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Abstract: Hurricanes and flood-related events cause more direct economic damage than any other 

type of natural disaster. In the United States, that damage totals more than USD 1 trillion in damages 

since 1980. On average, direct flood losses have risen from USD 4 billion annually in the 1980s to 

roughly USD 17 billion annually from 2010 to 2018. Despite flooding’s tremendous economic impact 

on US properties and communities, current estimates of expected damages are lacking due to the 

fact that flood risk in many parts of the US is unidentified, underestimated, or available models 

associated with high quality assessment tools are proprietary. This study introduces an economic-

focused Environmental Impact Assessment (EIA) approach that builds upon an our existing 

understanding of prior assessment methods by taking advantage of a newly available, climate 

adjusted, parcel-level flood risk assessment model (First Street Foundation, 2020a and 2020b) in 

order to quantify property level economic impacts today, and into the climate adjusted future, using 

the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathways 

(RCPs) and NASA’s Global Climate Model ensemble (CMIP5). This approach represents a first of 

its kind—a publicly available high precision flood risk assessment tool at the property level 

developed completely with open data sources and open methods. The economic impact assessment 

presented here has been carried out using residential buildings in New Jersey as a testbed; however, 

the environmental assessment tool on which it is based is a national scale property level flood 

assessment model at a 3m resolution. As evidence of the reliability of the EIA tool, the 2020 

estimated economic impact (USD 5481 annual expectation) was compared to actual average per 

claim-year NFIP payouts from flooding and found an average of USD 5540 over the life of the 

program (difference of less than USD 100). Additionally, the tool finds a 41.4% increase in average 

economic flood damage through the year 2050 when environmental change is included in the 

model. 
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1. Introduction 

Hurricanes and flood-related events cause more direct economic damage than any other type of 

natural disaster. From a global perspective, recent damage estimates of USD 5 billion for the single 

month of June (2016) (http://thoughtleadership.aonbenfield.com/Documents/20160706-ab-analytics-

if-june-global-recap2.pdf). In the United States, those damages total more than USD 1 trillion in 

damages since 1980 [1]. On average, direct flood losses have risen from USD 4 billion annually in the 

1980’s to roughly USD 17 billion annually from 2010 to 2018 [2]. Increasing development of flood-

prone areas is a key driver of rising [3-5] and climate change is expected to exacerbate losses even 

further [6-9]. In both the international and U.S. cases, the current and future expectations around 

flood risk and damages make the need for readily available impact assessment tools that can be 

created at scale and the use of publicly available data and transparent methods imperative. One such 

global flood hazard model [10] is the base model from which this current impact assessment is built 

and is created with completely open and transparent modeling methodologies. 

Despite flooding’s tremendous impact on US properties and communities, current estimates of 

expected damages are lacking due to the fact that flood risk in many parts of the US is unidentified 

or underestimated (e.g., [11-14]). With respect to unidentified risk, two-thirds of the nation’s 3.5 

million stream miles and 46 percent of its shoreline have not yet been mapped by the Federal 

Emergency Management Agency (FEMA)—the agency responsible for identifying the nation’s flood 

risk [11]. While much land area has yet to be mapped, FEMA reports that more than 98% of the US 

population lives in a community in which FEMA has studied and mapped flood hazards [15]. 

However, not all studies are comprehensive, and not all maps use the most recent data or are of the 

highest quality. Indeed, FEMA maps have a number of well-documented limitations and may 

underestimate risk for certain properties and communities [16]. Wing et al. [13] find that current 

FEMA maps only identify 33% of the US population that is at risk of flooding in the 1% annual-chance 

event (also known as the 100-year flood). Furthermore, FEMA only considers two types of floods (the 

1% and 0.2% annual-chance events) in their mapping process, despite the fact that flood damages 

arise from a full spectrum of possible flood events whose depths and impacts vary by return period 

[17]. Additionally, FEMA does not characterize flood risk at the individual parcel level, which limits 

the amount of information they can provide about a property’s flood risk. To FEMA’s credit, their 

maps are created with the primary driver being regulatory and safety uses by local and federal 

government officials and not as a property level risk tool. This difference accounts for much of the 

gap identified by Wing and colleagues [13]. In terms of economic flood risk, there are a number of 

proprietary and “black box” flood models that are often used in the estimation of mortgage risk, 

insurance rates, and larger portfolio analyses. 

Not having accurate and comprehensive, publicly available estimates of annual flood damages 

or average annual losses (AAL) is a critical oversight, because they enable improved risk 

management and more cost-effective hazard mitigation planning at every level, with accessibility 

open to individual property owners as well as smaller communities that may not have the ability to 

purchase the for-profit models currently seen as “state-of-the-art” in this space. A more readily 

available version of these data would provide actionable information to homeowners and renters 

about the flood damage a property is likely to experience, allowing them to make more informed 

decisions about risk reduction investments and flood insurance coverage. Nationally, such estimates 

influence whether and to what extent Congress allocates funds for hazard mitigation programs and 

major infrastructure projects aimed at reducing flood risk. At the state and local level, they enable 

more accurate cost-benefit analyses, which are a primary factor in whether these projects receive 

public funding. Indeed, annual flood damage estimates are used in cost-benefit analyses that help to 

determine how billions of federal, state, and local dollars are spent every year. 

