High Performance of Mn-Doped MgAlOₓ Mixed Oxides for Low Temperature NOₓ Storage and Release

Chenchen Cui 1, Junwei Ma 2, Zhongpeng Wang 1,*®, Wei Liu 1, Wenxu Liu 1 and Liguo Wang 1,*

1 School of Water Conservation and Environment, University of Jinan, 336 West Road of Nanxinzhuang, Jinan 250022, China
2 Environmental Protection Monitoring Station of Anqiu, Shongdong Province, Middle Section of Gongnong Road, Anqiu 262100, China
* Correspondence: chm_wangzp@ujn.edu.cn (Z.W.); chm_wanglg@ujn.edu.cn (L.W.); Tel.: +86-531-8276-9233 (Z.W); +86-136-9861-3168 (L.W.)

Received: 19 July 2019; Accepted: 7 August 2019; Published: 9 August 2019

Abstract: NOₓ storage-reduction (NSR) is a potential approach for the effective removal of NOₓ under the lean conditions in lean-burn engines. Herein, manganese-doped mixed oxides (Mn/MgAlOₓ) with high performance for low temperature NOₓ storage and release were derived from hydrotalcites precursors prepared by a facile coprecipitation method. The catalysts were characterized by X-ray diffraction (XRD), SEM, N₂ adsorption-desorption, H₂-TPR, FT-IR, and X-ray photoelectron spectroscopy (XPS) techniques. The Mn-doped MgAlOₓ catalysts exhibited high NOₓ storage capacity (NSC) at low temperature range (150–300 °C), which was related to their increased surface area, improved reducibility and higher surface Mn³⁺ content. The largest NSC measured, 426 µmol/g, was observed for NOₓ adsorption at 200 °C on Mn15 catalyst (the sample containing 15 wt% of Mn). The in situ DRIFTS spectra of NOₓ adsorption proved that the Mn-doped hydrotalcite catalysts are preferred for low temperature NOₓ storage and release due to their ability to store NOₓ mainly in the form of thermally labile nitrites. NSR cycling tests revealed the NOₓ removal rate of Mn15 sample can reach above 70% within the wide temperature range of 150–250 °C. Besides, the influence of CO₂, soot, H₂O and SO₂ on NOₓ storage performance of Mn15 catalyst was also studied. In all, owning to their excellent NOₓ storage capacity, NSR cycling performance, and resistance to CO₂, soot, SO₂ and H₂O, the Mn-doped MgAlOₓ NSR catalysts have broad application prospects in NOₓ control at low temperatures.

Keywords: hydrotalcite; manganese; NOₓ storage; release; low temperature

1. Introduction

The Lean-burn engines (diesel and lean-burn gasoline engines) are gradually being promoted and applied due to their high fuel economy and low pollution emissions. Traditional three-way catalysts (TWC), however, have low NOₓ removal efficiency under lean-burn conditions, which are not satisfied with the strict emission standards. NOₓ storage and reduction (NSR) technology is a potential method to effectively solve the problem of vehicle exhaust pollution [1–3]. NSR operates in a cyclic pattern with alternating lean-burn and rich-burn periods. Under lean-burn conditions, NO is oxidized to NO₂ by the active component of the catalysts and stored in the form of nitrite or nitrate. While in the very short rich-burn conditions, stored NOₓ can be released and reduced, at the same time, the catalysts are regenerated [4,5]. A typical NSR catalyst is primarily composed of active component (generally a noble metal), storage component (an alkali metal or alkaline earth metal) and supports having large specific surface area. Presently, Pt/BaO/Al₂O₃ system is regarded as a model NSR catalyst and has been extensively studied [6–9]. Nevertheless, this catalyst system also has some disadvantages, such as the...
inferior resistance to SO$_2$, CO$_2$ and water vapor, as well as thermal degradation. Many strategies have been reported to solve these problems, for example, looking for the best Pt/Ba ratio [10,11], using MgO or CaO instead of BaO [12], adding various metal components [13–15], or applying hydrotalcite-like materials and their derivatives, et al. Furthermore, it is worth noting that although Pt/BaO/Al$_2$O$_3$ catalyst exhibits excellent activity at higher temperatures (> 300 °C) owing to the powerful basicity of BaO, it has insufficient NO$_x$ storage capability at low temperatures. It is reported that the typical engine-out temperatures are about 150–350 °C [2]. Therefore, how to exploit the NSR catalysts with good low temperature activity is an urgent problem to be solved in this field.

Mn-based mixed oxides have been thoroughly studied at length and proved to exhibit good low-temperature activity for selective catalytic reduction (SCR), NO oxidation and simultaneous soot-NO$_x$ removal. Wu et al. [16] reported MnO$_x$/TiO$_2$ mixed oxides for low-temperature NH$_3$-SCR. They found that the conversion rate of NO$_x$ can reach nearly 100% at 120–220 °C after adding Ce, and doping V to MnO$_x$/TiO$_2$ catalysts can efficiently increase the selectivity of nitrogen. Tian et al. [17] prepared three different morphologies MnO$_2$ using a hydrothermal method and observed that MnO$_2$ nanorods exhibited the highest activity for reduction of NO$_x$ with conversion efficiencies of above 90% in the range of 250–300 °C. Qi et al. [18] investigated the Mn-Ce mixed oxides for NO oxidation and found that the incorporation of ZrO$_2$ into MnO$_x$-CeO$_2$ can improve the NO oxidation activity. Additionally, Mn has been proved to be an effective dopant for Ba-based NO$_x$ storage and reduction catalysts due to its higher NO oxidizability [19–21]. Li et al. [22] studied the hydrotalcite-based Mn$_x$Mg$_{3-x}$AlO catalysts and revealed that the Mn$^{4+}$ ions are the most active species for soot combustion and simultaneous soot-NO$_x$ removal.

