind MBG453 + AZA vs.

Placebo + AZA

February
2020

Ongoing
study
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Table 2. Cont.

Agent Mechanism of
Action NCT Patient

Population Study Design Start Date Status and
Outcomes Reference

Magrolimab Anti-CD47
NCT04313881
(ENHANCE

trial)

Treatment-naïve
intermediate,
high or very

high-risk IPSS-R
MDS

Multicenter, randomized,
double-blind Magrolimab + AZA

vs. Placebo + AZA

March
2020

Ongoing
study

Luspatercept Anti-TGFbeta

NCT02631070

Very low,
low and

Intermediate-1
IPSS-R MDS in
patients with
transfusion
dependent

anemia

Multicenter, randomized,
double-blind Luspatercept vs.

placebo

December
2015

Terminated,
Primary
endpoint
met; TI in

38% (Luspa-
tercept) vs.

13%
(Placebo),
p < 0.001

Fenaux et al.
NEJM 2020

[141]

NCT03682536
(COMMAND

trial)

Very low,
low and

Intermediate-1
IPSS-R MDS ESA

Naïve patients
with transfusion

dependent
anemia

Multicenter, randomized, open
label Luspatercept vs. Epoietin

alpha

September
2018

Ongoing
study

Rigosertib Multikinase
inhibitor

NCT01241500
(ONTIME trial)

MDS-EB1/2 after
HMA failure

Multicenter, randomized, open
label Rigosertib vs. BSC

December
2010

Terminated.
(Preliminary

analysis:
Failure in

meeting the
primary
endpoint.

Median OS
rigosertib

8.2 months
vs. 5.9

months
with BSC
(HR 0.87,
95% CI

0.67–1.14;
p = 0.33).

Garcia-
Manero et al.
Lancet Onc.
2016 [147]

NCT02562443
(INSPIRE trial)

very HR IPSS-R
MDS after HMA

failure

Multicenter, randomized, open
label; Rigosertib vs. BSC

September
2015

Ongoing
study

Pevonedistat NAE inhibitor NCT03268954
(PANTHER trial)

Newly
diagnosed
HR-MDS,
CMML, or

pauciblastic
AML

Multicenter, randomized,
open-label; Pevonedistat + AZA

vs. AZA alone

August
2017

Ongoing
study

Imetelstat Telomerase
inhibitor NCT02598661

Low and
Intermediate-1

IPSS-R MDS ESA
resis-

tant/refractory
patients

Mutlicenter phase 2/3 composed
study (phase2: Open label signle

arm; phase 3: Double-blind,
randomized, Imetelstat vs.

placebo)

November
2015

Phase 2 pub-
lished/Phase

3 ongoing

Steensma
et al., JCO
2021 [158]

Roxadustat
(FG4592) HIF inhibitor NCT03263091

Primary MDS
(Very Low, Low
or Intermediate

IPSS-R with <5%
blasts)

Multicenter, randomized
double-blind; Roxadustat vs.

placebo

August
2017

Ongoing
study

Abbreviations: MDS: Myelodysplastic syndrome, HR: High risk; LR: Low risk; EB: Excess blast; Int: Intermediate; CMML: Chronic
myelomonocytic leukemia; AML: Acute myeloid leukemia; AZA: 5-Azacytidine; DEC: Decytabine; BSC: Best supportive care; ESA:
Erythropoietin stimulating agents; TI: Transfusion independence; R/R: Relapsed/refractory; NAE: NEDD8-activating enzyme; and HIF:
Hypoxia inducible factor.

3. Conclusions

While for more than a decade the therapeutic scenario of MDS syndromes has been
dominated by very few available regimens associated with dismal results especially for
patients with higher risk disease and who failed HMAs, in the last 2 years we assisted
to the flourishing of an incredible variety of new targeted agents and investigational
approaches that possibly will reach the clinical setting in short time. If current available
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therapies still include HMAs, lenalidomide, growth factor support, chemotherapy, and
allo-HSCT (this last as unique curative solution), we have now the possibility to choose
among new investigational treatments rationally designed to exert targeted actions and
increase the response rates in categories of patients that so far remained precision drug-
orphans. Only in 2020 luspatercept and the oral HMA ASTX727 were approved in USA
while Pevonedistat and Magrolimab were just granted the designation of breakthrough
therapies, which hopefully can accelerate their authorization process.

In this context, where a wide range of molecules is now becoming available, predictive
and prognostic genetic markers may potentially allow for a more individualized approach
either in treatment naïve or after HMA failure MDS patients, by improving risk stratification
and helping in the identification of more appropriate treatment choices.
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