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Abstract: The use of ZnO for the functionalization of textile substrates is growing rapidly, since it can
provide unique multifunctional properties, such as photocatalytic self-cleaning, antimicrobial activity,
UV protection, flame retardancy, thermal insulation and moisture management, hydrophobicity,
and electrical conductivity. This paper aims to review the recent progress in the fabrication of
ZnO-functionalized textiles, with an emphasis on understanding the specificity and mechanisms
of ZnO action that impart individual properties to the textile fibers. The most common synthesis
and application processes of ZnO to textile substrates are summarized. The influence of ZnO
concentration, particle size and shape on ZnO functionality is presented. The importance of doping
and coupling procedures to enhance ZnO performance is highlighted. The need to use binding and
seeding agents to increase the durability of ZnO coatings is expressed. In addition to functional
properties, the cytotoxicity of ZnO coatings is also discussed. Future directions in the use of ZnO for
textile functionalization are identified as well.
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1. Introduction

Functional coatings aim to enhance the properties and performance of textile substrates as well
as to introduce new textile functions. To this end, different classical and contemporary organic,
organic-inorganic hybrid, and inorganic compounds are used in application processes. Among the
latter, ZnO has already been established as a chemical agent for textile functionalization because of
its unique physical and chemical properties, environmental friendliness, biocompatibility, and low
price. Its important advantage over other materials lies in the fact that bulk ZnO has been generally
recognized as a safe (GRAS) substance by the US Food and Drug Administration (FDA) [1].

ZnO is available in the form of a white powder that can be produced from the rare mineral zincite,
present in nature, or synthetically from different precursors. In general, ZnO can be applied as a
previously prepared ZnO suspension or Zn salt solution, or through the in situ synthesis of ZnO
nanoparticles (ZnO NPs) in the presence of a textile substrate. The extraordinary photocatalytic activity,
chemical stability under UV radiation exposure, thermal stability, and absorption of a broad range of UV
radiation [2–4] allow ZnO particles (ZnO Ps) to be one of the most effective photocatalytic self-cleaning,
antimicrobial and UV-protective agents. Furthermore, ZnO Ps have been applied to textile fibers to
improve flame retardancy and thermal stability and to achieve moisture management and thermal
insulation, electrical conductivity, and hydrophobicity [5–16]. The photocatalytic properties also enable
ZnO Ps to be used as degradation agents for different pollutants, such as dyes and surfactants present
in textile industry wastewaters [12,17–23].

In the literature, there are several reviews that address ZnO from different perspectives
and deliverable highlights. These reviews thoroughly discuss the methods of ZnO synthesis,
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precursors used, synthesis conditions, structure characteristics, and properties, as well as the most
important application fields of ZnO [2,4,24]. The fundamental mechanism of ZnO photocatalysis,
factors affecting the photocatalytic activity, as well as the possibilities and strategies for the
improvement of ZnO’s photocatalytic performance via metal/non-metal doping, coupling with
other semiconductors, heterojunction with nanocarbon components or surface modification were
systematically presented [25–28]. In these reviews, the photodegradation efficiency of ZnO in removing
contaminants, such as phenolic compounds, persistent organic contaminants, and dyes, was discussed.
Furthermore, the biosynthesis of ZnO NPs as an eco-friendly technology without toxic chemicals using
different plant extracts, microorganisms and other biomolecules was thoroughly reviewed [29–31]. Since
these green routes are especially important for biomedical applications, the photocatalytic, antibacterial,
antifungal, drug delivery, anticancer, antidiabetic, anti-inflammatory as well as bioimaging activities
of ZnO NPs were taken into consideration [32,33]. However, the antimicrobial activity was most
frequently reviewed among the functional properties of ZnO [32–36]. The proposed mechanisms for
the antimicrobial action of ZnO NPs against Gram-positive and Gram-negative bacteria were discussed
in detail [35].

Review articles dealing with the use of ZnO in textiles are rare [2,37–40]. They are primarily
focused on novel application procedures of ZnO [2], being limited to the preparation of antibacterial
cellulose/ZnO composites [39] or antimicrobial fabrics containing metal-based nanoparticles, among
them ZnO NPs [40]. Existing articles discuss the applications of nanomaterials to textile
substrates to obtain different functional properties [38] or give an overview of the development
of photocatalyst-modified textiles more generally [37]. To the best of our knowledge, there is no
review article that gives comprehensive insights into the functionalities that can be obtained with the
application of ZnO to textile substrates. Therefore, the aim of this review is to focus on the recent
development of ZnO-functionalized textile fibers, with an emphasis on photocatalytic self-cleaning
and purification, antimicrobial and UV-protection activities, flame retardancy, thermal insulation and
moisture management, hydrophobicity, and electrical conductivity (Figure 1). The mechanisms of
action of ZnO that impart individual properties, as well as various parameters influencing ZnO’s
performance and efficiency on textile fibers, are also discussed.
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Figure 1. Schematic presentation of the functional properties of ZnO on textile fibers.
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2. Characteristics of ZnO