Mn-based mixed oxides also possess excellent NO$_x$ adsorption performance at low temperatures. Guo et al. [23] investigated MnO$_x$ catalysts with different calcination temperatures for NO adsorption and noticed that the catalyst calcined at 550 °C containing a single α-Mn$_2$O$_3$ phase exerted the best NO adsorbability. Machida et al. [24,25] observed that Mn-Ce oxides have superior NO$_x$ removal at temperatures lower than 150 °C. Huang et al. [26] studied a sequence of Fe-Mn-based metal oxides for NO$_x$ adsorption at 25 °C and pointed out that they were efficient catalysts for NO$_x$ removal. Sun et al. [27] reported that Mn-Sn-Ce-O catalysts with different Sn/(Mn + Sn + Ce) molar ratios showed higher NO$_x$ storage capacity at 100 °C, with Mn$_{0.4}$Sn$_{0.5}$Ce$_{0.1}$ showing the highest NSC of 565.9 μmol/g. Recently, Guo et al. [28] systematically studied the NO$_x$ storage and release in the alternative lean-burn/rich-burn atmospheres over Mn$_2$O$_3$, Mn$_2$O$_4$ and MnO$_2$ catalysts at low temperatures (≤ 200 °C) and found that Mn$_2$O$_3$ showed high NO oxidizability and MnO$_2$ had the biggest NO$_x$ storage capacity. They suggested that the Mn$^{3+}$ ions and surface-active oxygen species are the key to high NO oxidation activity. Zeng et al. [29] found that MnO$_x$-CeO$_2$ catalysts exhibited stronger ability to adsorb NO$_x$ and resistance to SO$_2$ poisoning than that of MnO$_x$-TiO$_2$ catalysts, which was attributed that MnO$_x$-CeO$_2$ catalysts possess more Mn$^{3+}$ and surface adsorbed oxygen.

Recently, well-dispersed metal oxides derived from hydrotalcite-like compounds (also called layered double hydroxides, LDH) have aroused wide attention from researchers due to their special layer structure, exchangeability of anions, stronger basicity, memory effect and superior thermostability [30–32], wherefor they are attractive active environmental catalysts and promising substitution of the commercial NSR catalysts. Whereas, similar to Pt/BaO/Al$_2$O$_3$ NSR catalysts, Mg/Al hydrotalcite derived oxides also have inferior performance in NO$_x$ storage and release at low temperatures. Extensive researches have shown that the incorporation of active component (e.g., Cu [33], Fe [34], Co [35], Ag [36]) into hydrotalcite precursors can effectively enhance the reox properties and NSR catalytic properties of the oxides’ catalysts.

In consideration of excellent NO oxidation activity of Mn-based oxides and potential NO$_x$ storage performance of hydrotalcites catalysts, a series of Mn-doped MgAlO$_x$ catalysts derived from hydrotalcites were prepared as alternative NSR catalysts and their low-temperature performance have been studied in the present work. The Mn-doped oxides were synthesized using an LDH approach using a cetyltrimethyl ammonium bromide (CTAB)-assisted co-precipitation method, which can obtain
large surface area, high metal dispersion and thermal stability. The molar ratio of divalent and trivalent metal ions in raw materials was controlled to 3:1 in order to obtain LDH precursors with high crystallinity [31]. Then we can effectively utilize the dispersing effect of LDH structure on active metal components. Specific studies were implemented to characterize the NOx storage and release performance of samples. The surface species formed during NOx adsorption were investigated by in situ DRIFTs measurements. Finally, the effects of CO2, soot, H2O and SO2 on NOx storage performance of Mn15 catalyst were also studied.

2. Results and Discussions

2.1. XRD Analysis

The XRD patterns of the Mn/Mg/Al hydrotalcites precursors are presented in Figure 1a. The chemical composition of the synthesized precursors, the lattice parameters, as well as mean crystallite size are displayed in Table 1. For all the precursors, the characteristic diffraction peaks at 11°, 23°, 34°, 38°, 46°, 61°, and 63° corresponding to hydrotalcite-like compound (JCPDS 22-0700) were observed, which can be assigned to the (003), (006), (009), (015), (018), (110) and (113) crystal planes, respectively. The addition of Mn to Mg/Al hydrotalcites led to the appearance of weak characteristic diffraction peaks corresponding to MnCO3 at 2θ = 24.2°, 32°, 42.5° and 53°. Furthermore, the peak of crystal plane (003) shifted to higher 2θ angle with the increase of Mn contents, which was ascribed to lattice contraction due to the isomorphous substitution of Mg2+ by manganese cations with smaller ionic radius. A decrement of lattice parameter a was observed in Mn-based samples, implying part of Mn dopant may incorporate into the Mg/Al hydrotalcite structure. Besides, the parameter c decreased when dopant Mn was introduced, which was due to the revised electrostatic interactions between the layer and the interlayer network [37]. As shown in Table 1, the mean crystallite size of the Mn/Mg/Al hydrotalcite varied in the range of 9–19 nm, with the largest size of 18.8 nm for Mn10-HT sample.

![Figure 1](image_url). X-ray diffraction (XRD) patterns of hydrotalcite precursors (a) and calcined samples (b).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Metal Molar Ratio in Mixed Salt Solution</th>
<th>2θ (°) a</th>
<th>Lattice Parameter a (Å)</th>
<th>c (Å)</th>
<th>Xs (nm) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn0-HT</td>
<td>Mg:Al = 75:25</td>
<td>11.32</td>
<td>3.101</td>
<td>23.435</td>
<td>10.5</td>
</tr>
<tr>
<td>Mn5-HT</td>
<td>Mn:Mg:Al = 5:70:25</td>
<td>11.35</td>
<td>3.099</td>
<td>23.431</td>
<td>9.8</td>
</tr>
<tr>
<td>Mn15-HT</td>
<td>Mn:Mg:Al = 15:60:25</td>
<td>11.51</td>
<td>3.098</td>
<td>23.429</td>
<td>14.4</td>
</tr>
</tbody>
</table>

a 003 crystal face. b Mean crystallite size calculated from the 003 and 110 crystal face according to Debye-Scherrer equation.
After calcination at 600 °C, the hydrotalcite structure was completely decomposed and new oxide derivatives were formed (Figure 1b). The diffraction patterns of Mn0 sample showed three well-defined peaks centered at 35°, 43° and 62°, which belonged to the MgO phase (JCPDS 45-0946). However, the peaks of MgO phase became gradually weaker with increasing Mn content. At the same time, new diffraction peaks at 18°, 33°, 36.5°, 38.5°, 45°, 52°, 54°, 58.5°, 60 °, 61° and 65° can be observed after Mn doping, which can be attributed to Mn$_3$O$_4$ phase (JCPDS 80-0382) and/or MgMn$_2$O$_4$ spinel phase (JCPDS 23-0392). Because the peaks position of Mn$_3$O$_4$ and MgMn$_2$O$_4$ spinel are very similar, it is difficult to differentiate them from the XRD results.

