Supplementary Materials

Developing a novel enzyme immobilization process by activation of epoxy carriers with glucosamine for pharmaceutical and food applications

Immacolata Serra 1, Ilaria Benucci 2, Marina Simona Robescu 3, Claudio Lombardelli 2, Marco Esti 2, Cinzia Calvio 4, Massimo Pregolato 3, Marco Terreni 3, Teodora Bavaro 3,*

1 Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Mangiagalli 25, I-20133 Milano, Italy; immacolata.serra@unimi.it (I.S.)
2 Department of Agriculture and Forestry Science (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; ilaria.be@unitus.it (I.B.), claudiolomb@hotmail.it (C.L.), esti@unitus.it (M.E.)
3 Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; marinasimona.robescu@unipv.it (M.S.R.), massimo.pregolato@unipv.it (M.P.), marco.terreni@unipv.it (M.T.), teodora.bavaro@unipv.it (T.B.)
4 Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; cinzia.calvio@unipv.it (C.C.)

* Correspondence: teodora.bavaro@unipv.it (T.B.); Tel.: +39-0382-987889
Table of contents

Figure S1: Stability of soluble and immobilized PGA

Figure S2: Synthesis of Cefazolin (2a) catalyzed by recycled PGA immobilized on Relizyme EP403/S-glucosamine

Figure S3: Stability of soluble bromelain at pH 10 and 4 °C
Figure S1: Stability of soluble and immobilized PGA under operational conditions, such as MeOH 40%, room temperature and pH 6.5.

Figure S2: Synthesis of Cefazolin (2a) catalyzed by recycled PGA immobilized on Relizyme EP403/S-glucosamine.
Figure S3: Stability of soluble bromelain at pH 10 (50 mM carbonate buffer) over 3 hours at 4 °C.