While insurers, reinsurers, and catastrophe modeling firms have extensive experience 

estimating AALs for a range of hazards, there are fewer high-precision estimates available in the 

academic literature or public domain. There are a number of global models that provide estimates of 

expected flood damages, though the methods tend to rely on coarse data and methods which lack 

relevance at the property level (e.g., [18,19]). While some studies have attempted to quantify flood 

http://thoughtleadership.aonbenfield.com/Documents/20160706-ab-analytics-if-june-global-recap2.pdf
http://thoughtleadership.aonbenfield.com/Documents/20160706-ab-analytics-if-june-global-recap2.pdf
https://asfpm-library.s3-us-west-2.amazonaws.com/FSC/MapNation/ASFPM_MaptheNation_Report_2020.pdf
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damages using a statistical approach, they have often focused on estimating property damages (or 

insurance claims) arising from individual storms or on expected damages from the 1% annual chance 

flood (100-year flood). These studies have also tended to focus on a limited geographic area such as 

a county or Census tract [20-25]. The limited literature on AALs is partly due to the fact that the 

private firms’ risk identification and damage calculation methods are commercially privileged. In 

one study, Czajkowski et al. [26] used proprietary flood damage curves and a proprietary flood model 

from CoreLogic and Swiss Re to estimate AALs for individual properties in two Texas counties. 

However, AAL studies more frequently use publicly available flood risk tools, such as the Hazus-

MH Flood Model or FEMA’s Risk Map products in combination with US Army Corps of Engineers 

depth–damage functions, to estimate AALs.  

The Hazus-MH Flood Model is a GIS-based tool developed by FEMA that couples flood hazard 

data with a damage model that relates flood depths to property damage. Hazus is publicly available 

and widely used by researchers and state and local governments to estimate future (avoided) flood 

damages and in conducting cost-benefit analyses for proposed flood risk-reduction projects. 

Researchers have relied on Hazus to estimate avoided flood damages associated with both grey and 

green infrastructure projects [27-29]. By default, Hazus provides aggregated damage data based on 

the building inventory composition in a Census block. However, some studies have combined Hazus 

depth data with data from local tax assessors and other datasets to carry out parcel-level analyses 

(e.g., [30]). In recent studies, researchers have examined AALs on a broader scale. Wobus et al. [6] 

examine how riverine flood damages across 376 US watersheds are expected to change in response 

to rising global temperatures. They find that expected annual damages are 5 to 7 times higher than 

damages expected from the 1% annual chance event and that a significant share of the losses 

attributable to a more comprehensive evaluation of flood risk.  

In addition to the literature summarized here, two recent studies lay the groundwork for this 

analysis. Wing et al. [31] address several of the aforementioned limits to estimating flood losses. 

Using a 30-m resolution model, the authors generate flood hazard estimates for the entire contiguous 

US. Combining these depths with asset and population data, they find that the US population 

exposed to flooding in the 1% annual chance event is roughly 3 times higher than prior estimates. 

Applying US Army Corps of Engineers (USACE) depth–damage functions, they find that expected 

flood losses from the 1% annual chance event in all locations would total approximately USD 1.2 

trillion. Though they do not account for changes in climate conditions, they find that population and 

GDP growth alone will significantly increase flood exposure over time. In a separate analysis, Quinn 

et al. [32] address spatial dependence issues characteristic of many flood damage estimates. Rather 

than assume flood frequencies are uniform across wide areas, the authors model more realistic spatial 

flooding patterns, allowing them to estimate the total annual losses that may occur in extreme 

flooding years. The authors simulate 1000 years of flooding, including more than 63,000 events, in 

the coterminous US, and use the results to estimate total economic losses associated with each event. 

Their results indicate that there is a 1% probability of annual fluvial flood damages exceeding USD 

78 billion in any given year and a 0.1% chance of losses exceeding USD 136 billion. This recent 

literature begs the question of what the estimated loss now, and in the future, when considering a 

full loss–probability curve (i.e., more dynamic representation of loss than the 1-100 year layer allows 

for) and an accounting of that loss into the future using agreed upon environmental change inputs. 

This study builds upon this literature by taking advantage of newly available parcel-level flood 

risk information from the First Street Foundation Flood Model [33], including the integration of a 

first-of-its-kind national database of over 100,000 unique flood adaptation measures to calculate 

average annual losses (AAL) for residential properties. First Street data provide parcel-level flood 

risk information for the four major flood types (tidal, pluvial, fluvial, and surge) at six explicitly 

modeled return periods and account for the risk-mitigating effects of levees, dams, open spaces, and 

other adaptation measures. Such data, and especially their open methodology, have not previously 

existed at the property level and allow for new insights in the area of AAL analysis using a higher 

quality of flood risk information than that derived from other open sources such as FEMA maps or 

the Hazus-MH model. Armed with more comprehensive estimates of expected flood damages and 

https://pubs.acs.org/doi/full/10.1021/es303938c
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greater knowledge of the impact of risk-reduction measures, decision makers at every level of 

government can better identify the locations and measures that would be most beneficial in reducing 

flood risk, and more effectively manage residual risk through insurance and other risk transfer 

mechanisms.  

2. Application: Estimating AAL, New Jersey (2020 and 2050) 

As an application of the EIA tool and the integrated economic damage assessment, this 

illustration makes use of publicly available depth–damage-functions in combination with an “open 

methods” flood risk assessment tool developed by the First Street Foundation and a series academic 

partners [33-34] for a single state in the US, New Jersey. The state New Jersey is the most densely 

populated state in the US and one that is subject to substantial flood risk from both coastal and inland 

sources, making it a good application site to illustrate the utility of the EIA tool. With nearly 1800 

miles of coastline, New Jersey’s economy and way of life are closely tied to its shoreline areas and 

therefore quite vulnerable to the impacts of flooding. In 2012, Hurricane Sandy made very clear that 

communities up and down the New Jersey coast are susceptible to devastating storm surge. 

