A Naphthalimide–Benzothiazole Conjugate as Colorimetric and Fluorescent Sensor for Selective Trinitrophenol Detection

Pramod D. JawalePatil 1,2, Rajita D. Ingle 1,* Sopan M. Wagalgave 2,3, Rajesh S. Bhosale 2,†, Sidhanath V. Bhosale 2,3,*, Rajendra P. Pawar 1 and Sheshanath V. Bhosale 4,*

1 Department of Chemistry, Deogiri College, Aurangabad 431005, India
2 Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
3 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
4 School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
* Correspondence: rajitaingle@yahoo.co.in (R.D.I.); bhosale@iict.res.in (Sidhanath V. Bhosale);
svbhosale@unigoa.ac.in (Sheshanath V. Bhosale)
† Present Address: Department of Chemistry, Indrashil University, Kadi, Mesana-382470, Gujarat, India.

Supplementary Information

Figure S1. ¹H NMR of compound 1.
Figure S2. 13C NMR of compound 1.

Figure S3. ESI mass of compound 1.
Figure S4. ESI- HRMS of compound 1.

Figure S5. FT-IR of compound 1.
Figure S6. Absorption spectra of receptor 1, TNP (A1) and 1:A1 complex.

Figure S7. Job’s plot obtained from fluorescence emission spectral data ($\lambda_{ex} = 413$ nm); G- analyte TNP (A1) and H- receptor 1.
Figure S8. Time resolved decay (tau) of compound 1 in the presence and absence of TNP (A1) @ 416 nm, 424 nm and 425 nm.

Figure S9. Stern-Volmer plot for TNP with 1. The relative fluorescence intensity is linear with TNP concentration in the range of 0–2 equivalents.
Figure S10. Zoomed image of 1H NMR of probe 1, TNP and complex between 1 and TNP (A1).

Figure S11. Competitive experimental spectra for each analyte ($\lambda_{ex} = 365$ nm).
Figure S12. (a) UV-vis titration experiment of 1 in the presence of DNP (A15) and (b) Fluorescence titration experiment of 1 in the presence of DNP (A15) ($\lambda_{ex} = 365$ nm).
Figure S13. Job's plot obtained from fluorescence emission spectral data ($\lambda_{ex} = 413$ nm); G- analyte DNP (A15) and H- receptor 1.

Figure S14. Benesi-Hildebrand plot of 1 for DNP (A15) (G).
Figure S15. Absorption intensity at 425 nm of 1 versus increasing concentration of DNP (A15).
Figure S16. (a) UV-vis titration experiment of 1 in the presence of A16, A17, A18, A19 and (b) Fluorescence titration experiment of 1 in the presence of A16, A17, A18, A19 ($\lambda_{ex} = 365$ nm).

Table S1. The time resolved decay (tau) values of 1, 1:A1 (1 equiv.) and 1:A2 (2 equiv.).

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>τ_1 (ns)</th>
<th>Contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0195</td>
<td>100</td>
</tr>
<tr>
<td>1+A1 1eq</td>
<td>1.0087</td>
<td>100</td>
</tr>
<tr>
<td>1+A1 2eq</td>
<td>0.9546</td>
<td>100</td>
</tr>
</tbody>
</table>
Scheme S1. The aromatic (A15 to A19) structures used in sensing study.