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Abstract: Recent progress in nanotechnology has enabled to design the advanced functional
micro-/nanostructures utilizing the unique properties of ultrathin films. To ensure these structures
can reach the expected functionality, it is necessary to know the density, generated internal stress
and the material properties of prepared films. Since these films have thicknesses of several tens of
nm, their material properties, including density, significantly deviate from the known bulk values.
As such, determination of ultrathin film material properties requires usage of highly sophisticated
devices that are often expensive, difficult to operate, and time consuming. Here, we demonstrate
the extraordinary capability of a microcantilever commonly used in a conventional atomic force
microscope to simultaneously measure multiple material properties and internal stress of ultrathin
films. This procedure is based on detecting changes in the static deflection, flexural and torsional
resonant frequencies, and the corresponding quality factors of the microcantilever vibrating in air
before and after film deposition. In contrast to a microcantilever in vacuum, where the quality factor
depends on the combination of multiple different mechanical energy losses, in air the quality factor is
dominated just by known air damping, which can be precisely controlled by changing the air pressure.
Easily accessible expressions required to calculate the ultrathin film density, the Poisson’s ratio, and
the Young’s and shear moduli from measured changes in the microcantilever resonant frequencies,
and quality factors are derived. We also show that the impact of uncertainties on determined material
properties is only minor. The validity and potential of the present procedure in material testing is
demonstrated by (i) extracting the Young’s modulus of atomic-layer-deposited TiO2 films coated on
a SU-8 microcantilever from observed changes in frequency response and without requirement of
knowing the film density, and (ii) comparing the shear modulus and density of Si3N4 films coated on
the silicon microcantilever obtained numerically and by present method.

Keywords: thin film; atomic layer deposition; nanomechanics; Young’s modulus; shear modulus;
resonant frequency; Q-factor; microcantilevers; internal stress

1. Introduction

Functional micro-/nanostructures made of substrate and one or multiple ultrathin films are widely
used in applications like photovoltaics [1], micro-electronics [2], optics [3,4], tunable resonators [5,6],
and various sensors [7–12]. Preparation of these structures involves repeated usage of multiple
fabrication processes such as deposition, lithography, etching, and cleaning. In order to prevent the
mechanical failure or to guarantee that the structures would reach the desired operating conditions,
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the material properties of prepared ultrathin films must be known. During film deposition the internal
stress that often originates from a coefficient of thermal expansion mismatch can be generated [13].
For films of thicknesses ranging from hundreds of nm to about tens of µm, the nanoindentation [14],
bulge test [15], and the resonant methods [16] are the most common techniques used to determine the
film material properties. Noticing that for micro-sized samples the density is estimated based on the
known bulk values. However, once film thickness shrinks from micro- to nanoscale (i.e., tens of nm),
the density of particularly polymer, organic, composite, or porous films can start to deviate from the bulk
values (e.g., changes in deposition parameters affect notably prepared film density) [17,18]. In addition,
usage of different film preparation processes can also cause significant variations in the material
properties and density of designed nanostructure. As a result, current procedures of ultrathin film
material properties determination require either simultaneous measurements on multiple sophisticated
devices [19–21] or the specially designed micro-/nanomechanical resonators or experimental setup
with the advanced computational tools [22–26]. For instance, the high-resolution transmission electron
microscope is used to precisely control the force loading/unloading during the nanoindentation of a
nanoscale sample [20,21]. Drawbacks of these procedures are that combined measurements on either
several sophisticated devices or one specially-designed device are difficult to perform, time consuming,
often expensive, and each developed procedure is usually limited to only a specific class of materials.
The resonant methods can be also integrated in situ into the nanomaterial deposition systems [27,28].