2.2. SEM Analysis

The morphology of the calcined oxides catalysts was studied by SEM as demonstrated in Figure 2. After calcination at 600 °C, the hydrotalcite-like layer structure was collapsed and small particles of mixed oxides were formed. The particles were agglomerated together, which may be related to the high temperature calcination. Mn0 sample exhibited a worm-like structure with plentiful intergranular pores. No distinct morphological changes can be observed on Mn5 sample. However, Mn15 catalyst showed a spherical shape nanoclusters structure. Small pores formed by the accumulation of elementary particles were observed on all oxides, which was in favor of the gaseous reaction in the catalytic process [38].

![Figure 2. Cont.](image-url)
2.3. N2 Adsorption-Desorption Characterization

The nitrogen adsorption-desorption isotherms and pore size distributions of the catalysts are exhibited in Figure 3. All the hydrotalcites-derived mixed oxides showed IUPAC type IV isotherms, indicating that the hydrotalcite-like samples produced mesoporous mixed oxides after calcined at 600 °C. The H3 type of hysteresis loops indicate a capillary condensation in a high P/P0 range of 0.6–1.0 [39]. The hysteresis loop is usually found in adsorbents containing slit-shaped pores.

Figure 2. SEM images of Mn0 (a,b), Mn5 (c,d) and Mn15 (e,f).

Figure 3. Cont.
As seen from the pore size distribution curves, a large proportion of pores fell in mesopores range (2 nm < rp < 50 nm) with a fraction in macro size, suggesting that the catalysts are hierarchical porous materials. The specific surface areas, pore volume and average pore diameter of samples are presented in Table 2. All the samples showed relatively large surface areas of 100–140 m²·g⁻¹. Mn substitution substantially increased the specific surface areas of the samples. The high surface areas can offer more accessible active sites for NOₓ adsorption on the catalysts. The averaged pore diameter varied in the range of 14–23 nm, which was beneficial for gas molecule diffusion in the pores during NOₓ adsorption and desorption process [32].

Table 2. Textural properties of the oxide catalysts.

<table>
<thead>
<tr>
<th>Sample</th>
<th>SBET a (m²·g⁻¹)</th>
<th>VP b (cm³·g⁻¹)</th>
<th>DP c (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn0</td>
<td>108</td>
<td>0.67</td>
<td>16.9</td>
</tr>
<tr>
<td>Mn5</td>
<td>144</td>
<td>0.68</td>
<td>14.3</td>
</tr>
<tr>
<td>Mn10</td>
<td>136</td>
<td>0.55</td>
<td>16.0</td>
</tr>
<tr>
<td>Mn15</td>
<td>133</td>
<td>0.83</td>
<td>22.6</td>
</tr>
<tr>
<td>Mn20</td>
<td>139</td>
<td>0.82</td>
<td>19.6</td>
</tr>
</tbody>
</table>

a The BET specific surface area. b Total pore volume. c Average pore diameter.

2.4. XPS and H₂-TPR Characterization

X-ray photoelectron spectroscopy (XPS) characterization was implemented on samples in order to define the surface species. The XPS spectra of Mn2p and O1s are showed in Figure 4. As shown in Figure 4a, the Mn 2p XPS spectra of the Mn5, Mn10, Mn15 and Mn20 samples presented two peaks centered at around 642.7 eV and 654.2 eV, corresponding to Mn 2p3/2 and Mn 2p1/2, respectively [40]. The Mn 2p3/2 peak was relatively wide, because manganese existed in different oxidation states on the surface of the catalysts. By deconvoluting, it can be fitted into three peaks located at around 643.9 eV, 642.7 eV and 654.2 eV, corresponding to Mn 4⁺, Mn 3⁺, and Mn 2⁺, respectively [41]. Additionally, surface Mn 3⁺ was reported to perform better catalytic activity than Mn 4⁺ and Mn 2⁺ in the NO oxidation reaction [28,29,42]. In order to define the relative concentration of Mn 3⁺ ions in samples, the molar ratio of Mn 3⁺/(Mn 3⁺ + Mn 4⁺) was calculated from XPS results and summarized in Table 3. As shown, Mn15 and Mn20 samples possessed higher surface Mn 3⁺ content compared to others.

O1s spectra in Figure 4b exhibit two fitted oxygen peaks, which correspond to two types of surface oxygen species. The peak centered at ~531.2 eV can be assigned to lattice oxygen (Oₗₐₜ) [43], while the peak at ~532.6 eV can be assigned to surface adsorbed oxygen (O_ads) [44,45]. We calculated the value of O_ads/(Oₗₐₜ + O_ads) to roughly estimate the amount of surface adsorbed oxygen for all samples and the obtained results are illustrated in Table 3. After addition of Mn, the surface adsorbed oxygen content...
decreased. However, further increase of Mn doping had no significant effect on the surface adsorbed oxygen content. It can be speculated that the surface adsorbed oxygen content was not a decisive factor in the NOx storage capacity.

H2-TPR experiments were performed to study the reducibility of the catalysts. The TPR profiles are displayed in Figure 5. No reduction peak was observed on Mn0 sample. However, after Mn doping, two peaks located at about 250 °C and 460 °C appeared, which can be ascribed to the reduction of Mn3O4 [46]. Based on literature reports, the lower temperature peak was ascribed to the reduction of Mn4+→Mn3+, whereas the higher temperature peak was ascribed to the reduction of Mn3+→Mn2+ [18,47]. Obviously, the higher temperature reduction peak was stronger, which may also include the reduction of Mn3+ in MgMn2O4 spinel. Therefore, the H2-TPR data was basically consistent with the phase composition of the catalysts in XRD analysis. Mn3O4 and MgMn2O4 spinel are the main crystalline phase besides brucite MgO, especially for oxides samples with higher Mn content. As shown in Table 3, relative Mn 3+ content estimated from integrated reduction peak areas increased with increasing Mn doping. Mn15 and Mn20 samples had higher Mn 3+ content compared to others, which was in keeping with XPS results.