However, residents throughout the state face risk from tidal, fluvial, and pluvial flooding as well. 

Due to rising sea levels, tidal flood risk across the state has more than doubled since 1980 [35]. Inland 

areas such as the Raritan River region are particularly vulnerable to rainfall and riverine flooding.  

Over the next several decades, the state’s flood risk is expected to increase as sea levels and 

temperatures continue to climb. According to the First Street Foundation Flood Model (the primary 

source of data for this analysis), there are currently 385,400 New Jersey properties at risk of flooding 

in the 1% annual chance flood, a number that is projected to increase by 19% over the next 30 years 

[36]. At a broader level, the First Street Model estimates that roughly 515,000 New Jersey properties 

are currently at risk of any flooding (calculated as a flood depth of 1 cm or more to the building in 

the 0.2% annual chance flood) and another 100,000 will be at risk over the next 30 years. Among these, 

more than 15,000 face a 99% chance of flooding at least once over that time span. 

3. Data and Methodology 

Data for this analysis come from a combination of public and non-public sources. On the public 

side, this project makes use of property-level building characteristics from county assessor offices in 

the state of New Jersey combined with the microsoft/mapbox building footprint database 

(https://github.com/Microsoft/USBuildingFootprints). The property data have been standardized and 

made available through a third party provider to ensure that attributes are consistent and meaningful 

across counties. Where those data are not available, we use publicly available, block-level, National 

Structures Inventory (https://github.com/HydrologicEngineeringCenter/NSI) data from the USACE 

to estimate local building codes and dwelling types at the Census block level to ensure the ability to 

capture the “likely” building characteristics. We also use a combination of USACE and Federal 

Insurance Administration (FIA) depth–damage functions created within the HAZUS 

(https://msc.fema.gov/portal/resources/hazus) framework. Using these property characteristics and 

damage functions, this application compares deterministic flood hazard layers created at two 

different time periods (2020 and 2050) and six different return periods (2-year, 5-year, 20-year, 100-

year, 250-year, and 500-year).  

3.1. Flood Hazard Layer data 

The First Street Foundation Flood Model was developed in partnership with Fathom (Wing et 

al. 2017; First Street Foundation, 2020a; Bates et al., under review) and provides the hazard layers with 

3m resolution at various return period intervals including 2-year, 5-year, 20-year, 100-year, 250-year, 

and 500-year flood events in 2020 and 2050. The max (cm) flooding depth for each property is 

sampled at the perimeter of the building footprint boundary or at the property parcel centroid where 

no building footprint exists. In this study, we focus on the properties that have a non-zero depth 

value at median of iterative simulation under RCP 4.5 scenario to estimate flood risk in current (2020) 

https://msc.fema.gov/portal/resources/hazus
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR020917
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR020917
https://assets.firststreet.org/uploads/2020/06/FSF_Flood_Model_Technical_Documentation.pdf
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and future (2050) environmental conditions. The flood model takes into account changing 

environmental factors including Sea Level Rise, increasing cyclonic intensity, higher probabilities of 

cyclone landfall locations at higher latitudes, shifting precipitation patterns, and shifts in river 

discharge. The coastal component of the model employs the GeoClaw software [37] to simulate 

geophysical variables including storm surge and tidal flooding. GeoCLAW solves the 2D depth-

averaged shallow water equations on an adaptive mesh scheme, running at a very low resolution by 

default, and then increases in resolution in areas near the storm, based on the storm intensity and 

proximity parameters. The output of the model is a time series of total static water levels throughout 

the storms that is incorporated into the national flood model. Finally, the combination of coastal and 

inland flooding estimates is based on boundary conditions that are representative of distinct return 

period magnitudes and the marginal distributions of the flood driving processes within each 

boundary layer. The details on development and combination of different hazard risk layers are 

beyond the scope of this paper (for full summary see [33-34]). 

Figure 1 shows the flooding under the 100-year scenario across a small area in Ocean County, 

NJ. The maps in Panel-a represent the extent and depth of flooding in 2020 and 2050, while the bar 

charts in Panel-b indicate the percentage of properties impacted by flooding in different return period 

scenarios. The yellow line on the maps indicates the FEMA Coastal A-zone boundary, while the red 

line delineates the Coastal V-zone. 

 

Figure 1. Panel (a) compares the 100-yr flood depth and extent of the flooding in 2020 and 2050 in part 

of Ocean County, panel (b) indicates the percentage of properties impacted by different return 

periods. 

The flood extent maps indicate that projected risk of flooding from a 100-year event in 2020 

aligns very well with the Coastal A zone boundary in 2020. This alignment is the evidence of proper 

risk identification as the Coastal A zone was originally perceived as the primary level of the 100-years 

floodplain boundary [38] designated in the FEMA special flood hazard area. When environmental 

change is taken into account, Panel-b indicates that in 2050 the water inside Coastal-A zone gets 

deeper in previously flooded areas and even moves well beyond the flood zone boundary outside of 

the FEMA designated zone. The sample figure shows no significant flooding over the 100-years 

scenario inside the Coastal V-zone. Additionally, the 30-year projection indicates that only a small 
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area floods inside the V-zone. Of note here is that Figure 1 is employed to present the dynamic of the 

flooding extent over 30-years in a small excerpt of the data. However, the spatial variability within 

and beyond coastal zones cannot be generalized for the entire region. Comparing the percent of the 

impacted properties in the 100-year scenario shows that the number of affected properties rises by 

15% over the 30 year period. Similarly, under the 500-year scenario, the number of impacted 

properties increases about 20% over the same time period. 