In response, here we demonstrate the outstanding capability of common microcantilever to
determine the density, generated internal stress, the Poisson’s ratio, and the elastic properties of solid
and polymer ultrathin films, from measured static and dynamic responses of the microcantilever,
before and after depositing a thin layer film on its surface. Sketch of the microcantilever with
the deposited film is given in Figure 1. We emphasize here that the present procedure utilizes,
in addition to well-established measurements of the cantilever static deflection, the flexural and
torsional resonant frequencies of the cantilever operating in air; also monitoring often neglected
changes in the corresponding quality factors (Q-factors). As a direct consequence, no additional
experimental setup or specially designed microcantilevers are required, enabling non-destructive and
easily accessible material characterization and testing of ultrathin films. Noticing that Q-factor is a
dimensionless parameter describing the efficiency of the designed resonator (i.e., higher Q-factor values
stand for lower dissipation and higher efficiency). Importantly, in air the Q-factor is proportional to
the material properties and dimensions of the designed microcantilever, and a known air damping
that can be precisely controlled by changing the air pressure [29]. Other energy losses, such as the
support, surface or the thermo-elastic loss, have only a negligibly small impact on the Q-factor of
microcantilever submerged in air. When film is sputtered on the resonator surface, it alters the material
properties and dimensions of the microcantilever resonator, yielding changes in Q-factor. As such,
Q-factor provides an additional source of information on prepared ultrathin film(s).
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Figure 1. Sketch of the two-layered microcantilever made of an elastic substrate and coated ultrathin 
film performing (a) flexural and (b) torsional oscillations. 
Figure 1. Sketch of the two-layered microcantilever made of an elastic substrate and coated ultrathin
film performing (a) flexural and (b) torsional oscillations.
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We first derive easily accessible expressions needed to calculate the material properties of an
ultrathin film from observed changes in flexural and torsional resonant frequencies and Q-factors of the
microcantilever operating in air. Then, we analyze the sensitivity of calculated material properties of
ultrathin film on uncertainties in frequency (Q-factor) and dimensions measurements and, afterwards,
we validate our theoretical findings by comparing theoretical predictions with experimental results and
numerical computations. Despite the fact that analysis is carried out on rectangular microcantilevers,
the obtained results and developed procedure of thin film material characterization are valid for other
cantilever shapes. In this case, just the flexural and torsional rigidities and hydrodynamic functions
used in the model must be recalculated.

2. Theory

2.1. Flexural Oscillations of Two-Layered (Multi-Layered) Microcantilever Operating in Air

To begin, we recall a known fact that once a thin layer film is sputtered on an elastic substrate, it
generates in-plane stresses and also alters the overall cantilever resonator elastic properties, particularly
in near vicinity of its clamped end [6,30–33]. These effects, that originate from mismatches in strains
and the coefficient of thermal expansion between substrate and film, have been proven to notably
affect the resonant frequencies of ultrathin cantilever resonators (i.e., thin sheets) [32,33]. Nevertheless,
for relatively thick microcantilevers (e.g., ultrathin film sputtered on a thick elastic substrate), of which
are considered in the present work, the cantilever free end allows the generated internal stress to be
relaxed [31]. Hence, for out-plane flexural vibrational modes, the governing equation for the dynamic
deflection function u(x,t) of the microcantilever consisting of substrate and coated film (see Figure 1a)
is given by

(ρ1S1 + ρ2S2)
∂2u(x, t)
∂t2 + DF

∂4u(x, t)
∂x4

= Fdrive(x, t) + Fhydro(x, t), (1)

where DF = 1
12 E1WT3

1r(ξF, η); subscript 1 and 2 stand for substrate and film, respectively; ρ, S, W, T
are the density, cross sectional area, width, and thickness, respectively; r(ξF,η) = [ξF

2η4 + 4ξFη(1 + 1.5η
+ η2) + 1]/(1 + ξFη), ξF = E2/E1, η = T2/T1, Fdrive(x, t) is the external driving force per unit length of
an arbitrary form that set the microcantilever into motion; Fhydro(x, t) is the hydrodynamic force of
surrounding air.

It shall be pointed out that detailed theoretical analysis of a homogeneous microcantilever (i.e.,
made of one material layer) performing flexural oscillations in air can be found in [34,35]. In present
work, we extend these theoretical results to account for two material layers required to characterize
the material properties of ultrathin films. Moreover, our results can be also directly applied to the
microcantilever consisting of N material layers just by recalculating linear density, ρS (where ρ can be
viewed as the effective density and S is the cantilever cross-sectional area), and flexural rigidity using
the following general relationships:

ρS =
∑N

i=1
ρiSi, DF =

∑N

i=1
Ei

∫
∏

i

u∗2dS−

(∑N
i=1 Ei

∫∏
i
u∗dS

)2

∑N
i=1 EiSi

, (2)

where u* is the local coordinate in the lateral direction,
∏

i is the i-th region of cantilever beam cross
section [36].