ZnO is an n-type semiconductor with a direct and wide band gap in the near-UV spectral region
(≥3.37 eV) and high electron mobility [41,42]. The ZnO electronic structure provides photocatalytic
activity, giving ZnO unique multifunctional properties. When ZnO is excited by a radiation of energy
equal to or greater than the band gap (Eg), excited electrons move to the conduction band (e−CB), leaving
behind holes in the valence band (h+

VB). This process is schematically presented in Figure 2.
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Figure 2. Schematic presentation of ZnO’s photocatalytic mechanism.

In the presence of water and oxygen, at least two photochemical reactions occur simultaneously
at the ZnO surface. The first is oxidation, in which photo-induced positive holes are involved, and the
second is reduction, in which photo-induced negative electrons are involved. In these reactions, highly
reactive oxygen species (ROS), i.e., •OH and •O−2 , are formed, which are crucial for the photocatalytic
efficiency of ZnO. On the other hand, the recombination of the photo-generated holes in the valence
band with the photo-excited electrons in the conduction band, which results in the dissipation of heat,
which impairs ZnO’s photocatalytic effectiveness.

ZnO Ps can be produced by two main approaches, namely, the top-down approach, which is
also called the metallurgical process and is based on the roasting of the rare mineral zincite, and the
bottom-up approach, which includes various physical and chemical synthesis techniques, among which
mechanochemical, electrochemical, sonochemical, hydrothermal, solvothermal, ultrasonic, microwave
irradiation, sol-gel, microemulsion, coagulation, controlled precipitation methods, and others, have
already been introduced [2,4,28,39,43]. To avoid the use of non-eco-friendly, toxic, and unsafe reagents,
the green synthesis of ZnO Ps has become an important alternative to conventional physio-chemical
processes. In this eco-friendly approach, the reducing agents, capping agents, dispersants, and binders
are replaced with plant extracts and different microorganisms [4,26,29–31,44,45]. To improve the
photocatalytic activity and overcome the photo-corrosion of ZnO, structure modification of ZnO Ps has
been performed with the aim of minimizing the recombination loss of the photo-induced electron-hole
pairs and extending the spectral response of ZnO to the visible spectrum [27]. Structure modification
strategies mainly include doping techniques to modify ZnO’s properties by incorporating impurities
such as metals or non-metals, the coupling of ZnO with other semiconductors, and the coupling of
nanocarbon materials to ZnO [25,27,46–50].
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The synthesis parameters and conditions, such as synthesis type, precursors used, molar
ratio of starting materials, reaction medium, pH value, temperature, type of reducing agent,
synthesis time, and drying time, all directly affect the structure, shape, and size of ZnO Ps and
consequently their functional properties [2–4,31,45,51]. ZnO generally crystallizes into three main
structures, i.e., hexagonal wurtzite, cubic rocksalt, and cubic zinc blende structures, among which
the wurtzite crystal structure is the most common since it is thermodynamically stable under
ambient conditions [52]. ZnO can be present in a wide diversity of shapes, such as nanocombs,
nanorings, nanohelixes/nanosprings, nanobelts, nanowires, and nanocages [53]; needle-like, flower-like,
rod-like, flake-shaped, and spherical nanodiscs [28]; crushed stone-like, cylinder-shaped, and
bullet-like structures; sheets, polyhedra, and ellipsoids [2]; hexagonal plate-like structures [54,55];
rod-shaped particles [54,56]; pyramid-shaped structures [57]; multispheres [58]; doughnut-shaped
structures [59–61]; nanosheets [62]; dumbbell-shaped structures [34]; nanoleaves [63]; nanobows [64];
and star, multi-pod and spike-shaped structures [65].

3. Textile Functionalization

To generate ZnO-functionalized textile substrates, different application procedures can be used.
Among them, coating processes such as dip-coating, sol-gel, padding, electro deposition, and chemical
bath deposition are usually performed. In these application methods, nano- and micro-sized ZnO is
mostly deposited on a given textile substrate as a previously prepared suspension, or ZnO is synthesized
in situ with the use of solvothermal, hydrothermal, precipitation, ultrasonic, mechanochemical,
micro-wave and sol-gel techniques. Table 1 summarizes the most recent coating methods for the
fabrication of different functional properties by the modification of textile substrates with ZnO.
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Table 1. Summary of the most recent synthesis procedures and coating methods using ZnO to impart functional properties to textile substrates.

