Electronic Supplementary Information

Energy efficient and intermittently variable ammonia synthesis over mesoporous carbon-supported Cs-Ru nanocatalysts

Masayasu Nishi *, Shih-Yuan Chen, and Hideyuki Takagi

Table of Contents

Table S1. TPR-MS data of the prepared Cs-Ru catalysts..3
Figure S1. HRTEM images of carbon supports (a) AC, (b) MPC-15, (c) MPC-18, and (d) MPC-21...4
Figure S2. HAADF-STEM images of 2.5Cs-10Ru/MPC-15 catalysts. (a) Fresh and (b) used samples...5
Figure S3. HAADF-STEM images of 2.5Cs-10Ru/MPC-18 catalysts. (a) Fresh and (b) used samples...6
Figure S4. HAADF-STEM images of 2.5Cs-10Ru/MPC-21 catalysts. (a) Fresh and (b) used samples...7
Figure S5. HAADF-STEM images of 2.5Cs-10Ru/AC catalysts. (a) Fresh and (b) used samples...8
Figure S6. TPR-TCD and TPR-MS profiles of RuO₂..9
Figure S7. TPR-TCD and TPR-MS profiles of MPC-18...10
Figure S8. TPR-TCD and TPR-MS profiles of 10Ru/MPC-18 obtained by the dispersion of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing 0.31 g of nitrosoylruthenium(III) nitrate (Ru(NO)(NO₃)₃) and slowly heating to around 70–80 °C until the solvent completely evaporated. This was followed by calcination at 400 °C for 3 h in N₂ at a ramp rate of 5 °C min⁻¹...11
Figure S9. TPR-TCD and TPR-MS profiles of 2.5Cs/MPC-18 obtained by the dispersion of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing a 0.40 g of cesium carbonate
(Cs₂(CO₃)) and slowly heating to around 70–80 °C until the solvent completely evaporated.

Figure S10. TPR-MS profiles of freshly prepared catalysts (a) 2.5Cs-10Ru/AC, (b) 2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.

Figure S11. TPR-MS profiles \(m/z = 18\) of freshly prepared Cs-Ru catalysts.

Figure S12. HRTEM images and Ru particle size distributions of the used catalysts. (a) 2.5Cs-10Ru/MPC-AC, (b) 2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.

Figure S13. Wide-angle XRD patterns of used catalysts. (a) 2.5Cs-10Ru/AC, (b) 2.5Cs-10Ru/MPC-15, 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.

Figure S14. Rate of ammonia synthesis as a function of reaction temperature over the 10Ru/MPC-18 and 2.5Cs/MPC-18 catalysts at an SV value of 9000 h⁻¹.
Table S1. TPR-MS data of the prepared Cs-Ru catalysts.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>α1 (°C)</th>
<th>α2 (°C)</th>
<th>α3 (°C)</th>
<th>α4 (°C)</th>
<th>β1 (°C)</th>
<th>β2 (°C)</th>
<th>β3 (°C)</th>
<th>β4 (°C)</th>
<th>β5 (°C)</th>
<th>β6 (°C)</th>
<th>γ1 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures</td>
<td>Fig. 6(A)</td>
<td>Fig. 6(D)</td>
<td>Fig. 6(D)</td>
<td>Fig. 6(F)</td>
<td>Fig. 6(B)</td>
<td>Fig. 6(B)</td>
<td>Fig. 6(C)</td>
<td>Fig. 6(C)</td>
<td>Fig. 6(E)</td>
<td>Fig. 6(FD)</td>
<td>Fig. 6(E)</td>
</tr>
<tr>
<td>m/z</td>
<td>2 (H₂)</td>
<td>18 (H₂O)</td>
<td>18 (H₂O)</td>
<td>44 (CO₂)</td>
<td>2 (H₂)</td>
<td>2 (H₂)</td>
<td>15 (CH₃)</td>
<td>15 (CH₃)</td>
<td>28 (CO)</td>
<td>44 (CO₂)</td>
<td>28 (CO)</td>
</tr>
<tr>
<td>2.5Cs-10Ru/AC</td>
<td>132</td>
<td>87</td>
<td>137</td>
<td>124</td>
<td>396</td>
<td>437</td>
<td>415</td>
<td>443</td>
<td>389</td>
<td>304</td>
<td>701</td>
</tr>
<tr>
<td>2.5Cs-10Ru/MPC-15</td>
<td>120</td>
<td>90</td>
<td>124</td>
<td>112</td>
<td>378</td>
<td>415</td>
<td>400</td>
<td>421</td>
<td>379</td>
<td>300</td>
<td>708</td>
</tr>
<tr>
<td>2.5Cs-10Ru/MPC-18</td>
<td>133</td>
<td>90</td>
<td>137</td>
<td>116</td>
<td>375</td>
<td>415</td>
<td>397</td>
<td>421</td>
<td>374</td>
<td>325</td>
<td>723</td>
</tr>
<tr>
<td>2.5Cs-10Ru/MPC-21</td>
<td>138</td>
<td>90</td>
<td>143</td>
<td>160</td>
<td>390</td>
<td>443</td>
<td>405</td>
<td>473</td>
<td>393</td>
<td>327</td>
<td>774</td>
</tr>
</tbody>
</table>
Figure S1. HRTEM images of carbon supports (a) AC, (b) MPC-15, (c) MPC-18, and (d) MPC-21.
Figure S2. HAADF-STEM images of 2.5Cs-10Ru/MPC-15 catalysts. (a) Fresh and (b) used samples.
Figure S3. HAADF-STEM images of 2.5Cs-10Ru/MPC-18 catalysts. (a) Fresh and (b) used samples.
Figure S4. HAADF-STEM images of 2.5Cs-10Ru/MPC-21 catalysts. (a) Fresh and (b) used samples.
Figure S5. HAADF-STEM images of 2.5Cs-10Ru/AC catalysts. (a) Fresh and (b) used samples.
Figure S6. TPR-TCD and TPR-MS profiles of RuO₂.
Figure S7. TPR-TCD and TPR-MS profiles of MPC-18.
Figure S8. TPR-TCD and TPR-MS profiles of 10Ru/MPC-18 obtained by the dispersion of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing 0.31 g of nitrosylruthenium(III) nitrate (Ru(NO)(NO$_3$)$_3$) and slowly heating to around 70–80 °C until the solvent completely evaporated. This was followed by calcination at 400 °C for 3 h in N$_2$ at a ramp rate of 5 °C min$^{-1}$.
Figure S9. TPR-TCD and TPR-MS profiles of 2.5Cs/MPC-18 obtained by the dispersion of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing a 0.40 g of cesium carbonate (Cs₂(CO₃)) and slowly heating to around 70–80 °C until the solvent completely evaporated.
Figure S10. TPR-MS profiles of freshly prepared catalysts (a) 2.5Cs-10Ru/AC, (b) 2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.
Figure S11. TPR-MS profiles (m/z = 18) of freshly prepared Cs-Ru catalysts.
Figure S12. HRTEM images and Ru particle size distributions of the used catalysts. (a) 2.5Cs-10Ru/MPC-AC, (b) 2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.
Figure S13. Wide-angle XRD patterns of used catalysts. (a) 2.5Cs-10Ru/AC, (b) 2.5Cs-10Ru/MPC-15, 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.
Figure S14. Rate of ammonia synthesis as a function of reaction temperature over the 10Ru/MPC-18 and 2.5Cs/MPC-18 catalysts at an SV value of 9000 h⁻¹.