The general form of the hydrodynamic force obtained by solving the Fourier-transformed
continuity and Navier–Stokes equations (i.e., computations are in the time domain Fourier-transform),
for an incompressible fluid as Fhydro(x|ω) = κFρairω

2W2ΓF(ω)U(x|ω), where U(x|ω ) is the
Fourier-transformed deflection function, κF = π

4 , ρair is the air density, and ΓF(ω) is the hydrodynamic
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function for flexural vibration mode. Then, taking the Fourier transform of Equation (1) and rearranging
terms yields:

d4U(x|ω )

dx4
−

γ2
(n)

ω

ω
(n)
vF


2[

1 +
κFρairW

ρ1T1(1 + µη)
ΓF(ω)

]
U(x|ω ) = F̃drive(x|ω), (3)

where µ = ρ2/ρ1, F̃drive(x|ω) = Fdrive(x|ω)L4/DF, ω(n)
vF =

(γ(n)
L

)2 √
DF/[ρ1T1(1 + µη)] is the cantilever

angular resonant frequency in vacuum of the n-th vibrational mode, n = 1, 2, 3, . . . stands for the
considered vibrational mode, L is the cantilever length, ω is a characteristic angular frequency of the
microcantilever oscillations and γ(n) is obtained as the positive root(s) of the following characteristic
transcendental equation:

coshγ cosγ+ 1 = 0. (4)

For an arbitrary form of the driving force the general solution of Equation (3) can be found by
the eigenfunction expansion method. In this case, the dynamic deflection function can be obtained
as a linear combination of the microcantilever mode shapes, θF(n)(x) = sin h

(
γ(n)x

)
− sin

(
γ(n)x

)
−[

sin h(γ(n))+sin(γ(n))
cos h(γ(n))+cos(γ(n))

]
×

[
cos h

(
γ(n)x

)
− cos

(
γ(n)x

)]
(see [37]) and the one reads:

U(x|ω ) =
∑
∞

n=1
BF(n)(ω)θF(n)(x), (5)

where BF(n)(ω) is found using the orthonormal properties of θF(n)(x) as

BF(n)(ω) =

∫ L
0 F̃dr(x

∣∣∣ω)θF(n)(x)dx

γ4
(n)
−

(
γ2
(n)

ω

ω
(n)
vF

)2[
1 + κFρairW

ρ1T1(1+µη)
ΓF(ω)

] . (6)

The dissipative effect of air is small compared to viscous fluid (i.e., Q(n) >> 1 [34,35,38]); therefore,
in a vicinity of the resonance peaks ΓF(ω) ≈ ΓF_r(ω) + iΓF_im(ω), where ΓF_r(ω) and ΓF_im(ω) are the
real and imaginary components of the dimensionless hydrodynamic function for cantilever performing
flexural oscillations. Then, the resonant frequency and Q-factor of n-th microcantilever vibrational
mode in air can be obtained with an analogy to a simple harmonic oscillator as:

ω
(n)
F =

ω
(n)
vF√

1 + κFρairW
ρ1T1(1+µη)

ΓF_r

(
ω
(n)
F

) , (7)

Q(n)
F =

ρ1T1(1+µη)
κFρairW + ΓF_r

(
ω
(n)
F

)
ΓF_im

(
ω
(n)
F

) . (8)

For reader’s convenience, we present dependencies of the real ΓF_r

(
ω
(1)
F

)
and imaginary ΓF_im

(
ω
(1)
F

)
components of the hydrodynamic function on the fundamental mode frequency represented through
the Reynolds number, Re = π

4ωW2ρair/µair, where µair is the viscosity of air, in Figure 2a. Noticing
only that the Reynolds number is a dimensionless parameter used to predict the flow pattern. For
a microcantilever consisting of N material layers, the normalized “effective” density ρ1T1(1 + µη)

in Equations (7) and (8) is replaced by
∑N

i=1 ρiTi. Furthermore, for higher vibrational modes the
hydrodynamic function depends on the following two dimensionless parameters: (i) The Reynolds
number defined now as Re = ωW2ρair/µair; and (ii) the normalized mode shape given by κ =
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γ(n)W/L [39]. The exact form of the hydrodynamic function for an arbitrary mode number can
be found in [39,40]. The general solution for the dynamic deflection has been obtained using the
eigenfunction expansion method (see structure of Equation (5)); therefore, the obtained expressions for
the resonant frequency and Q-factor represented by Equations (7) and (8) are valid for an arbitrary
vibrational mode (i.e., for higher modes only the hydrodynamic function must be recalculated).Coatings 2019, 9, x FOR PEER REVIEW 5 of 14 
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2.2. Torsional Oscillations of Two-Layered (Multi-Layered) Microcantilever Operating in Air