Textile Substrate Synthesis Process Shape of
Particles/Structures

Size (a) of
Particles/Structures

Application Method Additional Treatment Functionality Ref.

Cotton

biosynthesis spherical 53−69 nm pad-dry-cure acrylic binder in the
functionalization process

antimicrobial activity,
photocatalytic degradation [66]

biosynthesis spherical 10−45 nm pad-dry-cure no additional treatment antibacterial activity,
UV protection [67]

biosynthesis spherical,
rod-like

30–80 nm,
L: 100 nm,
D: 5 nm

dip-coating no additional treatment antibacterial activity [68]

biosynthesis hexagonal,
rod-like

10–42 nm,
8–38 nm pad-dry-cure no additional treatment UV protection, antimicrobial

activity [69]

green synthesis spherical,
irregular

39.34 nm,
43.63 nm pad-dry-cure chitosan in the

functionalization process
hydrophobicity, UV resistance,

antibacterial activity [11]

precipitation rods, sheets, flake-like,
flower-like not specified dip-coating + microwave no additional treatment UV protection, photocatalytic

self-cleaning [13]

precipitation star-like 0.5–1 µm dip-coating no additional treatment UV protection [70]

precipitation not specified not specified
interfacial polymerization

into microcapsules, pad-dry
application

tetraethoxysilane and
hexadecyltrimethoxysilane

after-treatment

UV protection, thermal
insulation,

superhydrophobicity
[71]

co-precipitation hexagonal 47.2 nm pad-dry-cure
poly-hydroxy-amino methyl

silicone binder in the
functionalization process

UV protection, antimicrobial
activity [72]

chemical
precipitation hexagonal 24–28 nm pad-dry-cure NaOH after-treatment UV protection, antimicrobial

activity [73]

commercially available ZnO (not specified) dip-pad-dry-cure no additional treatment photocatalytic degradation
(Self-cleaning) [74]

commercially available ZnO (not specified) sonochemical coating crosslinking agent (galic acid)
in the functionalization process antimicrobial activity [75]

commercially available ZnO (not specified) pad-dry inductively coupled (RF)
plasma pretreatment antibacterial activity [76]

commercially available ZnO (not specified) pad-dry-cure inductively coupled (RF)
plasma pretreatment UV protection [77]

commercially available ZnO (not specified) dip-coating
1-butyl 3-methyl imidazolium

chloride in the functionalization
process

antibacterial activity,
UV protection [78]
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Table 1. Cont.

Textile Substrate Synthesis Process Shape of
Particles/Structures

Size (a) of
Particles/Structures

Application Method Additional Treatment Functionality Ref.

Cotton

commercially available ZnO (not specified) dip-coating
octadecanethiol in the

functionalization process or as
an after-treatment

superhydrophobic, antibacterial
activity [79]

commercially available ZnO (not specified) pad-dry-cure
organic/inorganic binder,
repellent chemical in the
functionalization process

UV protection,
superhydrophobic, antibacterial

activity
[80]

commercially available ZnO (not specified) dip-coating myristic acid in the
functionalization process electrical conductivity [81]

hydrothermal Hexagonal 56 nm dip-coating fluoro-surfactant as stabilizer in
the synthesis process photocatalytic degradation [12]

in situ star-like 55–70 nm dip-coating + sonication Tragacanth gum in the
functionalization process photocatalytic degradation [42]

in situ layers, spherical not specified in situ dip-coating no additional treatment UV protection [51]

in situ spherical, elliptical 37 nm in situ sol-gel no additional treatment antibacterial activity [82]

in situ not specified 198.5 nm, 359 nm,
2520 nm in situ dip-coating hexamethyltriethylenetetramine

in the functionalization process
antibacterial activity,

UV protection [83]

in situ Hexagonal 35 nm pad-dry-cure no additional treatment antibacterial activity,
UV protection [84]

in situ rod-like, spherical, plate-like not specified in situ sol-gel no additional treatment antibacterial activity [85]

in situ Spherical 97 nm pad-dry-cure NaOH pretreatment antibacterial activity,
UV protection [86]

in situ nanoparticles, nanorods 48−62 nm in situ dip-coating Cu2O, folic acid UV protection [87]

solvothermal rod-like 1.76 ± 0.12 µm dip-coating

polydopamine template as a
pretreatment,

hexamethyenetetraamine in the
functionalization process

antimicrobial activity,
UV protection [88]

solvothermal rod-like not specified dip-coating hexamethylenetetramine in the
functionalization process

UV protection, electrical
conductivity [89]

sol-gel hexagonal 18 nm, 19 nm sputter seed layer
deposition and sol-gel

NaOH pretreatment,
hexamethylenetetramine in the

functionalization process

UV protection, electrical
conductivity [90]

ultrasonic flake-like, flower-like, sheets,
hexagonal not specified dip-coating + ultrasonic

irradiation

sodium dodecyl sulfate as a
pretreatment, different

surfactants in the
functionalization process

antimicrobial activity [91]

ultrasonic needle-like, bramble-like not specified ultrasonic irradiation sodium dodecyl sulfate as a
pretreatment electrical conductivity [10]
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Table 1. Cont.

