Greening and Browning Trends of Vegetation in India and Their Responses to Climatic and Non-Climatic Drivers

Bikash Ranjan Parida 1,*, Arvind Chandra Pandey 1 and N.R. Patel 2

1 Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi–835205; bikashrp@gmail.com; arvindchandrap@yahoo.com
2 Department of Agriculture & Soil, Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun-248001; nrpatel@iirs.gov.in

* Correspondence: bikashrp@gmail.com; Tel.: +91-8130848255 (B.R.P.)

Received: 13 July 2020; Accepted: 7 August 2020; Published: date

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1

Figure S1. Trends as estimated using Sen’s slope (in mm/year) for the two focal periods (a) 1982–2000 and (b) 2000–2015 for precipitation, whereas (c-d) represents temperature trends (°C/year). Trends are statistically significant when it exceeds ± 0.5 mm/year for rainfall whereas ±0.1°C/decade for temperature (p < 0.1). The Sen’s slope was estimated using the IMD-based annual mean data.

Figure S2. Trends as estimated using Sen’s slope (in Wm⁻²/year) for the two focal periods (a) 1982–2000 and (b) 2000–2015 for incoming solar radiation (SR), whereas (c-d) represents soil moisture (SM) (mm/year). Trends are statistically significant when it exceeds ±0.25 Wm⁻²/year for solar radiation, whereas ±1.25 mm/year for soil moisture (p < 0.1).
Figure S1. Trends as estimated using Sen’s slope (in mm/year) for the two focal periods (a) 1982–2000 and (b) 2000–2015 for precipitation, whereas (c–d) represents temperature trends (°C/year). Trends are statistically significant when it exceeds ±0.5 mm/year for rainfall whereas ±0.1° C/decade for temperature (p < 0.1). The Sen’s slope was estimated using the IMD-based annual mean data.
Figure S2. Trends as estimated using Sen’s slope (in Wm⁻²/year) for the two focal periods (a) 1982–2000 and (b) 2000–2015 for incoming solar radiation (SR), whereas (c-d) represents soil moisture (SM) (mm/year). Trends are statistically significant when it exceeds ±0.25 Wm⁻²/year for solar radiation, whereas ±1.25 mm/year for soil moisture (p < 0.1).