3.2. Property Assessor Data 

The property assessor data provide the general information for the more than 3,600,000 

properties in the state of New Jersey that we identified as having a risk of flooding. This dataset 

contains more than 300 attributes. Of primary importance to this project is the geographic location of 

property, the market value (market value is defined as the amount a typical, well-informed purchaser 

would be willing to pay for a property), automated valuation model (AVM) value (AVM value is a 

statistical calculation model to estimate the current value of a property derived from our parcel 

provider’s Automated Valuation Model), number of stories and unit, structure data and the 

foundation type. The Figure 2a represents the visualization of the property data points that were 

identified as being at risk of flood in our analysis. As one can see, these are primarily clustered in 

areas close to the coast, along waterways, or in relatively low-lying areas per their elevation profile.  

 

Figure 2. (a) denotes the spatial distribution of properties (spatial points) on small area of Hudson 

county; the polygons in the right-hand panel (b) represent Census blocks and the underlying color 

scheme indicates the outcome of inverse distance weighting (IDW) spatial interpolation process in 

predicting the automated valuation model (AVM) values. 

3.3. National Structures Inventory Database 

The National Structure Inventory (NSI) is a system of databases containing structure inventories 

at different spatial coverage and quality levels. The NSI database provides a series of attributes 

required for flood hazard estimates. We applied NSI data to impute the missing attributes for each 

property, based on the most common values from the belonging census block. The census block is 

the smallest geographic enumeration area in the US Census geography catalog and generally 

captures sub-neighborhood spatial geographies in which building codes, housing characteristics, and 

population demographics are highly homogeneous. These properties were then used in aggregation 

to identify the most likely characteristics of buildings in that block with regards to the presence of a 

basement (foundation type) and the structure information. In the case that this information was 
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missing from the property assessor data, the imputed most likely foundation type and structure 

information were linked via the NSI’s census block spatial linkage of the individual property to the 

census geography. 

3.4. TIGER/Line demographic data 

This dataset (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-

file.html) contains a unique geography entity code that links to the different levels of demographic 

data hierarchy. We used Tiger polygons to identify the census block boundary code for each property, 

using geospatial intersection. Figure 2b illustrates the relationship between properties and U.S. 

Census blocks. The properties (represented by dots) and the blocks (represented by rectangular 

polygons) highlight the high resolution associated with the aggregation of point data to the block 

level. Even the most densely populated blocks have only dozens of property points and some have 

single digit counts. By assigning the foundation type (basement/or no basement) and the structure 

type to the missing property level data file using the “most likely” characteristic at the census block, 

this imputation procedure minimizes the likelihood of assigning incorrect data to the properties 

based on local building codes and the homogeneity of properties within such a small spatial scale. 

3.5. Depth–damage Functions 

The depth damage analysis is based on the HAZUS-MH methodology [39], a national GIS-based 

model developed for FEMA to estimate the physical, economic, and social impacts of natural 

disasters (i.e., earthquake, hurricane, flood, and tsunami). HAZUS can support deterministic 

hydraulic analysis (e.g., FIT and HEC-RAS) and generate a flood surface elevation from the digital 

elevation model. It can also generate probabilistic scenarios of flood inundation maps across different 

return periods [40]. For running depth–damage function, the HAZUS application relies on a set of 

depth–damage curves, collected from a variety of sources including the Federal Insurance and 

Mitigation Administration (FIMA), the U.S. Army Corps of Engineers (USACE), and the USACE 

Institute for Water Resources (USACE-IWR). These curves are compiled for the USACE Chicago, 

Galveston, New Orleans, New York, Philadelphia, St. Paul, and Wilmington Districts [41-42]. They 

supply a range of damage functions for different occupancy classes at Riverine, Coastal-A, and 

Coastal-V zones. 

In the current study, we apply HAZUS depth–damage functions to pre-defined flood surface 

level at each property. We use these estimates to calculate an annual expected loss from flooding. 

Our application of the depth–damage functions has four steps: 

1) Specify Occupancy Code (SpCode): each property has a specific code that is based on the 

number of stories, the occupancy class of the building, and whether it has a basement or not. The 

depth damage functions use these codes to relate flooding depth to structural and contents damages 

for each property. Originally, HAZAUS uses the general building stock by census block. For each 

census block, HAZUS inventory consists of the number of square feet of buildings by specific 

occupancy type, specific foundation, and the average height of the first floor above grade by 

foundation type. The aggregated loss for each census block is then calculated from the partial 

percentage of each group. However, in our analysis, we apply the unique depth–damage function 

outside of the HAZUS framework directly to our parcel-level data. Moreover, our economic loss is 

limited to structural damage of residential buildings and does not include contents inside the home.  

2) Structural Value of Properties: Due to the fact that the damage function is based on a 

percentage loss output, values of the structure were required for the final calculations. Our property's 

structural values were adopted from reported AVM values in the assessor data file provided by our 

3rd party standardizer, which took the disparate information from multiple county assessor offices 

and cleaned it to be used consistently in analysis. These values were not available for about 35 percent 

of the property points and required imputation in places where these data were not available. To 

impute the missing data, we took two steps:  

(a) We used existing structure value information to best estimate the missing AVM values. This 

required the training of a linear regression model on the properties that have both a Market Value 
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and AVM values available, using the former as a predictor and the latter as predictand. Next, we 

employed the model to fill AVM values for those properties that have only market values. 

