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Abstract: A facile aqueous method to construct a platinum nanoflowers (PtNFs)/three-dimensional
(3D) graphene electrode for electrochemical catalysis was demonstrated. PtNFs composed of thin Pt
nanowires with the length of 6–16 nm and the diameter of 2–3 nm were prepared on 3D graphene
foam as a growth template in the aqueous solution without any surfactant. The 3D graphene foam
was used for patterning PtNFs and controlling their morphology. The fabricated PtNF/3D graphene
electrode was applied for electrocatalytic methanol oxidation. Electrochemical measurements show
that the PtNF/3D graphene electrode has higher electrocatalytic activity and better stability than
commercial Pt-C modified glassy carbon electrode. It displays promising potential for applications in
fuel cells.

Keywords: three-dimensional graphene; platinum nanoflowers; aqueous synthesis; electrocatalysis;
methanol oxidation

1. Introduction

Currently, platinum-based nanostructures have attracted much attention in the development
of chemical sensors [1], biosensors [2,3], and electrocatalysts of fuel cells [4–9] because of their
unusual physical and chemical characteristics. The properties of Pt-based nanostructures, especially
electrocatalytic activity, exceedingly rely on their shape, size, crystallinity and composition [10–12].
Since platinum is scarce in nature, great effort has been made to improve its catalytic activity to
reduce its use [13,14]. Two main strategies have been developed. One is focused on Pt-based
nanostructures, such as synthesis of platinum nanocrystals with various dimensionality [15,16],
advanced nanocomposites based on Pt nanostructures [17,18], Pt-based alloy, and binary metals [8,
19–21]. The other is developing efficient support materials to enhance dispersion and catalytic
efficiency of Pt nanostructures, such as carbon nanofibers [22,23], carbon nanotubes [24–26], carbon
nanospheres [12], graphene oxide [11], graphene [27], etc.

Among these support materials, graphene, a kind of two-dimensional carbon nanomaterial
with a honeycomb lattice, has attracted tremendous interest due to its high conductivity, superior
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mechanical properties, large thermal conductivity, and large surface area [27–29]. Its unique
properties make it ideal for many new applications such as nanoelectronics [30], supercapacitors [31],
ultrasensitive sensors [32,33], lithium batteries [34], catalysis in fuel cells [35,36], etc. Graphene
supported Pt composites are meaningful for electrochemical catalysis. Until now, most of graphene/Pt
composites are studied by incorporating Pt nanoparticles onto reduced graphene oxides or graphene
oxides [11,19,37–39]. Those kinds of structures easily suffer from aggregation, which causes inferior
ionic accessibility and limited improvement of electrocatalytic performance of Pt catalysts [40].
Three-dimensional (3D) graphene foam, a kind of interconnected graphene network, exhibits an
open-pore honeycomb structure of graphene with high surface area, large void volume, strong
corrosion resistance, and excellent conductivity [27,40]. These properties of 3D graphene foam make it
ideal as an electrode material to support catalysts in fuel cells.

In our work, 3D graphene foam was used as a support for direct growth of platinum nanoflowers
(PtNFs) under room temperature in aqueous solution without any surfactant. Monomorphic PtNFs
composed of thin Pt nanowires were successfully synthesized through the template function of 3D
graphene. The 3D graphene-supported PtNFs act as a novel 3D electrode for methanol oxidation
reaction (MOR), which holds many advantages including improving the interaction between PtNFs
and 3D graphene and enhancing mass transport in the process of electrocatalysis. The fabricated
PtNF/3D graphene electrode shows higher electrocatalytic activity and better CO tolerance for
methanol oxidation than that of the commercial Pt-C catalyst (Hispec4000) modified glassy carbon
electrode (GCE) (Pt-C/GCE).

2. Results and Discussion

Scanning electron microscopy (SEM) micrographs of 3D graphene foam in Figure 1 show that it
has a well-defined macroporous structure with a thin and smooth graphene skeleton. Raman spectra
taken from different regions of 3D graphene foam present a G band at ~1560 cm−1 and 2D band at
~2700 cm−1 (Figure 2). The ratio of the intensity of the G band (IG) and 2D band (I2D) is related to the
number of layers of graphene [27]. The sharp and symmetric 2D band corresponds with a single-layer
graphene, and the broad 2D band corresponds with a few-layer graphene in Figure 2, indicating
that the prepared 3D graphene foam comprises both single-layer and few-layer graphene [41–46].
Furthermore, the absence of an obvious disorder-induced D band from the Raman characterization of
3D graphene foam suggests its high quality [45].
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Figure 1. (A–D) SEM micrographs of three-dimensional (3D) graphene foam with different magnifications.
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Figure 2. Raman spectra recorded at different regions of 3D graphene foam.