Interestingly, as the Mn content increased, the first reduction peak shifted to lower temperature range, indicating that Mn doping can improve the reducibility of the samples. The H2 consumption of all samples was calculated and the results were listed in Table 3. It can be concluded that with the increase of Mn content, more H2 was consumed. Noticeably, Mn15 catalyst possessed the highest H2 consumption of 34.86 mmol·g⁻¹.

![Figure 4. X-ray photoelectron spectroscopy (XPS) spectra for Mn2p (a) and O1s (b) of the catalysts.](image)

![Figure 5. H2-TPR profiles of the samples.](image)
With increasing reaction time, NO and a small amount of NO\textsubscript{2} reveal that the dopant Mn can facilitate the oxidation of NO with 39.5\% NSE for Mn\textsubscript{0} sample after 30 min storage. It is related to the fact that Mn was profitable for the initial stage of adsorption, and higher NSE, for example, an NSE of about 60\% was achieved for Mn\textsubscript{15} and Mn\textsubscript{20} catalysts compared to Mn\textsubscript{0} catalyst.

2.5. \textit{NO\textsubscript{x}} Adsorption and Desorption Behavior

\textit{NO\textsubscript{x}} adsorption experiments were implemented at 300 °C to investigate the effect of Mn incorporation on \textit{NO\textsubscript{x}} storage. The obtained \textit{NO\textsubscript{x}} concentration profiles are showed in Figure S1. At the initial stage of adsorption, no \textit{NO\textsubscript{x}} was monitored in the outlet, indicating \textit{NO\textsubscript{x}} was all adsorbed on the catalysts surface. Subsequently, with increasing adsorption time, \textit{NO\textsubscript{x}} concentrations at the outlet increased continually and then reached to a steady state. This phenomenon suggested that the adsorption process achieved a stable equilibrium. Additionally, in the whole process, small amount of NO\textsubscript{2} was detected at the outlet, indicating the oxidation of NO to NO\textsubscript{2} on the catalysts. With the increase of Mn content, the NO\textsubscript{2} percentage at the outlet after adsorption saturation was 5.7\%, 12.5\%, 17.5\%, 25.0\%, 25.2\%, respectively, revealing that the dopant Mn can facilitate the oxidation of NO into NO\textsubscript{2}.

The \textit{NO\textsubscript{x}} storage efficiency (NSE) based on the \textit{NO\textsubscript{x}} adsorption profiles are summarized in Table 4. At the beginning of storage (less than 1 min), \textit{NO\textsubscript{x}} was all stored on the oxides catalysts. However, differences in NSE became increasingly obvious with increasing storage time. Mn doping resulted in higher NSE, for example, an NSE of about 60\% was achieved for Mn\textsubscript{15} and Mn\textsubscript{20} catalysts compared with 39.5\% NSE for Mn\textsubscript{0} sample after 30 min storage. It is related to the fact that Mn was profitable for the oxidation of NO into NO\textsubscript{2}, which was stored more effectively.

The \textit{NO\textsubscript{x}} desorption profiles of the catalysts after \textit{NO\textsubscript{x}} adsorption at 300 °C are displayed in Figure S1. For Mn\textsubscript{0} catalyst, the \textit{NO\textsubscript{x}} desorption followed a two-step process, corresponding to the desorption of various nitrates and nitrites, respectively. NO was the primary species and less than 20 ppm NO\textsubscript{2} over 200–700 °C was produced. After Mn doping, the \textit{NO\textsubscript{x}} desorption followed a one-step process, and the peak temperature of desorption shifted to lower temperature, indicating that Mn decreased the stability of the formed nitrite and nitrate species. The \textit{NO\textsubscript{x}} storage capacity (NSC) of the catalysts calculated from desorption profiles are displayed in Figure 6. It is noticeable that the NSC significantly increased from 50 \mu mol/g for Mn\textsubscript{0} sample to about 160–200 \mu mol/g after Mn doping, indicating that Mn played a key role in \textit{NO\textsubscript{x}} storage. The improvement can be ascribed to the increased surface area, promoted oxidation of NO into NO\textsubscript{2}, and high surface adsorbed oxygen species. Notably, Mn\textsubscript{15} sample showed the best \textit{NO\textsubscript{x}} storage capacity (206 \mu mol/g) at 300 °C. When the dopant Mn continued to increase, the \textit{NO\textsubscript{x}} storage capacity decreased. The decrease in Mn\textsubscript{20} indicated that the doping amount of Mn has a threshold value, beyond which it is not conducive to storage.

In the above studies, Mn\textsubscript{15} catalyst had superior \textit{NO\textsubscript{x}} storage performance, so we further investigated its \textit{NO\textsubscript{x}} storage performance at different adsorption temperatures (150, 200, 250, 300 and 350 °C). The experimental results are presented in Figure S2. Generally speaking, NO was completely trapped by the samples at the outlet and almost no \textit{NO\textsubscript{x}} was monitored at the reactor outlet. With increasing reaction time, NO and a small amount of NO\textsubscript{2} gradually increased and finally reached a certain level. When the catalysts reached adsorption saturation at different temperatures, the NO\textsubscript{2} concentrations at the outlet were 70 ppm, 106 ppm, 145 ppm, 223 ppm, 375 ppm, and 377 ppm, respectively. This reflected that NO oxidation took place on catalysts during \textit{NO\textsubscript{x}} adsorption, and higher adsorption temperatures were profitable to promote the conversion of NO to NO\textsubscript{2}. The \textit{NO\textsubscript{x}} storage efficiency (NSE) of Mn\textsubscript{15} sample at different temperatures are summarized in Table 5.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mn3+/(Mn3+ + Mn4+) (%)</th>
<th>O\textsubscript{ads}/(O\textsubscript{latt} + O\textsubscript{ads}) (%)</th>
<th>H\textsubscript{2} Consumption a (mmol g-1)</th>
<th>Mn3+ % b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn0</td>
<td>-</td>
<td>82</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Mn5</td>
<td>47</td>
<td>65</td>
<td>6.51</td>
<td>69</td>
</tr>
<tr>
<td>Mn10</td>
<td>51</td>
<td>57</td>
<td>10.32</td>
<td>76</td>
</tr>
<tr>
<td>Mn15</td>
<td>67</td>
<td>65</td>
<td>34.86</td>
<td>82</td>
</tr>
<tr>
<td>Mn20</td>
<td>62</td>
<td>64</td>
<td>21.34</td>
<td>78</td>
</tr>
</tbody>
</table>

a The total H\textsubscript{2} consumption of the reduction peaks from 100 to 800 °C. b Relative Mn3+ content estimated from integrated reduction peak areas.
was achieved on all the samples for less than 1 min. Nevertheless, NSE value decreased with increasing reaction time. Within 10 min, over 50% NSE was found on NO\textsubscript{x} adsorption at 150–350 °C, indicating that Mn15 catalyst can effectively store NO\textsubscript{x} at low temperature ranges.

