PIM1 Promotes Survival of Cardiomyocytes by Upregulating c-Kit Protein Expression

Cells

David E Ebeid 1*, Fareheh Firouzi1*, Carolina Y Esquer1, Julian M Navarrete1, Bingyan J Wang1, Natalie A Gude1, Mark A Sussman1#

1 Department of Biology, San Diego State University, San Diego, CA, USA

* D.E. and F.F. contributed equally to this manuscript.
Correspondence:
Mark A. Sussman, PhD
(619)-594-2983
heartman4ever@icloud.com
Supplemental Figure 1

Fig S1: **a** Full blot of cropped image presented in Fig 1a, **b** Fig 1b, and **c** Fig 1c of the manuscript.
Supplemental Figure 2

Fig S2: Full blot of cropped image presented in Fig 2a of the manuscript.
Supplemental Figure 3

Fig S3: Negative controls for the Proximity Ligation Assay. Endogenous GFP is shown in green, the PLA signal is shown in red and DAPI is shown in gray.
Fig S4: a Full blot of cropped image presented in Fig 3a and b Fig 3b of the manuscript.
Supplemental Figure 5

Fig S5: Full blot of cropped image presented in Fig 4b of the manuscript.
Fig S6: Immunoblot analysis of c-Kit, activated ERK1/2 and activated AKT in naïve and virally transduced cardiomyocytes with quantification shown below. Error bars represent SEM, *p<0.05, **p<0.01 and ***p<0.001 as measured by two-way ANOVA, multiple comparison with Tukey.
Fig S7: Immunoblot analysis of activated ERK1/2 and activated AKT in NTg and PIM1 overexpressing cardiomyocytes in response to oxidative stress in presence and absence of Imatinib. Quantification is shown below. Error bars represent SEM, **p<0.01 as measured by two-way ANOVA, multiple comparison with Tukey.