3D graphene foam was directly used as a growing template for synthesis of PtNFs. The experimental
details can be seen in the Materials and Methods section. The morphology and structure of PtNFs
growing on 3D graphene can be modulated by the addition of a Pt precursor. These were studied
by SEM and transmission electron microscopy (TEM) characterizations. As shown in Figures 3A
and 4A–C, 3D PtNFs uniformly cover the surface of 3D graphene by a considerable amount. When
the addition of H2PtCl6·6H2O increases from 2.2 to 4.4 mg, the distribution and number of PtNFs
per unit surface area of 3D graphene increases. The TEM images (Figure 3B,C) reveal that many Pt
nanowires with the length of 6–16 nm are located together to form 3D flower-like nanostructures.
High-resolution TEM (HRTEM) characterizations (Figures 3D and 4D) demonstrate that each PtNF
consists of many Pt nanowires with the diameter of 2–3 nm, and the amount of Pt nanowires increases
with the increase of Pt precursor. The magnified HRTEM image in Figure 4D shows that the nanowire
grown on 3D graphene is one single crystal with the lattice spacing of 0.225 nm, which is attributed to
the (111) crystal plane of Pt [47,48]. The energy-dispersive X-ray spectroscopy (EDS) characterization
(Figure 5A) further confirms the formation of PtNFs on 3D graphene.

Catalysts 2018, 8, x FOR PEER REVIEW  3 of 9 

 

 
Figure 2. Raman spectra recorded at different regions of 3D graphene foam. 

3D graphene foam was directly used as a growing template for synthesis of PtNFs. The 
experimental details can be seen in the Materials and Methods section. The morphology and structure 
of PtNFs growing on 3D graphene can be modulated by the addition of a Pt precursor. These were 
studied by SEM and transmission electron microscopy (TEM) characterizations. As shown in Figures 
3A and 4A–C, 3D PtNFs uniformly cover the surface of 3D graphene by a considerable amount. When 
the addition of H2PtCl6·6H2O increases from 2.2 to 4.4 mg, the distribution and number of PtNFs per 
unit surface area of 3D graphene increases. The TEM images (Figure 3B,C) reveal that many Pt 
nanowires with the length of 6–16 nm are located together to form 3D flower-like nanostructures. 
High-resolution TEM (HRTEM) characterizations (Figures 3D and 4D) demonstrate that each PtNF 
consists of many Pt nanowires with the diameter of 2–3 nm, and the amount of Pt nanowires increases 
with the increase of Pt precursor. The magnified HRTEM image in Figure 4D shows that the nanowire 
grown on 3D graphene is one single crystal with the lattice spacing of 0.225 nm, which is attributed 
to the (111) crystal plane of Pt [47,48]. The energy-dispersive X-ray spectroscopy (EDS) 
characterization (Figure 5A) further confirms the formation of PtNFs on 3D graphene. 

 
Figure 3. (A) SEM and (B) TEM micrographs of formed platinum nanoflower (PtNF)/3D graphene. 
(C) Magnified TEM micrograph of PtNF/3D graphene. (D) High-resolution TEM (HRTEM) 
micrograph of the prepared PtNF on 3D graphene. Preparation condition: 0.22 mL of H2PtCl6·6H2O 
(10 mg mL−1). 

Figure 3. (A) SEM and (B) TEM micrographs of formed platinum nanoflower (PtNF)/3D graphene.
(C) Magnified TEM micrograph of PtNF/3D graphene. (D) High-resolution TEM (HRTEM) micrograph
of the prepared PtNF on 3D graphene. Preparation condition: 0.22 mL of H2PtCl6·6H2O (10 mg mL−1).



Catalysts 2018, 8, 519 4 of 9
Catalysts 2018, 8, x FOR PEER REVIEW  4 of 9 

 

 
Figure 4. (A) SEM micrograph of formed PtNFs/3D graphene. (B) Magnified SEM micrograph of 
PtNFs on 3D graphene. (C) TEM micrograph of the prepared PtNFs on 3D graphene. (D) HRTEM 
micrograph of several Pt nanowires in the prepared PtNFs. Preparation condition: 0.44 mL of 
H2PtCl6·6H2O (10 mg mL−1). 

X-ray diffraction (XRD) spectra of 3D graphene foam and PtNF/3D graphene foam (Figure 5B) 
show a sharp peak of (002) reflection at 26.4° (d-spacing 3.40 Ǻ), which is close to the (002) reflection 
of graphite at 2θ = 26.6° (d-spacing 3.35 Ǻ), indicating that graphene layers are regularly stacked 
[49,50]. A small diffraction peak at 2θ = 54.5° in Figure 5B(a) is attributed to the (004) reflection of 
graphitic carbon [42]. Strong diffraction peaks at 2θ = 39.8°, 46.3°, 67.8°, and 81.5° in Figure 5B(b) can 
be assigned to (111), (200), (220), and (311) diffraction of face-centered-cube Pt (Joint Committee on 
Powder Diffraction Standards: 87-0647), respectively. 