Figure S2 shows the desorption progress of NO\textsubscript{x} on Mn15 catalyst. Apparently, NO\textsubscript{x} desorption followed a two-step process at the adsorption temperature of 150 °C and 200 °C, corresponding to various types of nitrites and nitrates. However, after the adsorption temperature was raised, the NO\textsubscript{x} desorption followed a one-step process. Simultaneously, NO was the main desorption species, accompanied by different amounts of NO\textsubscript{2} depending on the adsorption temperature. The NSC calculated from the desorption profiles of Mn15 sample at different temperatures are listed in Figure 7.

Mn15 catalyst possessed better NO\textsubscript{x} storage capacity of above 200 μmol/g in the temperature range of 150–300 °C. The highest NSC was observed at 200 °C of 426 μmol/g on Mn15. Nevertheless, when the adsorption temperature continued to increase, the NO\textsubscript{x} storage capacity decreased. This decrement was probably due to the decomposition of stored nitrite and nitrate by thermodynamic instability. At the same time, we compared other types of oxide catalysts with excellent NO\textsubscript{x} storage activity reported in recent years. The NO\textsubscript{x} storage performance of different types of catalysts is summarized in the Table S1. It can be seen that the Mn15 catalyst can still exhibit high NO\textsubscript{x} storage capacity at low temperatures compared to the bimetallic oxides and La-containing perovskite-type oxide catalysts, even higher than the costly storage of precious metal Pt-based catalysts and the conventional Pt/BaO/Al\textsubscript{2}O\textsubscript{3} catalysts.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>NO\textsubscript{x} Storage Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 100 100 100 100 100 100</td>
</tr>
<tr>
<td>5</td>
<td>62.8 69.2 79.9 87.2 91.3</td>
</tr>
<tr>
<td>10</td>
<td>39.5 46.4 55.1 60.7 63.4</td>
</tr>
<tr>
<td>30</td>
<td>18.9 23.1 26.0 28.4 28.9</td>
</tr>
<tr>
<td>60</td>
<td>12.9 16.1 17.3 19.2 19.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>NO\textsubscript{x} Storage Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 °C</td>
<td>100 100 100 100 100 100 100</td>
</tr>
<tr>
<td>200 °C</td>
<td>96.1 88.3 80.5 87.2 93.4</td>
</tr>
<tr>
<td>250 °C</td>
<td>69.1 57.5 52.3 60.7 64.2</td>
</tr>
<tr>
<td>300 °C</td>
<td>32.5 24.2 24.3 28.4 30.3</td>
</tr>
<tr>
<td>350 °C</td>
<td>22.9 14.2 15.0 19.2 21.3</td>
</tr>
</tbody>
</table>

Figure 6. NO\textsubscript{x} storage capacity of the catalysts at 300 °C.
were the primary NO\textsubscript{x} species stored on Mn15 catalyst. Compared with Mn5 sample, the rate of nitrite transformation on Mn15 catalyst was higher than that on Mn5 catalyst, revealing that Mn content played a favorable role in the oxidation of nitrite.

Figure 7 shows the in situ DRIFTS spectra of Mn15 sample after exposure to NO + O\textsubscript{2} at different temperatures for 60 min. The specific species are summarized in Table 7. At 150 °C, the broad peak located at 1220 cm-1 was assigned to bridged bidentate nitrite, corresponding to the adsorption of NO on the weak basic sites [32,51]. The weak peak at 1321 cm-1 was associated with bridged bidentate nitrate. For adsorption at 200 °C, the peaks at 1226 cm-1 assigned to bridged bidentate nitrite appeared in the initial stage and later shifted to 1310 cm-1 and 1480 cm-1 that ascribed to bridged bidentate nitrate and monodentate nitrate, indicating a conversion from nitrite to nitrate on the sample. The species formed at 250 °C and 300 °C were similar to that at 200 °C. Differently, the rate of nitrite oxidation was improved with increasing adsorption temperature, indicating high adsorption temperatures accelerated the transformation of nitrites to nitrates. Besides, the peak intensity of nitrate species increased, suggesting high temperatures were favorable to form more stable nitrates species. For adsorption at 350 °C, only bridged bidentate nitrate (1315 cm-1) and monodentate nitrate (1438 cm-1) were formed and became the major species in the final period, implying the storage of NO on the sample followed the “nitrate” pathway. Besides, their intensities increased with an increment in adsorption time. It is concluded that, within 10 min of adsorption, the NO\textsubscript{x} adsorbed species on Mn15 catalyst were mainly various nitrites at lower temperatures (<300 °C), while NO\textsubscript{x} was mainly stored in the form of nitrate at higher temperatures (≥300 °C). Therefore, Mn-doped hydrotalcite catalysts are preferred for low temperature NO\textsubscript{x} storage and release may because they can store NO\textsubscript{x} as thermally labile nitrites.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure7.png}
\caption{NO\textsubscript{x} storage capacity of Mn15 sample at different temperatures.}
\end{figure}