(b) To complete AVMs for the remainder of properties that have neither Market Value nor AVM 

values, we applied a Regression-Based Inverse Distance Weighting (IDW) model. The IDW 

interpolation model created a raster layer of AVM predicted values across the study area which could 

be directly sampled by the point location of the properties missing the AVM. As a rule of thumb, this 

interpolation technique works very well in densely populated areas, and less well in areas that are 

sparsely populated [43]. This is further illustrated in Figure 2(b) where the underlying spatial 

gradient is associated with the interpolated AVM values. For those properties missing AVM values, 

we simply sample the underlying spatial interpolation and assign that value for damage estimation. 

3) Depth–damage Function (DDF): Default damage function estimates the percentage of damage 

relative to the depth of flooding. These functions operate between -4 feet to 24 feet. Here, a negative 

depth refers to inundation level in the basement. To obtain the value within each interval, the function 

runs a linear interpolation between beginning and end of the interval. DDFs include curves to 

quantify the damage for both structure and content of the building. The expected loss only considers 

the properties that are at coastal and riverine flood zones. Under pluvial scenarios, buildings could 

be flooded by severe, concentrated rainfall coupled with inadequate local drainage systems. 

However, HAZUS methodology does not account for failure of local storm water drainage systems, 

and their resulting damages to the building. Additionally, the HAZUS methodology and the applied 

depth–damage curves are focused only on standing water that does not recede quickly; a condition 

which is more likely to be associated with fluvial and storm surge flooding (that may or may not be 

coupled with rainfall). As such, we are removing pluvial-only flood risk from our damage 

estimations to ensure that the damage curves are only applied in the capacity that they were designed 

to be implemented. Figure 3 illustrates the damage functions for Coastal A, Coastal V, and Riverine 

flood events with the curves representing the percent of damage given the depth of water for 

properties in each of these zones. The shape of the curves is primarily driven by the type of event that 

is likely to affect the properties, including storm surge for Coastal Zones and fluvial inundation for 

the Riverine zone. 

 

 

 

 
(a) 
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(b) 

Figure 3. The upper panel (a) presents depth–damage functions based on different flood schemes of 

the most frequent SpCode groups (please see Study Sample) while the lower panel (b) is an example 

of the associated and underlying loss–probability curve in which damage % on the y-axis is related 

the properties unique risk profile (x-axis). 

The Depth–Damage function results estimate the percent damage relative to the depth of 

floodwater as measured from the top of the first finished floor. For the first floor elevation value in 

each property, we applied HAZUS default data originally allotted through frequency analysis of 

census block [39]. This value varies by type of foundation and flood scheme information.  

4) Aggregate Annualized Loss (AAL): We estimate structural damage to the properties for 2-

year, 5-year, 20-year, 100-year, 250-year, and 500-year flood events. The expected annualized loss 

(AL) in each year is the sum of the probabilities that relate to each flood magnitude multiplied by the 

damage. As shown in Figure 3, we assume the loss in each probability bin is uniform. In the absence 

of a reliable estimate on the entire distribution of damages, this assumption is an easy compromise 

to obtain the foreseen loss for discrete flood events [30,44]. 

 

𝐴𝐿 =∑𝐴𝑣𝑔(𝐿𝑖, 𝐿𝑖+1) ∗ (𝑃𝑖+1 − 𝑃𝑖) 

  

Where L and P show the loss and probability, respectively, and i is the numerator for different return 

period scenarios. These annualized losses are visually represented by the development of the loss–

probability curve illustrated below in Figure 3, which is represented by the triangular probability 

distribution formed by the specific probability layers included in this analysis. 

3.6. Study Sample 

In this study, we focused on properties in the state of New Jersey that are either in the coastal or 

riverine flood risk zones per the most spatially expansive, and lowest probability event included in 

this analysis (500 year event). Based on the FEMA flood zones boundaries, about 200,304 properties 

are at the risk of coastal flooding, while the remaining are identified with riverine flood schemes. 

Prior to running flood damage functions, the outlying property values are removed from given 

observations at 99% confidence interval. Outlying property values are related to values that were 

outside of the three standard deviations and did not align with reality. For example, some values 

were extremely low, and others extremely high. Those were removed from the estimation process to 

ensure they did not overly influence our ability to predict home values accurately. The results of this 

study are based on the remainder of properties (n = 283,435).  
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Table 1 categorizes the number of investigated properties by different groups of building class, 

and the impacted flood scenarios by flood start year. The focus on the start of the flood experience is 

important in that it gives us the ability to implement the appropriate flood hazard layers. The year 

and return period identify the first occurrence of flooding in the properties. The majority of 

residential properties at risk are single family buildings followed by multi-dwelling and 

manufactured housing. Notably, almost all the properties that start to flood in 2050 are impacted only 

by 100-year or a lower probability scenario. That does not imply that none of the properties flood in 

the higher probability scenarios, but it means 2 and 5 return periods in 2050 are not uniquely the first 

episode of flooding for any of the properties. In contrast, a relatively high number of properties begin 

to flood under different return period scenarios in 2020—the start year of our analysis.  

Table 1. The number of properties by residential occupancy type and the return period / year at which 

property start to flood.  (Year/RP combinations of flood start in bold) 

RP Year  RES1* RES2* RES3* RES4* RES5* RES6* Sum 

500 2020 25,332 48 1140 13 15 10 26,558 

500 2050 12,763 13 139 1 9 0 12,925 

250 2020 31,249 74 1132 19 31 13 32,518 

250 2050 30,292 1 1222 4 1 0 31,520 

100 2020 50,329 118 1869 30 40 12 52,398 

100 2050 11,418 2 71 0 0 0 11,491 

20 2020 34,472 106 748 11 10 7 35,354 

20 2050 4 0 0 0 0 0 4 

5 2020 38,375 132 798 24 31 0 39,360 

5 2050 0 0 0 0 0 0 0 

2 2020 41,051 103 138 14 1 0 41,307 

2 2050 0 0 0 0 0 0 0 

Total 275,285 597 7257 116 138 42 283,435 

* RES1: single family dwelling; RES2: Manufactured Housing; RES3: duplex/triplex or multi dwelling 

buildings; RES4: Temporary Lodging; RES5: dorms and RES6 are nursing homes. 