 
Figure 5. (A) Energy-dispersive X-ray spectroscopy (EDS) characterization of PtNFs grown on 3D 
graphene. (B) XRD characterizations of (a) 3D graphene foam and (b) PtNF/3D graphene electrode. 

The fabricated PtNF/3D graphene electrode was used for electrocatalytic methanol oxidation 
against Pt-C/GCE. The TEM and XRD characterizations of used commercial Pt-C catalyst are 
presented in Figure S1. From the cyclic voltammograms (CVs) of Pt-C/GCE and PtNF/3D graphene 
electrodes in N2-saturated 0.5 M H2SO4 solution (Figure 6A), the PtNF/3D graphene electrode shows 
stronger electrochemical peaks ascribed to hydrogen adsorption/desorption than that of Pt-C/GCE, 
indicating its larger electrochemically active surface area. The electrochemically active surface areas 
of Pt-C/GCE and PtNF/3D graphene were evaluated from their CVs to be 29.2 cm2 g-1 and 67.5 cm2 g-

Figure 4. (A) SEM micrograph of formed PtNFs/3D graphene. (B) Magnified SEM micrograph of PtNFs
on 3D graphene. (C) TEM micrograph of the prepared PtNFs on 3D graphene. (D) HRTEM micrograph
of several Pt nanowires in the prepared PtNFs. Preparation condition: 0.44 mL of H2PtCl6·6H2O
(10 mg mL−1).

X-ray diffraction (XRD) spectra of 3D graphene foam and PtNF/3D graphene foam (Figure 5B)

show a sharp peak of (002) reflection at 26.4◦ (d-spacing 3.40
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Figure 5. (A) Energy-dispersive X-ray spectroscopy (EDS) characterization of PtNFs grown on 3D
graphene. (B) XRD characterizations of (a) 3D graphene foam and (b) PtNF/3D graphene electrode.

The fabricated PtNF/3D graphene electrode was used for electrocatalytic methanol oxidation
against Pt-C/GCE. The TEM and XRD characterizations of used commercial Pt-C catalyst are presented
in Figure S1. From the cyclic voltammograms (CVs) of Pt-C/GCE and PtNF/3D graphene electrodes
in N2-saturated 0.5 M H2SO4 solution (Figure 6A), the PtNF/3D graphene electrode shows stronger
electrochemical peaks ascribed to hydrogen adsorption/desorption than that of Pt-C/GCE, indicating
its larger electrochemically active surface area. The electrochemically active surface areas of Pt-C/GCE
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and PtNF/3D graphene were evaluated from their CVs to be 29.2 cm2 g−1 and 67.5 cm2 g−1,
respectively. The MOR of Pt-C/GCE and PtNF/3D graphene electrode in N2-saturated 0.5 M
H2SO4 solution is shown in Figure 6B. The PtNF/3D graphene electrode has higher electrocatalytic
activity for MOR than Pt-C/GCE. The mass activity of PtNF/3D graphene electrode for MOR was
306.3 mA mg−1Pt at 0.7 V, which was 2.69 times higher than that of Pt-C/GCE (113.8 mA mg−1Pt)
(Figure 6C). The ratio of the forward oxidation peak intensity (If) to the reverse peak intensity (Ib) (If/Ib),
is generally used to evaluate the CO and other carbonaceous species tolerance of catalysts. The value
of If/Ib of PtNF/3D graphene electrode (If/Ib = 1.3) is higher than that of Pt-C/GCE (If/Ib = 0.72)
(Figure 6C), indicating that PtNF/3D graphene electrode can electrochemically oxidize methanol more
effectively and generate less poisoning species than Pt-C/GCE during the forward scan. The durability
of electrocatalysts is very significant for practical applications of catalysts. Chronoamperometric
measurements of the PtNF/3D graphene electrode and Pt-C/GCE at 0.7 V for MOR show that the
decay of peak current density of Pt-C/GCE for MOR is faster than that of the PtNF/3D graphene
electrode (Figure 6D), suggesting that the PtNF/3D graphene electrode is more stable for MOR in acidic
electrolytes. The high electrocatalytic activity and good stability of PtNF/3D graphene electrode are
attributed to the high specific surface area of 3D graphene foam and exposed crystal plane (111) of thin
Pt wires in a PtNF/3D graphene electrode. Specific surface area of 3D graphene foam (670 m2 g−1) [51]
is larger than that of carbon black of commercial Pt-C (250 m2 g−1) [52]. Furthermore, the crystal plane
(111) was proved to have a low tendency to be poisoned by CO intermediates [53].
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Figure 6. (A) Cyclic voltammogram (CV) measurements of Pt-C/glassy carbon electrode (GCE)
and PtNF/3D graphene electrode in N2-saturated 0.5 M H2SO4 solution. (B) CV measurements of
Pt-C/GCE and PtNF/3D graphene electrode in N2-saturated 0.5 M H2SO4 solution containing 1.0 M
CH3OH. (C) Mass activity at 0.7 V and If/Ib of Pt-C/GCE and PtNF/3D graphene for methanol
oxidation reaction (MOR). (D) Amperometric curves of Pt-C/GCE and PtNF/3D graphene at 0.7 V
in N2-saturated 0.5 M H2SO4 solution containing 1.0 M CH3OH. Scan rate in CV measurements of
Figure 6A,B is 50 mV s−1. Current density in Figure 6D was normalized with the geometric surface
area of electrodes.
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3. Materials and Methods