2.6. In Situ DRIFTS Spectra

The in situ DRIFTS spectra experiments were carried out at 300 °C on Mn0, Mn5 and Mn15 catalysts to probe the adsorbed species formed during NO\textsubscript{x} storage. Generally, they were various nitrites and nitrates. The specific species are summarized in Table 6. As can be seen from Figure 8a, when NO + O\textsubscript{2} was introduced to Mn0 catalyst, the peak at 1230 cm-1 attributed to bridged bidentate nitrite appeared within 1 min and its intensity increased with increasing adsorption time. The weak peak located at 1310 cm-1 belonged to bridged bidentate nitrate appeared after 5 min. This indicated nitrites were the dominant adsorbed species on Mn0 sample. For Mn5 catalyst, nitrites were formed rapidly in the initial period. Subsequently, the intensity of nitrates increased whilst that of nitrites decreased, indicating that NO adsorbed on Mn5 to form nitrites and then formed NO\textsubscript{2} and stable nitrates [48–50]. In other words, the storage of NO on Mn5 catalyst followed the “nitrite” pathway. Similar formation and conversion were observed on Mn15 sample. The bands at 1312 cm-1 and 1447 cm-1 due to monodentate nitrate were the primary NO\textsubscript{x} species stored on Mn15 catalyst. Compared with Mn5 sample, the rate of nitrite transformation on Mn15 catalyst was higher than that on Mn5 catalyst, revealing that Mn content played a favorable role in the oxidation of nitrite.

![Figure 7](https://example.com/figure7.png)
2.7. NOx Lean-Rich Cycling Performance

Catalysts

reduced by H2. As shown in Figure 10, it can be found that the average removal rate of the Mn15 sample can reach above 70% in the range of 150–250 °C. Nevertheless, with increasing reaction temperature, the thermodynamic instability nitrite and nitrate were decomposed and released NOx. Subsequently, the released NOx was adsorbed on the catalyst surface and the results are displayed in Figure S3. During the lean periods, NO was first oxidized to NO2 and the results are displayed in Figure S3. During the lean periods, NO was first oxidized to NO2 and NO3-

Figure 9. In situ DRIFTS spectra of NOx adsorption on Mn15 sample at 150 °C (a), 200 °C (b), 250 °C (c), 300 °C (d), and 350 °C (e).

Table 6. Characteristic vibrations of adsorbed NOx species on Mn0, Mn5, Mn15 catalysts.

<table>
<thead>
<tr>
<th>NOx Species</th>
<th>Structure</th>
<th>IR Bands/cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mn0</td>
</tr>
<tr>
<td>Bridged bidentate nitrite</td>
<td>![image]</td>
<td>1230</td>
</tr>
<tr>
<td>Bridged bidentate nitrate</td>
<td>![image]</td>
<td>1310</td>
</tr>
<tr>
<td>Monodenate nitrate</td>
<td>![image]</td>
<td></td>
</tr>
<tr>
<td>Chelating bidentate nitrate</td>
<td>![image]</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Characteristic vibrations of adsorbed NOx species on Mn15 catalyst.

<table>
<thead>
<tr>
<th>NOx Species</th>
<th>Structure</th>
<th>IR Bands/cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>150 °C</td>
</tr>
<tr>
<td>Bridged bidentate nitrite</td>
<td>![image]</td>
<td>1220</td>
</tr>
<tr>
<td>Bridged bidentate nitrate</td>
<td>![image]</td>
<td>1321</td>
</tr>
<tr>
<td>Monodenate nitrate</td>
<td>![image]</td>
<td>1445</td>
</tr>
<tr>
<td>Chelating bidentate nitrate</td>
<td>![image]</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8. In situ DRIFTS spectra of NOx adsorption at 300 °C on Mn0 (a), Mn5 (b) and Mn15 (c).
2.7. NO\textsubscript{x} Lean-Rich Cycling Performance

The lean-rich cycling experiments were also tested on Mn15 sample at different temperatures and the results are displayed in Figure S3. During the lean periods, NO was first oxidized to NO\textsubscript{2} and then NO\textsubscript{2} was stored in the form of nitrate or nitrite. During rich periods, the stored thermodynamic instability nitrite and nitrate were decomposed and release NO\textsubscript{x}. Subsequently, the released NO\textsubscript{x} was reduced by H\textsubscript{2}. As shown in Figure 10, it can be found that the average removal rate of the Mn15 sample can reach above 70% in the range of 150–250 °C. Nevertheless, with increasing reaction temperature, the average removal rate decreased, indicating that Mn15 sample had better lean-rich cycling performance at lower temperatures than that at higher temperatures. It was in accordance with the isothermal NO\textsubscript{x} adsorption and desorption results. This may be related to the fact that NO\textsubscript{x} was mainly stored in the form of labile nitrite at lower temperatures, while NO\textsubscript{x} was mainly stored in the form of stable nitrate at higher temperatures. It has been known that nitrites were more easily decomposed than nitrates, which was profitable to the regeneration of the catalysts, thus improving the average removal rate of the catalysts.
with a certain sulfur and water resistance.

during the NO\textsubscript{x} storage and release process, Mn15 catalyst exhibited high resistance to CO\textsubscript{2} and soot, with a certain sulfur and water resistance.

2.8. The Influence of CO\textsubscript{2}, Soot, H\textsubscript{2}O, and SO\textsubscript{2}

To further investigate the influence of CO\textsubscript{2}, soot, H\textsubscript{2}O and SO\textsubscript{2} on catalysts, the isothermal NO\textsubscript{x} storage performance tests were carried out on Mn15 sample at 200 °C. As shown in Figure 11, after the introduction of CO\textsubscript{2}, soot, H\textsubscript{2}O and SO\textsubscript{2}, the NO\textsubscript{x} storage performance of Mn15 catalyst had different degrees of decrement. Or rather, after adding CO\textsubscript{2}, the NO\textsubscript{x} storage capacity of the sample slightly decreased from 426 \(\mu\text{mol}/\text{g}\) to 409 \(\mu\text{mol}/\text{g}\), which was attributed that CO\textsubscript{2} competed with NO\textsubscript{x} for chemical adsorption sites [52]. Similar results were observed on soot-catalyst mixtures. It may be related to the fact that the exothermic combustion of soot destabilized the stored species and the soot combustion produced CO\textsubscript{2} would compete with NO\textsubscript{x} for storage sites on the catalyst.