Furthermore, Figure 4 presents the number of properties within each group of specific building 

codes (SpCode) and flood type scenarios. As mentioned earlier, the SpCode is a unique key formed 

based on the number of stories, the class of occupancy, and the foundation, helping to identify the 

corresponding depth–damage function. As shown in Figure 3, the R11N and R12N groups (single-

family properties with one and two stories and no basement) constitute more than half of the total 

properties in the dataset. Among those properties at risk, the majority of these groups are located in 

Coastal A and Riverine flood zones. In contrast, a small number of the investigated properties are 

located in the FEMA coastal-V zone. According to Figure 4, the third frequent group of studied 

properties is a two-story single-family with a basement (R12B)—evenly distributed in Riverine and 

Coastal-A flood zones.  
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Figure 4. The percentage of properties in the most frequent SpCode groups across different flood 

schemes. 

4. Results 

The results of the AAL analysis on residential properties at risk is summarized in Table 2. 

Generally, the Coastal A-zone manifests the highest flooding damage in 2020 and is expected to 

increase by about 42.3% in 2050. The contribution of other flood schemes (Riverine and Coastal V-

zone) to the total expected annual loss is ten times smaller than the share of Coastal A-zone. 

Nevertheless, Coastal V-zone properties face the highest rate of increase in expected losses over the 

30 year period. For the entire state, the average expected loss for properties at risk rises from USD 

5481 in 2020 to USD 7772 in 2050. The 41.4% increase in average flood damage for all properties in 

the study is associated with an additional USD 657 million worth of housing value at risk. 

Additionally, ancillary analyses using zip code level National Flood Insurance Program claims (~40 

years worth of data) 9994 zipcode–year combinations in which claims were paid out in relation to 

damage from flooding events in the state of New Jersey. The mean value of those payouts over those 

respective time periods is USD 5540 which aligns very closely with our estimated 2020 AAL of USD 

5482 in 2020. 

Table 2. Total expected loss in 2020 and 2050 by different flood types. 

Flood Type 
Expected Annual 

Loss 2020  

Expected Annual 

Loss 2050  

Change over 

time 

Riverine USD 95,175,030  USD 126,483,400 32.8% 

Coastal A-Zone USD 1,448,826,000 USD 2,062,089,000 42.3% 

Coastal V-Zone USD 9,548,879 USD 14,476,420 51.6% 

Average USD 5481* USD 7772 
41.4% 

Total USD 1,553,550,000 USD 2,203,049,000 

*Actual observed payouts from NFIP and IA claims in the state of NJ over the life of the programs has 

averaged USD 5540 per claim, per year. 

Moreover, Table 3 illustrates the total expected loss inside and outside of FEMA designated 

Special Flood Hazard Area (SFHA) simply as a way of capturing our expected loss estimates against 
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FEMA’s current 1-100 flood zone layer, a designation that mandates flood insurance for homeowners. 

More generically, the SFHA boundaries distinguish high flooding risk regions (inside the SFHA) 

from the low to moderate risk regions (outside the SFHA). Generally, the expected loss in the high-

risk flooding hazard area is about 9~10 times higher than the area with low to moderate risk of 

flooding. Over time, the expected loss outside and inside the hazard area grows about 32% (~USD 31 

million) and 42% (~USD 618 million), respectively. 

Table 3. The total expected loss inside and outside of SFHA flood hazard area. 

FEMA 

Designation 

Expected Annual 

Loss 2020  

Expected Annual 

Loss 2050  

Change over 

time 

Inside SFHA 1,458,375,288 2,076,565,590 42% 

Outside SFHA 95,175,030 126,483,385 33% 

To put these numbers into context, average flood insurance claims paid for three out of ten most 

significant events that impacted the state of New Jersey—including Superstorm Sandy, Hurricane 

Ivan and Hurricane Irene—are USD 66,517, USD 57,097 and USD 30,369, respectively (please see the 

National Flood Insurance Program for claims and statistics at https://www.fema.gov/policy-claim-

statistics-flood-insurance). These numbers are just for context, but are useful in thinking about the 

probability of these types of more extreme events and the calculated annual loss estimates. The 

average paid loss associated with these major events is 4 to 10 times higher than average expected 

loss for the investigated properties in our 2050 estimates of average loss (USD 7772). 

The correlation between the flood start (using it as a metric for hazard intensity) and the average 

expected loss in the properties at risk is presented in Table 4. In the table, one can see the average 

AAL (as an average of the values obtained for 2020 and 2050) as well as average AVM property value 

versus the first occurrence of flooding. Generally, the association of an earlier flood start and lower 

return period scenarios with higher flood intensity and significant flooding damage is intuitive. For 

instance, the average expected loss for the properties that only flood at a 500-year scenario in 2050 is 

about USD 12. For the properties which initiate flooding at a 2-year return period in 2020, the 

damages rise to USD 25,369. Table 3 also shows that the average property values do not necessarily 

modulate the variability of AAL values for different flood occurrences. The properties which only 

flood in 2050 at 250-years or lower probability scenarios, constitute the highest property values 

among different groups but only indicate USD 93 USD expected loss. This low expectation is due to 

the fact that flood risk is both very low (1in 250 and 1in 500 year risk only) and does not exist in the 

current climate (2020 environmental conditions). As mentioned in Table 1, none of the properties 

start flooding at the 2 or 5 year return period, in 2050. Thus, we removed those scenarios from Table 

4. 