The resonant frequency and Q-factor of a two(multi)-layered microcantilever vibrating in air
can be obtained in the same way as done in the previous section for flexural oscillations. Briefly, by
accounting for the membrane analogy proposed by Prandtl in 1903, similarities with the theoretical
model for flexural oscillations of a multilayered beam in vacuum given in Zapomel et al. [36] and
theory of Green and Sader [41], the general governing equation and boundary conditions for torsional
oscillations of a two-layered microcantilever (see Figure 1b) operating in air takes the following form:

DTr
∂2φ(x, t)
∂x2 −

ρ1W3T1

12

[
1 + ε2

1 + µη
(
1 + ε2

1η
2
)]∂2φ(x, t)

∂t2 = Mdrive(x, t) + Mhydro(x, t), (9)

φ(0, t) = 0,
∂φ(L, t)
∂x

= 0. (10)

Here φ(x, t) is the deflection angle about the cantilever major axis, ε1 = T1/W is the characteristic
dimensional scale, DTr =

1
3 G1WT3

1r(ξTr, η) is the torsional rigidity, r(ξTr, η) = [ξTr
2η4 + 4ξTrη(1 + 1.5η

+ η2) + 1]/(1 + ξTrη), ξTr = G2/G1, G is the shear modulus; Mdrive(x, t) is the driving moment per unit
length and Mhydro(x, t) is the hydrodynamic torque per unit length, which the general form is obtained
by solving the equation of motion of fluid in complex space [39,41], given by:

Mhydro(x|ω) = −
π
8
ρairω

2W4ΓT(ω)Φ(x|ω), (11)
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where ΓT(ω) is the torsional dimensionless hydrodynamic function, Φ(x|ω) is the deflection angle in
complex space. Plugging Equation (11) into the Fourier-transformed Equation (9) and rearranging
terms yields:

d2Φ(x|ω)
dx2 −

λ(n) ω

ω
(n)
vTr


21 + κTρairW

ρ1T1
[
1 + ε2

1 + µη
(
1 + ε2

1η
2
)]ΓT(ω)

Φ(x|ω) = M̃drive(x|ω), (12)

where κT = 3π/2, M̃drive(x|ω) = Mdrive(x|ω)/DTr, ω
(n)
vTr =

λ(n)
L

√
4G1T2

1r(ξTr,η)

ρ1W2[1+ε2
1+µη(1+ε2

1η
2)]

is the angular

resonant frequency in vacuum of the n-th torsional mode and λ(n) = π(2n − 1)/2, n = 1, 2, 3, . . . .
The general solution for torsional oscillations of the microcantilever driven by an arbitrary form

torque can be again obtained by the eigenfunction expansion method:

Φ(x|ω) =
∞∑

n=1

BTr(n)(ω)θTr(n)(x), (13)

where θTr(n)(x) = sin[(2n− 1)πx/2], n = 1, 2, 3, . . . and BTr(n)(ω) is given by

BTr(n)(ω) =
2
∫ L

0 M̃dr(x
∣∣∣ω)θTr(n)(x)dx(

λ(n)
ω

ω
(n)
vTr

)2[
1 + κTρairW

ρ1T1[1+ε2
1+µη(1+ε2

1η
2)]

ΓT(ω)

]
− λ2

(n)

. (14)

Then, in analogy with flexural motion, for small dissipative effects the desired expressions that enable
to accurately predict the torsional resonant frequency and Q-factor of the n-th vibrational mode of
microcantilever consisting of substrate and ultrathin film (i.e., η << 1 and ε1 < 1) operating in air are:

ω
(n)
Tr ≈

ω
(n)
vTr√

1 + κTρairW
ρ1T1(1+µη)

ΓT_r

(
ω
(n)
Tr

) (15)

and

Q(n)
Tr ≈

ρ1T1(1+µη)
κTρairW + ΓT_r

(
ω
(n)
Tr

)
ΓT_im

(
ω
(n)
Tr

) , (16)

where ΓT_r

(
ω
(n)
Tr

)
and ΓT_im

(
ω
(n)
Tr

)
are the real and imaginary components of the dimensionless

hydrodynamic function that, for fundamental torsional vibrational mode, are given in Figure 2b.
For a multilayered beam, just coefficients for torsional mass and hydrodynamic effect of fluid must

be recalculated. In general cases, ρ1T1(1 + µη) is replaced by
∑N

i=1 ρiIPi, where Ip is the polar moment
of inertia and the hydrodynamic effect of air is now represented by

(
π
8

)
ρairW4 [see Equation (11)].