3.1. Materials

Ethanol (absolute, ≥99.9%), chloroplatinic acid hexahydrate (H2PtCl6·6H2O) (analytical reagent,
Pt ≥ 37.5%), formic acid (analytical reagent, 99%), and methanol (absolute, ≥99.9%) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). The commercial Pt/C (40 wt% loading on carbon black,
Hispec4000) was purchased from Shanghai Hesen Electric Co., Ltd. (Shanghai, China).

3.2. Preparation of PtNF/3D Graphene Electrode

3D graphene foams were prepared by chemical vapor deposition using ethanol as the precursor
and nickel foam as a template according to the previously reported method [41,42]. The synthesized
3D graphene foams were used for growth of PtNFs through chemical reduction of chloroplatinic acid
hexahydrate with formic acid. In a typical procedure, 0.40 mL formic acid and 0.44 mL chloroplatinic
acid hexahydrate (10 mg mL−1) were added into a 10-mL flask and sonicated for 30 min. 3D graphene
foam was immersed into the mixed solution, and then the reaction proceeded in an airtight flask at
room temperature for up to 4 d without stirring. The 3D graphene foam loaded with PtNFs was
pulled out and washed with deionized water many times, and then was dried at 60 ◦C in a vacuum
drying oven. Since the reaction time of 4 d is enough to finish the reaction, the amount of PtNFs on 3D
graphene in our work could be modulated by the addition of chloroplatinic acid hexahydrate.

3.3. Characterizations

SEM images of samples were obtained by scanning electron microscope (JEOL, Akishima, Japan,
7600F). TEM and HRTEM images of PtNF/3D graphene were recorded on a transmission electron
microscope (200 kV, JEOL JEM-2100F) operated at 200 kV. Element analyses of PtNF/3D graphene
was measured with an EDS. XRD characterizations were carried out with an X-ray diffractometer
(Shimadzu, Kyoto, Japan, XRD-6000). Raman spectra of 3D graphene foam were recorded by a Raman
micro-spectrometer (Renishaw, Wharton Anderch, UK).

3.4. Electrochemical Measurements

Pt loading on PtNF/3D graphene was estimated by inductive coupled plasma-optical emission
spectroscopy (ICP-OES). Pt loading per unit geometric surface area of PtNF/3D graphene electrode and
Pt-C/GCE (0.158 mg/cm2) was kept the same for electrochemical tests. Electrochemical experiments
were implemented by using Ag/AgCl (3 M KCl) as a reference electrode, Pt wire as a counter electrode,
and PtNF/3D graphene or Pt-C/GCE as a work electrode. The work electrode was firstly activated by
CVs from −0.2 to 0.8 V in N2-saturated 0.5 M H2SO4 solution until CV becomes steady. MOR was
measured by CVs from 0 to 1.0 V in 0.5 M H2SO4 solution containing 1.0 M CH3OH. The scan rate for
CVs was 50 mV s−1.

4. Conclusions

In summary, a PtNF/3D graphene electrode was constructed by a simple aqueous method with 3D
graphene foam as the growth template of PtNFs. PtNFs were easily and controllably formed on the 3D
graphene foam under room temperature without any assistance of surfactants. The fabricated PtNF/3D
graphene electrode shows high electrocatalytic activity and good stability for MOR. This easy method
is meaningful for designing and preparing highly efficient 3D inorganic nanostructures/graphene
electrodes in the applications of fuel cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/11/519/s1,
Figure S1: Figure S1. (A) TEM and (B) XRD characterizations of the used commercial Pt-C catalyst.
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