Table 4. The average AAL based on the return period and the year at which property start to flood 

(Year and return period combinations of flood start year in bold). 

Start  

Return Period 
Start Year Average AAL Average AVM 

500 2050 USD 12.1 USD 348376.1 

250 2050 USD 93.3 USD 602222.6 

100 2050 USD 328.3 USD 490608.1 

20 2050 USD 526.2 USD 388714.0 
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500 2020 USD 163.8 USD 385353.0 

250 2020 USD 441.8 USD 381428.2 

100 2020 USD 1802.8 USD 389930.0 

20 2020 USD 5848.4 USD 387271.0 

5 2020 USD 12792.8 USD 384466.4 

2 2020 USD 25369.9 USD 454939.2 

 

Figure 5 presents the spatial distribution of expected loss due to the structural damage, 

aggregated across different counties in New Jersey. The maps provide the results of the analysis of 

average property values, the average of the expected loss in 2020 and 2050, and the percent of average 

expected loss for each spatial unit. The table below the maps provides the details on the manifested 

numbers. Generally, the average expected loss among different counties ranges from USD 3000 to 

USD 15,000. In both absolute and relative terms, Ocean and Warren county present the highest 

expected damage over 30-years. Both of these counties are perceived as relatively low or median in 

terms of aggregated property values among other counties, but exceed more than 4% of structural 

damage for the residential buildings. Notably, Cape May and Hudson county—which present the 

highest average property value—are among the lower exposed counties.  

 

 

Figure 5. The spatial pattern of average property values, Average annual losses (AAL) values and the 

percentage of AAL across different counties in New Jersey. 

At the level of individual structures, the average expected loss follows a unimodal, non-

symmetric, highly skewed distribution (see Figure 6). While more than half of the properties show 

an expected loss of USD 1000 or less, at the lower frequency the distribution, expected losses can 

reach USD 30,000 annually. The disproportionate number of lower damages in the expected loss 

spectrum describes the nature of flood hazard intensity where the higher probability events are 

expected to leave a lower damage and footprint. On the other hand, the heavy-tailed frequency 

modulated by a small number of extremely large values can be due to the presence of high inundation 



Climate 2020, 8, 116 14 of 21 

 

and high property values in the data. Either or both could impact the damage skewness and control 

the outliers in the output. 

 

Figure 6. The frequency of average expected annual loss values in 283,435 properties. 

Additionally, the breakdown of average annualized loss across different groups of SpCode in 

Figure 7 follows the frequency pattern discussed earlier in Figure 4. Occupancy types (SpCode) R11N, 

R12B, and R12N constitute the highest frequency of properties and place among the top exposed 

SpCode groups. The intra-variability of the values in each group shows the dominant impact of the 

FEMA Coastal A-zone in the entire state. However, while the riverine flooding schemes indicate 

around 10% of the impacted properties in each group, its proportion of total expected loss is lower 

than 5% of the total damage. 

 

Figure 7. The breakdown of expected annual loss for different groups of flood type in 3 property’s 

specific building codes that indicate highest values; typical 1-story buildings with no basement 

(R11N) are showing the highest proportion among different groups. 
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To assess how the combined impact of sea level rise, tidal flooding, and the increased potential 

for tropical cyclone activity from the warming seas and atmosphere would affect structural damage 

in New Jersey, we quantified the trends in expected loss over 30 years. Figure 8 illustrates the 

projected change in total expected loss of each county from 2020 to 2050. The numbers are reported 

as the total average AAL in million USD. Accordingly, Ocean county shows the most significant 

response to environmental changes over three decades, with total average AAL spiking at nearly 

USD 300 million. Cape May and Atlantic follow Ocean county with a USD 150 million and a USD 80 

million increase in expected loss, respectively. As we discussed in Figure 5, in terms of the average 

annual loss value, Cape May is among the lower risk counties. However, considering the change in 

exposure from 2020 to 2050, Cape May emerges as the second most affected county in the state. 

Additionally, we evaluated the change in expected flooding loss over 30 years at the parcel level. 

Figure 9 presents the range of values for different counties. Similar to the change in total values, the 

median of properties’ change in annual loss indicates a higher exposure in Ocean, Cape May, and 

Atlantic counties. These counties also show a higher deviation in parcel-level expected loss, covering 

a wider range of values from near zero to USD 3000.  

 

Figure 8. The increase in total expected annual loss from 2020 to 2050, access different counties. 
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Figure 9. The range of changes in expected annual loss of properties across counties. 

While the analysis of frequency/magnitude is a reliable tool for evaluating flood risk and relating 

that to the damage, considering the vulnerability components helps to understand the severity of the 

impact on the exposed population or assets. On the significance of this interaction, Figure 10 provides 

a granular illustration of flood risk estimation and the associated exposure of population and 

properties in New Jersey. The bubbles in the figure identify the average expected loss versus the 

average housing value aggregated over each county. The size and color of each bubble indicate the 

share of each county in relation to the total number of properties and total population in the entire 

state, respectively. It is clear from the figure that the variability of expected loss is not an artifact of 

the property value. For instance, Ocean county, with the highest expected damage, is considered 

average in terms of property value. In contrast, Hudson county presents the highest property value 

but ranks among the lowest flood risk counties of New Jersey. The majority of counties with a low 

and medium share of properties (less than 10%) indicate a low property value and low expected loss. 

