Supporting Information

Electrochemical detection of H$_2$O$_2$ released from prostate cancer cells using Pt nanoparticle-decorated rGO-CNT nanocomposite-modified screen-printed carbon electrodes

Seokyung Lee 1, Young Ju Lee 2, Jae Hyung Kim 1 and Gi-Ja Lee 1,2,*

1 Department of Medicine, Kyung Hee University Graduate School, Seoul 02447, Republic of Korea
2 Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea

* To whom correspondence should be addressed. E-mail: gjlee@khu.ac.kr
Figure S1. Changes in cathodic peak current (I_{pc}) of CNT/rGO on GCE according to the mixing ratio between GO and CNT (wt/wt) in PBS solution (0.1 M, pH 7.4) containing 2.5 mM H$_2$O$_2$ and 0.1 M KCl.

Figure S2. The cathodic peak current (I_{pc}) of PtNP/rGO-CNT/SPCE and PtNP/rGO-CNT/PtNP electrodes ($n=4$, respectively) from the CV curves in N$_2$-saturated PBS solution (0.1 M, pH 7.4) containing 2.5 mM H$_2$O$_2$ and 0.1 M KCl at a potential range from -0.7 to 0.3 V (Ag pseudo-reference electrode) and at a scan rate of 50 mV/sec.
Figure S3. Effect of the applied potentials on the current response according to the \(\text{H}_2\text{O}_2 \) concentration.