Selective catalytic reduction of nitric oxide with propylene over Fe/Beta catalysts under lean-burn conditions

Hao Zhou\(^1\),* MengYao Ge\(^1\), Huishuang Zhao\(^1\), Shiguo Wu\(^1\), MengYu Li\(^1\), Yaxin Su\(^2\)

\(^1\) Changzhou Institute of Engineering Technology, Changzhou 213164, PR China

\(^2\) School of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China

*Corresponding author: Tel: +86-519-86332216, Fax: +86-519-86332216, E-mail: hzhou@czie.edu.cn

Support information
Fig. S1. XPS spectra of Fe 2p of Fe/Beta catalysts prepared by different methods.

Fig. S2. UV-vis spectra of Fe$_2$O$_3$.
Fig. S3. UV-vis spectra with deconvolution method of Fe/Bate catalysts.
Fig. S4. Apparent TOF with total Fe at 200 °C on Fe/Ba catalysts.
Fig. S5. XRD diffractograms of the fresh and aged Fe/Bate catalysts.

Fig. S6. UV-vis spectra with deconvolution method of the fresh and aged Fe/Bate catalysts.
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Fe_a (%)</th>
<th>Fe_b (%)</th>
<th>Fe_c (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe/Bate(LIE)-Fresh</td>
<td>65.2</td>
<td>13.5</td>
<td>21.3</td>
</tr>
<tr>
<td>Fe/Bate(LIE)-Aged</td>
<td>51.3</td>
<td>20.7</td>
<td>28.0</td>
</tr>
</tbody>
</table>

(a) Isolated Fe$^{3+}$ in tetrahedral and octahedral coordination, (b) Oligomeric Fe$_x$O$_y$ clusters, (c) Fe$_2$O$_3$ nanoparticles.