According to reports [53], the total exhaust usually contains about 2–15% H\textsubscript{2}O, thus the influence of water vapor on the NO\textsubscript{x} storage was examined. It can be clearly seen that H\textsubscript{2}O restrained the NO\textsubscript{x} storage capacity by close to 42%, which was due to the competitive adsorption between NO\textsubscript{x} and H\textsubscript{2}O on the surface of the catalyst [54]. Then SO\textsubscript{2} was also taken into consideration, the NSC significantly decreased from 426 \(\mu\text{mol}/\text{g}\) to 242 \(\mu\text{mol}/\text{g}\). This deactivation caused by SO\textsubscript{2} could be related to the formation of sulfites and sulfates, which would decrease the basicity of the storage sites. In conclusion, during the NO\textsubscript{x} storage and release process, Mn15 catalyst exhibited high resistance to CO\textsubscript{2} and soot, with a certain sulfur and water resistance.
3. Experimental

3.1. Preparation of Catalysts

The Mn/Mg/Al hydrotalcites precursors were prepared using a cetyltrimethyl ammonium bromide (CTAB)-assisted co-precipitation method [55]. The mixed salt solution is composed of metal nitrates of Mg(NO$_3$)$_2$·6H$_2$O, Al(NO$_3$)$_3$·9H$_2$O and Mn(NO$_3$)$_2$·4H$_2$O with disparate metal molar ratio displayed in Table 1. The mixed basic solution includes 2 M NaOH and 1 M Na$_2$CO$_3$. The two solutions were simultaneously added dropwise into deionized water at constant pH = 10.0 under mechanical stirring. Then, the CTAB (with a 0.1:1 ratio of CTAB to metal ions) solution was added into the mixed solution. The achieved precipitate was suspended and stirred at 60 $^\circ$C for 18 h. After filtration, it was thoroughly washed with anhydrous ethanol and deionized water until the pH of the filtrate was around 7. The filtered precipitates were dried at 80 $^\circ$C for 12 h to receive hydrotalcites precursors. In the end, the as-prepared hydrotalcites were calcined at 600 $^\circ$C in air for 6 h to obtain the mixed oxide catalysts, marked as Mn0, Mn5, Mn10, Mn15 and Mn20, respectively.

3.2. Catalysts Characterization

The X-ray diffraction (XRD) patterns were measured on a BRUKER-AXS D8Adance X-ray Diffractometer (Bruker, Berlin, Germany) operating at 40 kV and 30 mA using Cu Ka radiation (λ = 1.5418 Å). The scanning angle (2θ) range was 5–90$^\circ$ with a step size of 0.02$^\circ$ and the scanning speed was 6$^\circ$/min.

The scanning electron microscopy (SEM) images were observed on a Quanta FEG250 instrument (FEI, Houston, TX, USA) with an accelerating voltage of 10 kV. Prior to each test, catalysts were sprayed with gold for better conductivity.

N_2 adsorption/desorption experiments were conducted on a Micromeritics ASAP 2460 surface area analyzer (Micromeritics Instruments, Norcross, GA, USA). The samples were outgassed at 300 $^\circ$C under vacuum for 6 h before analysis. The specific surface areas of the catalysts were determined according to the BET equation. The desorption curves of the catalyst were analyzed by BJH (Barrett-Joyner-Halenda) method to obtain the mean pore size and pore size distribution.

X-ray photoelectron spectroscopy (XPS) analysis was performed using a Thermo Scientific Escalab 250Xi X-ray photoelectron spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with Al Ka X-ray radiation source. The measured binding energies were adjusted using C1s peak (BE = 284.6 eV) as standard.

H_2 temperature-programmed reduction (H_2-TPR) measurements were conducted on a quartz reactor. The H_2 signal was detected by a thermal conductivity detector (TCD). A 50 mg catalyst (40–80 mesh) was preprocessed at 500 $^\circ$C for 30 min in a flow of N_2 (50 mL/min) and then cooled to room temperature. In the end, the reactor was heated in a flow of 5% H_2/N_2 (50 mL/min) at a rate of 10 $^\circ$C/min from room temperature to 900 $^\circ$C. CuO was used as a calibration reference to quantify H_2 consumption.

3.3. NO$_x$ Storage and Desorption Measurements

The isothermal NO$_x$ storage experiments were implemented in a quartz flow reactor using 50 mg of the catalysts (40–80 mesh). Samples were pretreated at 500 $^\circ$C for 1 h in N_2 and then cooled to the experimental temperature. When the temperature stabilized at the experimental temperature, the flow gas of 1000 ppm NO + 5 vol.% O$_2$ in He at a rate of 100 mL/min was introduced for 1 h for NO$_x$ adsorption. Concentrations of NO, NO$_2$ and NO$_x$ from the reactor outlet was detected by the chemiluminescence NO$_x$ analyzer (Model 42i-HL, Thermo Fisher Scientific, Waltham, MA, USA.).
The NO\textsubscript{x} storage efficiency (NSE) was calculated by integrating the concentration curves of NO\textsubscript{x} according to the following Equation (1).

\[
{\text{NSE}} = \left({1 - \frac{{\int_0^t {\text{NO}}_{x,\text{out}} dt}}{\int_0^t {\text{NO}}_{x,\text{in}} dt}} \right) \times 100\% \quad (1)
\]

\({\text{NO}}_{x,\text{in}} \) is the NO\textsubscript{x} concentration at the reactor inlet (ppm), \({\text{NO}}_{x,\text{out}} \) is the NO\textsubscript{x} concentration at the reactor outlet (ppm), \(t \) is the storage time (s).