Conversely, Ocean county, with high property and population percent, show the highest expected 

loss, distinctively characterized by a high level of exposure. Similarly, Warren ranked second in flood 

risk, but identified with a considerably low population and share of the state’s properties. On the 

same note, Bergen county contains the highest proportion of the population with a relatively low 

percentage of properties and has relatively low flood risk (with less than USD 5000 average expected 

loss).  
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Figure 10. Average of expected AAL values and properties values for different counties in New 

Jersey; The color and size represent the percentage of total population and total number of properties, 

respectively. 

5. Discussion and Conclusions 

The EIA detailed in the preceding sections is the product of the ability to combine economic 

damage indicators with new high precision input data. While the results are only for the state of New 

Jersey, their implications indicate that they are both reliable (as validated by a comparison to historic 

NFIP and IA claims over the lifetime of the programs in the state) and consistent, which set the 

foundation for a larger scale national level analysis. The high level of reliability was identified via 

historic observation from the lifetime payouts of NFIP and IA claims based on damage and depth 

relationships. As evidence, the average yearly payout for NFIP claims over the ~40 years of NFIP 

claims program in the state of NJ found that, on average, the total payout divided by the number of 

claims was about USD 5540 per year, per claim. This equates to a real-world expectation of annual 

loss from flood in the state of New Jersey over this time period. Our calculations found that the 

estimated payout in 2020 was actually about USD 5481. This is a remarkably close approximation of 

estimated annualized loss over given the six explicitly modeled return period events and the 

estimated inundation from each at each property in the state. It is reasonable for the observed value 

to be a little higher in that there have been multiple large events over the relatively short time periods 

in which the NFIP coverage has been available (Sandy, Ivan, and Irene, for example), but the close 

approximation lends itself as validation for both the underlying hazard layers and the applied 

damage functions. 
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Additionally, the ability to extend the EIA by understanding the economic implications of the 

changing environment adds another level of sophistication to the assessment tool. By relying on the 

IPCC’s RPC 4.5 future forecasts along with NASA’s CMIP5 Global Climate Models, we were able to 

estimate the same six hazard layers with depths associated with the same specific return periods in 

the year 2050. This estimation proved significant, in that the AAL increased from USD 5482 in 2020 

to USD 7772 in 2050. That is over USD 2000 an increase over the time period of estimated loss to 

flooding per home that experiences flood risk, or about USD 650 million more in aggregate annual 

loss to flooding, moving from USD 1.55 billion expected losses in 2020 to USD 2.2 billion in 2050. Of 

course, these results are subject to change. Here we have implemented the RCP 4.5 future forecasts; 

however, there is already evidence that the 4.5 curve may be too low of a future estimation. If that is 

the case, then the estimated increases could change dramatically upwards. On the other hand, if the 

forecast is relatively accurate in the future and these types of assessment tools are used for policy 

making, informing decisions, and resource allocations, then we may see human adaptation in the 

form of built protections and smarter development in a way that minimizes the expected growth of 

loss associated with these environmental changes. Either way, having a high precision and reliable 

set of estimates at the property level helps to quantify current impact and plan for future conditions. 

Finally, the public nature of this assessment tool is empowering to both policymakers and 

homeowners. There are certainly high precision tools that exist in practice, but generally in a closed 

proprietary form. Having an assessment tool with open methods, made from open data, with results 

open to the public, makes resourcing and planning tools for individuals, organizations, and smaller 

communities available in such a way that has not been easily accessible in the way of resilience 

planning, floodplain management, and resource allocation for community infrastructure programs 

with an eye towards the changing environment and maximizing the return on program spending. 

For example, it allows state/federal agencies to prioritize spending based on changes in expected 

losses over the next 30 years, which in some cases may underscore the urgency of flood risk reduction 

projects with a real quantifiable cost and return on the investment.  

The public nature of the model results, methodology and the data inputs also mean that we 

already have the tools to perform these analyses nationwide at our disposal. Publicly available cost 

benefit analyses with transparent methodologies can be put in the hands of local communities, rather 

than relying on expensive and opaque engineering consultancies. The only other publicly available 

nationwide flood risk assessment tool that exists today is the FEMA SFHA. The FEMA models alone 

cannot perform this kind of analysis, as they were developed specifically with the floodplain manager 

in mind and with human safety in emergencies at the forefront of many of the modeling decisions. 

As such, the SFHAs have been created as two dimensional (no depth) categorically limiting zones (in 

or out of the SFHA) and without the same resolution in regards to magnitude (only 1-100 or 1-500 

year zones). In contrast, the flood hazard tool here has varying return periods (ranging from 1-2 to 

the 1-500 year zones) with depths attached to each of those hazard layers and forecasting into the 

future. In fact, a simple overlay with SFHA’s shows that about 7% of our estimated aggregate 

damages in New Jersey in 2020 (USD 95 million) fall outside of the FEMA identified SFHA. The 

remaining USD 1.5 billion fall within the FEMA SFHA, but the USD 95 million is significant in that 

these are homeowners that are outside of federally mandated insurance zones, but are still likely to 

incur damage from flood events. This % remains relatively stable into 2050, where about USD 126.5 

million in estimated aggregate damages fall outside of the current SFHA, and about USD 2.1 billion 

currently delineated within the SFHA. This additional precision on time, magnitude, vertical 

resolution, and horizontal resolution allow for a set of damage estimates specifically designed for the 

property level and with data driven evidence of reliability based on historical observation of damage 

payouts.  
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