3. Results

3.1. Method of Determining Material Properties, Density, and Generated Internal Stress of Ultrathin Film(s)

We first evaluate impact of coated film on the microcantilever resonant frequency and Q-factor and,
afterwards, we derive easily accessible expressions enabling calculation of the density, the Young’s and
shear moduli, the Poisson’s ratio and stress of the solid and polymer ultrathin films from experimentally
observed changes in the microcantilever resonant frequencies, Q-factors, and the cantilever static
deflection. Using Equations (7), (8), (15), and (16), the desired changes in resonant frequency and
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Q-factor of the n-th vibrational mode, represented by ratio of the microcantilever made of substrate
and coated film (i.e., ω and Q) to the one of without film (i.e., ω0 and Q0), are obtained as

ω
(n)
j

ω
(n)
j0

=

√√√√√√√√√
r
(
ξ j, η

)
×


1 + C jΓ j_r

(
ω
(n)
j0

)
1 + µη+ C jΓ j_r

(
ω
(n)
j

)
, (17)

Q(n)
j

Q(n)
j0

=
Γ j_im

(
ω
(n)
j0

)
Γ j_im

(
ω
(n)
j

) ×


1 + µη+ C jΓ j_r

(
ω
(n)
j

)
1 + C jΓ j_r

(
ω
(n)
j0

)
, (18)

where subscript j = F (flexural) and Tr (torsional), and C j = κ j
ρair W
ρ1 T1

.
Once film is coated on the elastic substrate, it alters the microcantilever flexural and torsional

rigidity represented by the dimensionless parameter r(ξj,η) and increases its “effective” linear density
through the coefficient µη. According to Equations (17) and (18), changes in the microcantilever
resonant frequency caused by the film differ essentially from those obtained for Q-factor of the same
vibrational mode. Since dissipative effect of air is small [38], changes in the resonant frequency
depend just on interplay between the rigidity and effective linear density of the prepared sample as
r(ξj,η)/(1 + µη). As a result, an increase, decrease, or even non-monotonic dependency of ω/ω0 on
film thickness can be observed depending on the exact film and substrate material properties and
density values. Quality factor is; however, proportional to combination of the linear density and
known hydrodynamic load represented by Γ j_r and Γ j_im. We note that rigidity affects the Q-factor only
indirectly through the resonant frequency used to calculate both components of the hydrodynamic
function (see Equation (18)). As such, with an increase of film thickness only an increase in Q-factor
can be observed. It immediately implies that combined measurements of the resonant frequency and
Q-factor changes enable evaluation of the material properties of ultrathin film, even when no shift in
the resonant frequency can be observed [24]. For example, dependencies of the fundamental resonant
frequency and Q-factor changes of the silicon microcantilever of length L = 300 µm, W = 30 µm,
and T1 = 1 µm (ρ1 = 2.33 g/cm3, E1 = 169 GPa, and G1 = 42 GPa) on thickness of film made of gold
(ρ2 = 19.3 g/cm3, E2 = 79 GPa, and G2 = 27 GPa), platinum (ρ2 = 21.45 g/cm3, E2 = 168 GPa, and
G2 = 61 GPa), and silicon nitride (ρ2 = 3.2 g/cm3, E2 = 350 GPa, and G2 = 100 GPa) are given in Figure 3.
As expected, an increase and/or decrease in the frequency ratio can be observed depending on the
density and material properties of coated film (Figure 3a,b). For gold and platinum (silicon nitride),
film density (rigidity) dominates the frequency response, thus with an increase of film thickness the
resonance shifts to lower (higher) values. For a given film thickness, the higher Q/Q0 values can be
achieved for heavier films (i.e., platinum and gold; Figure 3c,d). Importantly, obtained theoretical
predictions are in a good agreement with published experimental observations carried out on the
microcantilever resonator-based biosensor [42]. In these experiments, the antibody and antigen formed
thin layer films on the cantilever surface, yielding both an increase and decrease in the resonant
frequency depending on the interplay between stiffness and stress effects, and just an increase in
Q-factor as predicted by the present model.
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Rearranging terms in Equations (17) and (18), the density, and the Young’s and shear moduli of
prepared ultrathin film can be determined from the following equations:

