Supporting Information

MIL-101(Cr) for CO₂ conversion into cyclic carbonates, under solvent and co-catalyst free mild reaction conditions

Emmanuelia Akimana¹,², Jichao Wang¹,², Natalya V. Likhanova⁴, Somboon Chaemchuen¹,² *, Francis Verpoort¹,²,⁵ *

¹ Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
² National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russian Federation
³ School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
⁴ Instituto Mexicano del Petróleo, Eje Central Norte Lázaro Cárdenas No. 152, Col. San Bartolo Atepehuacan, CP 07730, Ciudad de México, México.
⁵ Ghent University, Global Campus Songdo, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, Korea

*Corresponding author: sama_che@hotmail.com, francis.verpoort@ghent.ac.kr
Figure S1. The 1H NMR spectrum of product [3-chloro-1-propene carbonate] obtained from the conversion of epichlorohydrin with CO$_2$. Reaction condition: 850 mg epichlorohydrin, 50 mg of MIL-101(Cr), 35 °C, 1.5 bar of CO$_2$, 24 h
Figure S2. The catalytic activity in recycle ability; 9.2 mmol of epichlorohydrin, 50 mg of catalyst (MIL-101), 35 ºC, 1.5 bar of CO2 pressure, and 24 h.
Figure S3. The comparison of XRD pattern between (a) fresh catalyst (MIL-101) and (b) recycled catalyst (MIL-101)
Figure S4. The isotherm of N$_2$ adsorption at 77K of synthesized MIL-101 (a) and after catalyzed reaction or recycled catalyst (b).