After the NO\textsubscript{x} adsorption, 100 mL/min \(\text{N}_2 \) was introduced to purge the catalysts for 30 min until NO\textsubscript{x} was not detected. The temperature programmed desorption (TPD) reactions were implemented by heating the catalysts from 100 °C to 700 °C at a heating rate of 10 °C/min in 100 mL/min \(\text{N}_2 \). Concentrations of NO, NO\textsubscript{2} and NO\textsubscript{x} at the reactor outlet were detected. In order to study the influence of CO\textsubscript{2}, H\textsubscript{2}O and SO\textsubscript{2} on NO\textsubscript{x} storage, 1200 ppm CO\textsubscript{2}, 5% water vapor or 50 ppm SO\textsubscript{2} were introduced to the input gases. Besides, the influence of soot was also studied. The model soot used in the present study was Printex-U provided by Degussa company. Its average particle size is 25 nm and the specific surface area is 93.5 m2/g. Elemental analysis showed that its carbonaceous nature was 90.43 wt% C, 1.09 wt% H, 0.17 wt% N and 0.51 wt% S. The volatile matter was detected to be about 5 wt% and desorbed at about 200 °C (by thermogravimetric analysis). The soot-catalyst mixture was mixed in a 1/20 weight ratio and grinded for “loose contact” condition. The NO\textsubscript{x} storage capacity (NSC) of the catalyst was estimated by integrating the concentration curves of desorbed NO\textsubscript{x} according to the following Equation (2).

\[
{\text{NSC}} = \left({\int_0^t {\text{NO}}_{x,\text{out}} dt} \right) \times \frac{F}{{22.4 \times R_T \times m}} \quad (2)
\]

\({\text{NO}}_{x,\text{in}} \) is the NO\textsubscript{x} concentration at the reactor inlet (ppm), \({\text{NO}}_{x,\text{out}} \) is the NO\textsubscript{x} concentration at the reactor outlet (ppm), \(t \) is the desorption time (s). \(F \) is the total flow rate of the inlet gas (mL/min; STP = 0 °C, 1 atm), \(R_T \) is the heating rate (°C/min), \(m \) is the amount of the catalyst (g).

The lean-rich cycling performance of samples were investigated using a quartz flow reactor under cycling lean (120 s, 500 ppm NO and 7.5 vol.% O\textsubscript{2} in He) and rich (60 s, 7.5 vol.% H\textsubscript{2} in N\textsubscript{2}) conditions. The overall flow rate of gas was 50 mL/min. The catalyst (50 mg) was pretreated with \(\text{N}_2 \) at 500 °C for 1 h before the tests. The NO\textsubscript{x} removal performance was monitored as above for about 15 cycles.

3.4. In Situ DRIFTS Experiments

The in situ DRIFTS experiments of NO\textsubscript{x} storage were conducted on a Thermal Nicolet iS50 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a high sensitivity of MCT detector and a temperature-controllable diffuse reflection chamber. The catalysts were pretreated at 500 °C in a flow of \(\text{N}_2 \) (100 mL/min) for 30 min so as to eliminate weakly adsorbed species and then cooled to 100 °C. Simultaneously, the spectra of the catalysts in the flow of \(\text{N}_2 \) served as the background was recorded. After the pretreatment, 1000 ppm NO and 5 vol.% O\textsubscript{2} in He was introduced at the experimental temperature (the overall flow rate = 100 mL/min), and then the chronological DRIFTS spectra were recorded.

4. Conclusions

The performance of Mn-doped hydrotalcites derived oxides (Mn/MgAlO\textsubscript{x}) were investigated for low temperature NO\textsubscript{x} storage and reduction in this paper. The incorporation of Mn into hydrotalcites changed the crystal phases, structural, redox and surface properties of the oxide catalysts, with Mn\textsubscript{3}O\textsubscript{4} and MgMn\textsubscript{2}O\textsubscript{4} spinel as the main crystalline phase besides brucite MgO. Mn doping resulted in an evident increment in catalysts surface area and pore size, and the redox behavior was also improved. The XPS results indicated that Mn15 and Mn20 catalysts possessed more Mn3+, which played a favorable role in NO oxidation. Mn doped MgAlO\textsubscript{x} catalysts exhibited high NO\textsubscript{x} storage capacity at
low temperatures (150–300 °C). It is related to its greater surface area, improved reducibility and higher surface Mn³⁺ content. The largest NSC measured, 426 μmol/g, was observed for NOₓ adsorption at 200 °C on the sample containing 15 wt% of Mn (Mn15). NOₓ was stored in the form of nitrates on oxides at lower temperature (<300 °C), while nitrates at higher temperatures. The Mn-doped oxides catalysts are preferred for low temperature NOₓ storage and release due to its ability to store NOₓ as thermally labile nitrates. During the lean-rich cycling tests, the average NOₓ removal rate can reach above 70% after Mn doping. Mn15 catalyst displayed high resistance to CO₂ and soot, with a certain sulfur and water resistance. In short, these Mn-doped hydrotalcite catalysts exhibit excellent performance in low temperatures NOₓ storage and release and can be used as alternative NSR catalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/8/677/s1, Figure S1: NOₓ adsorption and desorption profiles of the samples: (a)Mn0, (b)Mn5, (c)Mn10, (d) Mn15, (e) Mn20 catalysts at 300 °C. (Reaction conditions: 1000 ppm NO, 5 vol.% O₂, balanced with He, 100 mL/min; STP = 0 °C, 1 atm), Figure S2: NOx adsorption and desorption profiles of Mn15 catalyst at different temperatures (a)150 °C, (b)200 °C, (c)250 °C, (d)300 °C, (e)350 °C (Reaction conditions: 1000 ppm NO, 5 vol.% O₂, balanced with He, 100 mL/min; STP = 0 °C, 1 atm). Figure S3: lean- rich cycling performance of Mn15 sample at different temperatures (a)150 °C, (b)200 °C, (c)250 °C, (d)300 °C, (e)350 °C (lean condition: 500 ppm NO, 7.5 vol.% O₂, balanced with He, 50 mL/min; rich condition: 5 vol.% H₂, balanced with N₂, 50 mL/min; STP = 0 °C, 1 atm). Table S1: Summary of catalysts NOₓ storage capacity and reaction conditions.

Funding: This research was funded by the National Natural Science Foundation of China (No. 21777055), Shandong Provincial Natural Science Foundation (No.ZR2017BB004), Shandong Province Key Research and Development Plan (No. 2017GGX202004, 2019GSF109116), and Shandong Province Major Science and Technology Innovation Project (No. 2017CXGC1004). The APC was funded by the National Natural Science Foundation of China (No. 21777055).

Conflicts of Interest: The authors declare no conflict of interest.

References

42. Wang, Y.; Qi, X.; Chen, Z.; Jiang, L.; Wang, R.H.; Wei, K.M. Studies on SO2 tolerance and regeneration over perovskite-type LaCo1−xPt0.5O3 in NOx storage and reduction. J. Phys. Chem. C 2014, 118, 13743–13751. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).