µ =
1
η

Q(n)
j

Q(n)
j0

Γ j_im

(
ω
(n)
j

)
Γ j_im

(
ω
(n)
j0

) (1 + C jΓ j_r

(
ω
(n)
i0

))
−

1
η

(
1 + C jΓ j_r

(
ω
(n)
j

))
, (19)

r
(
ξ j, η

)
=

ω
(n)
j

ω
(n)
j0


2

Q(n)
j

Q(n)
j0

Γ j_im

(
ω
(n)
j

)
Γ j_im

(
ω
(n)
j0

) . (20)

The Young’s modulus is related to the shear modulus as E = 2G(1 + υ), where υ is the Poisson’s ratio.
Hence, accounting for Equation (20), the Poisson’s ratio of coated film is then calculated by:

υ2 ≈
(RF − 1)BT

(RT − 1)BF
(1 + υ1) − 1, (21)

where R j =

ω(n)
j

ω
(n)
j0

2
Q(n)

j

Q(n)
j0

Γ j_im

(
ω
(n)
j

)
Γ j_im

(
ω
(n)
j0

) and Bj = 4 + 6η + 4η2
− Rj. And, finally, the generated internal stress

can be obtained from the microcantilever static deflection measurement [7]:

σ =

[
(1− υ2) + (1− υ1)ξFη3

]
E1T1

3(1− υ2)(1− υ1)(1 + η)ηL2 z, (22)
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where z is the detected microcantilever static deflection caused by stress due to film coating. Equation (22)
is obtained using a plate approximation and without accounting for the clamped end effect. Hence,
this equation is strictly valid for microcantilevers with a large aspect ratio L/W >> 5. If the aspect ratio
is small, then the effect of clamping region must be accounted and the microcantilever deflection can
be obtained by following approach given in work of Tamayo et al. [43]. In present work we assume L
>> W >> T and, consequently, Equation (22) describes accurately the relationship between bending of
the cantilever free end and the internal stress [44].

Equations (19) and (20) reveal that the Young’s and shear moduli of prepared film can be determined
even without a requirement for knowing its density and vice versa. Similarly, the Poisson’s ratio of
ultrathin film calculated by Equation (21) does not require previous calculation of the Young’s and shear
moduli of film and substrate. These findings are particularly of value in testing of micro-/nano-electronic
devices, where in order to prevent their mechanical failure, it is of emergent importance to know the
material properties of designed ultrathin films [45]. It shall be pointed out that the present method can
be also extended to determine, in addition to elastic properties and density, the ultrathin film thickness.
In this case, the rarely-measured in-plane flexural resonant frequencies must be taken into account [24].
Then, for in-plane flexural mode r(ξF,η) = 1 + ξFη and, consequently, the density, elastic properties and
thickness of prepared film can be determined using Equations (19) and (20).

3.2. Impact of Errors in Dimensions, Frequency, and Quality Factor Measurements on the Accuracy of the
Present Method

To ensure the proposed procedure of material properties determination is practical, we now
examine impact of the dimensional discrepancy and uncertainties in frequency measurements on
the determined material properties. It is worth noting that thickness of film can be measured by the
ellipsometry with a typical measurement error of sub-nanometer, whereas the cantilever length and
width are often determined by a scanning electron microscope with the common uncertainties ranging
from few nm to tens of nm. In general, the uncertainties in dimensions, frequency, and Q-factor yield
inaccuracies in the determined properties of designed ultrathin films. These inaccuracies expressed
through errors in the dimensionless thickness, ∆η, density, ∆µ, modulus parameters, ∆ξi, and the
Poisson’s ratio, ∆υ, can be viewed as a perturbed term in a given quantity. The relative errors calculated
from Equations (19)–(21) for η << 1 (i.e., r(ξj, η) ≈ [4ξjη(1+ 1.5η) + 1]/(1 + ξjη)) read:

∆µ
µ

=
1

1 + ∆η
η

− 1, (23)

