High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release

Chenchen Cui 1, Junwei Ma 2, Zhongpeng Wang 1,*, Wei Liu 1, Wenxu Liu 1 and Liguo Wang 1,*

1 School of Water Conservation and Environment, University of Jinan, 336 West Road of Nanxinzhuang, Jinan 250022, China
2 Environmental protection monitoring station of Anqiu, Shongdong Province, Middle section of Gongnong Road, Anqiu 262100, China
* Correspondence: chm_wangzp@ujn.edu.cn (Z.W.); chm_wanglg@ujn.edu.cn (L.W.); Tel.: +86-531-8276-9233 (Z.W.); +86-136-9861-3168 (L.W.)
Table S1. Summary of catalysts NO\textsubscript{x} storage capacity and reaction conditions.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Calcination Temperature (°C)</th>
<th>S_{BET} (m2·g-1)</th>
<th>NSC (mg·g-1)</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnMgAlO\textsubscript{x}</td>
<td>400</td>
<td>243.3</td>
<td>9.3</td>
<td>13.5</td>
</tr>
<tr>
<td>CoMg\textsubscript{2}Al\textsubscript{1}O\textsubscript{x}</td>
<td>800</td>
<td>23.8</td>
<td>2.4 (100°C)</td>
<td>-</td>
</tr>
<tr>
<td>Ag/MgAlO</td>
<td>500</td>
<td>180</td>
<td>7.3</td>
<td>6.6</td>
</tr>
<tr>
<td>Ca:Co:AlO</td>
<td>800</td>
<td>72</td>
<td>4.5 (100°C)</td>
<td>-</td>
</tr>
<tr>
<td>RuMgAlO</td>
<td>600</td>
<td>280</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mn\textsubscript{0.4}Sn\textsubscript{0.3}Ce\textsubscript{0.3}O</td>
<td>500</td>
<td>120.9</td>
<td>8.7(100°C)</td>
<td>-</td>
</tr>
<tr>
<td>MnO\textsubscript{x}–SnO\textsubscript{2}</td>
<td>500</td>
<td>83.1</td>
<td>8.7(100°C)</td>
<td>-</td>
</tr>
<tr>
<td>La\textsubscript{0.7}Sr\textsubscript{0.3}MnO\textsubscript{3}</td>
<td>700</td>
<td>-</td>
<td>-</td>
<td>4.9</td>
</tr>
<tr>
<td>Pt/BaO/CeO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3}</td>
<td>500</td>
<td>93</td>
<td>-</td>
<td>7.4</td>
</tr>
<tr>
<td>1%Pt/BaO/Al\textsubscript{2}O\textsubscript{3}</td>
<td>500</td>
<td>160</td>
<td>3.2</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure S1. NO$_x$ adsorption and desorption profiles of the samples: (a) Mn0, (b) Mn5, (c) Mn10, (d) Mn15, (e) Mn20 catalysts at 300 °C. (Reaction conditions: 1000 ppm NO, 5 vol.% O$_2$, balanced with He, 100 mL/min; STP = 0 °C, 1 atm).
Figure S2. NO\textsubscript{x} adsorption and desorption profiles of Mn15 catalyst at different temperatures: (a) 150 °C, (b) 200 °C, (c) 250 °C, (d) 300 °C, (e) 350 °C. (Reaction conditions: 1000 ppm NO, 5 vol.% O\textsubscript{2}, balanced with He, 100 mL/min; STP = 0 °C, 1 atm).
Figure S3. lean-rich cycling performance of Mn15 sample at different temperatures: (a) 150°C, (b) 200 °C, (c) 250 °C, (d) 300 °C, (e) 350 °C. (lean condition: 500 ppm NO, 7.5 vol.% O₂, balanced with He, 50 mL/min; rich condition: 5 vol.% H₂, balanced with N₂, 50 mL/min; STP = 0 °C, 1 atm).
References

1. Yang, R.Y.; Cui, Y.H.; Yan, Q.H.; Zhang, C.; Qiu, L.; O’Hare, D.; Wang, Q. Design of highly efficient NO\textsubscript{x} storage-reduction catalysts from layered double hydroxides for NO\textsubscript{x} emission control from naphtha cracker flue gases. Chem. Eng. J. 2017, 326, 656-666.

7. Wei, L.S.; Li, J.H.; Tang, X.F. NO\textsubscript{x} storage at low temperature over MnO\textsubscript{1-x}–SnO\textsubscript{2} binary metal oxide prepared through different hydrothermal process. Catal. Lett. 2009, 127, 107-112.

8. Dong, Y.-H.; Xian, H.; Lv, J.-L.; Liu, C.; Guo, L.; Meng, M.; Tan, Y.-S.; Tsubaki, N.; Li, X.-G. Influence of synthesis conditions on NO oxidation and NO\textsubscript{x} storage performances of La\textsubscript{0.8}Sr\textsubscript{0.2}MnO\textsubscript{3} perovskite-type catalyst in lean-burn atmospheres. Mater. Chem. Phys. 2014, 143, 578-586.