∆ξi
ξi

=
1

1 + 6∆η
6η+4−R∗i

+
∆η
η

− 1, (24)

∆υ
υ

=
1 + 4∆η(1.5 + 2η)/B∗T
1 + 4∆η(1.5 + 2η)/B∗F

− 1, (25)

where υ = (1 + υ2)/(1 + υ1), R∗i and B∗i are the measured and calculated properties with due account
for uncertainties in the frequency, Q-factor, and dimensions. The achievable relative sensitivity in
determined material properties and density of gold film sputtered on the silicon substrate, with
dimensions 300 µm (L), 30 µm (W), and 1 µm (T1), are given in Figure 4. For example, for 40 nm thick
gold film and the uncertainties in frequency, thickness, and width measurements of 0.5 kHz, 1 and
10 nm, the following properties of gold film are obtained: The Young’s modulus of 78.9 ± 3.3 GPa,
the shear modulus of 27.2 ± 0.4 GPa, the density of 20.3 ± 1.2 g/cm3, and the Poisson’s ratio of
0.45 ± 0.1. These results demonstrate that the present procedure of material properties measurement is
accurate, even for the relatively high uncertainties in thickness and resonant frequencies (Q-factors)
measurements. Importantly, for given measurement errors, the accuracy in determined material
properties can be easily improved just by detecting changes in the resonant frequency and Q-factor of
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the higher vibrational modes (i.e., higher resonant frequencies yield a significant increase in Q-factor
values) [38]. For an illustration, we again extract the material properties of 40 nm thick gold film with
errors in measurements given in the previous example by considering the second vibrational mode.
The calculated properties of gold film using the second vibrational modes are as follows: The Young’s
modulus of 78.8 ± 1.4 GPa, the shear modulus of 27.2 ± 0.2 GPa, the density of 20.1 ± 0.9 g/cm3, and
the Poisson’s ratio of 0.43 ± 0.1. Different values of film’s Young’s modulus, density and the Poisson’s

ratio mainly originate from the uncertainties in calculated Γ j_r

(
ω
(n)
j

)
and Γ j_im

(
ω
(n)
j

)
[34,39].
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Figure 4. The achievable relative sensitivity of (a) the Young’s modulus (Equation (24)); (b) the shear
modulus (Equation (24)); (c) density (Equation (23)); and (d) the Poisson’s ratio (Equation (25)) of gold
film of η = 0.01, 0.04, and 0.1 coated on the silicon substrate with dimensions 300 µm (L), 30 µm (W),
and 1 µm (T1).

4. Discussion

We now assess the validity and versatility of the proposed procedure of material characterization
by extracting the Young’s modulus of the atomic-layer-deposited TiO2 ultrathin film, of thickness
20 and 50 nm, sputtered on the microcantilever made of SU-8 photoresist polymer substrate [46].
In contrast to data presented in [46], where the density of TiO2 film was estimated based on the X-ray
reflectometry measurements and, then, the Young’s modulus of TiO2 film was calculated from changes
in the resonant frequencies before and after conformal coating of the film, we determine the TiO2 film
Young’s modulus without requirement for the density measurement. We remind the reader that the
effective linear density of microcantilever vibrating in air can be expressed through measured Q-factor
values and, consequently, the simple flexural resonant frequencies of the n-th vibrational mode can be
accurately predicted by:

f (n)F0 =
γ2
(n)

2πL2

√
1

κFρair W2
DF

Q(n)
F ΓF_im(ω)

, (26)
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where f = ω/(2π) and the flexural rigidity of a microcantilever with conformal coating (i.e., the TiO2

film covers entire surface area of the microcantilever) is given by:

DF =
1

12
E1WT3

1 +
1
6

E2
[
T3

1T2 + T3
2(W + 2T2) + 3T2(W + 2T2)(T1 + T2)

2
]
. (27)

For a microcantilever of length, width, and substrate thickness of 300 ± 1 µm, 100 ± 1 µm, and
5.6 ± 0.05 µm, substrate density of 1.2 ± 0.01 g/cm3, and the measured fundamental resonant frequency
in air of f (1)F0 = 18.2 ± 0.32 kHz, the Young’s modulus of SU-8 substrate of 4.04 ± 0.3 GPa is estimated
by Equation (26). Importantly, published experimental data from [46] shows that, in accordance
with present theoretical predictions (see Figure 3a,c), coated TiO2 film shifts the microcantilever
resonant frequencies to the higher values (i.e., for TiO2 film, stiffness dominates and causes an
increase in Q-factor). Accounting for the flexural rigidity given by Equation (27) and structure of
Equation (20), the expression enabling calculation of the Young’s modulus of TiO2 film from the
experimentally-detected changes in frequency response reads:

ξF =
1

2r0


 f (n)F

f (n)F0


2

Q(n)
F

Q(n)
F0

ΓF_im

(
ω
(n)
F

)
ΓF_im

(
ω
(n)
F0

) − 1

, (28)

where r0 = ε2 + η3(1 + 2ε2) + 3η(1 + 2ε2)(1 + η)2 and ε2 = T2/W. Table 1 presents a comparison of the
Young’s modulus of 20 and 50 nm thick TiO2 films calculated using Equation (28) and determined
previously by Colombi et al. [46].

Table 1. Comparison of the Young’s modulus of atomic layer deposition (ALD) TiO2 films calculated
by Equation (28) and determined previously in [46].

Measured Quantity SU-8 20 nm TiO2 50 nm TiO2

Frequency in air (kHz) 18.2 ± 0.32 21.0 ± 0.21 27.1 ± 0.18
QF/QF0 None 1.11 ± 0.018 1.34 ± 0.019

Young’s modulus (GPa), by Equation (28) 4.04 ± 0.30 66.3 ± 14 96.9 ± 8
Young’s modulus (GPa), [34] 3.82 ± 0.13 60 ± 18 91 ± 15

In addition, comparisons of the shear moduli and densities of 20 and 50 nm thick silicon nitride
(Si3N4) films, coated on the silicon microcantilevers of length 300 µm, width 30 µm, and thickness
of 1 µm, calculated by the present method (i.e., Equations (19) and (20)) and numerically by using
COMSOL Multiphysics, are given in Table 2. The uncertainties in frequency, thickness, and width
measurements are: 0.5 kHz, 1, and 10 nm, respectively.

Table 2. Comparisons of the shear modulus and density of silicon nitride film coated on the silicon
microcantilever obtained by the proposed procedure and numerically. Considered errors in frequency,
thickness, and width measurements are: 0.5 kHz, 1, and 10 nm, respectively.

Measured Quantity 20 nm Si3N4 50 nm Si3N4

ωT/ωT0, Equation (17)/Numerically 1.024 ± 0.003/1.026 ± 0.003 1.058 ± 0.003/1.061 ± 0.003
QT/QT0, Equation (18)/Numerically 1.045 ± 0.002/1.048 ± 0.002 1.114 ± 0.002/1.116 ± 0.002

Density (g/cm3), Equation (19)/Numerically 3.35 ± 0.01/3.52 ± 0.02 3.25 ± 0.01/3.26 ± 0.01
Shear modulus (GPa), Equation (20)/Numerically 100.48 ± 10.77/107.64 ± 11.11 100.39 ± 4.67/104.01 ± 4.74

The results given in Tables 1 and 2 show that here derived expressions enabling calculation of the
ultrathin film material properties and density are valid and, in addition, the proposed procedure of
material properties determination is relatively simple, practical, universal, and accurate, even for low
accuracies in dimensions and frequency measurements.
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5. Conclusions

We have proposed and demonstrated the non-destructive and easily accessible method of material
characterization utilizing the well-established measurement of static and dynamic modes of the
microcantilevers operating in air. Expressions needed to calculate the film properties from measured
frequency and Q-factor changes are derived. We have showed that by monitoring changes in resonant
frequency and, correspondingly, Q-factor, the Young’s (shear) modulus of film can be determined
without the requirement of knowing the film density. This finding would be of great value in material
testing of ultrathin films of which the density deviates from known bulk values. The usual discrepancies
in dimensions and errors in frequency (Q-factor) measurements were proven to have only a small
impact on the calculated material properties of ultrathin film. In addition, for given errors in dimensions
and frequency measurements, the accuracy in extracted film properties can be easily improved by
using the higher vibrational modes. A good agreement between the Young’s modulus (the shear
modulus and density) determined by the present procedure and previous experimental measurements
(numerical computations) carried out on the microcantilever, consisting of an elastic substrate and
coated ultrathin film(s), has allowed us to confirm the validity of: (a) derived expressions and (b) the
present procedure of the ultrathin film material properties determination.
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