Textile Substrate Synthesis Process Shape of
Particles/Structures

Size (a) of
Particles/Structures

Application Method Additional Treatment Functionality Ref.

Cotton

not specified not specified 50 nm pad-dry-cure acrylic binder in the
functionalization process UV protection [92]

not specified not specified not specified
atomic layer

deposition/molecular layer
deposition

pretreatment with Al2O3 seed
layer deposition, hydroquinone

in the synthesis process
electrical conductivity [93]

Cotton/
polyester in situ sonosynthesis

semi-hexagonal nanosheets,
cobblestone-like

nanoparticles
56 nm, 20 nm in situ dip-coating +

ultrasonic irradiation

Fe3O4,
cetyltrimethylammonium

bromide dispersing agent in the
synthesis process

self-cleaning, antimicrobial
activity [94]

Flax in situ spherical,
platelets

58.3–223.9 nm,
600–684.2 nm in situ dip-coating deposition of Ag NPs as

pretreatment
antibacterial activity,

hydrophobicity, UV resistance [95]

Jute co-precipitation not specified 38–60 nm,
30–500 nm pad-dry potassium methyl siliconate in

the functionalization process fire retardancy [5]

co-precipitation rod-like 38–60 nm pad-dry-cure
hydroxymethyl amino
siliconate binder in the

functionalization process
fire retardancy [96]

Jute solvothermal rod-like L: 2.5 µm,
D: 140 ± 44 nm

dip-coating (seeding,
growth)

hexamethylenetetramine in the
functionalization process hydrophobicity [97]

Polyamide
hydrothermal in the

presence of
hexamethylen-etetramine

rod-like not specified dip-coating (seeding,
growth)

screen printing of Ag as a
pretreatment electrical conductivity [98]

Polyamide,
polyester,

polypropylene
not specified microrods

L: 3.9± 0.4 µm, D: 252 ±
5 nm; L: 5.6 ± 0.2 µm, D:
389 ± 8 nm; L: 4.1 ± 0.6
µm, D: 313 ± 2 nm

hydrothermal deposition hexamethylenetetramine in the
functionalization process antibacterial activity [99]

Polyester

chemical bath
deposition rod-like L: 1 µm,

D: 450 nm chemical bath deposition hexamethylenetetramine in the
functionalization process antimicrobial activity [100]

commercially available ZnO (not specified) dip-coating NaOH pretreatment or in the
functionalization process

self-cleaning, antibacterial
activity [101]

99.99% zinc target RF megatron sputtering
deposition of Ag film using DC

megratron sputtering before
ZnO

photocatalytic degradation [102]

hydrothermal rod-like L: 1 µm, D: 50 nm seed layer deposition
plasma pretreatment,

hexamethylenetetramine in the
functionalization process

photocatalytic degradation,
self-cleaning [103]

Mechanochemical not specified 30−60 nm dip-coating + shaking NaOH and UVC irradiation
pretreatment photocatalytic degradation [104]

sol-gel irregular ~40 nm dip-coating + shaking no additional treatment photocatalytic degradation [105]
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Table 1. Cont.

Textile Substrate Synthesis Process Shape of
Particles/Structures

Size (a) of
Particles/Structures

Application Method Additional Treatment Functionality Ref.

sol-gel in situ
mineralization wurzite not specified sol-gel in situ

mineralization

radiation induced graft
polymerization of

c-methacryloxypropyl
trimethoxysilane in the
pretreatment process

UV resistance, hydrophobicity,
thermal resistance [106]

Polyester Solvothermal spherical 34.12 nm dip-coating
cetyltrimethylammonium

bromide, urea and corn silk in
the functionalization process

antimicrobial activity [16]

Ultrasonic spherical 52.6 nm dip-coating + ultrasonic
irradiation no additional treatment photocatalytic self-cleaning,

antibacterial activity [107]

not specified not specified not specified atomic layer deposition

cupric nitrate trihydrate,
dimethylformamide,

1,3,5-benzene-tricarboxylic acid,
anhydrous ethanol in the

synthesis process

photocatalytic degradation [108]

Polyester/
cotton sol-gel not specified 50, 130, 260, 380, 650 nm pad-dry-cure no additional treatment antimicrobial activity, moisture

management [14]

Polypropylene,
cotton commercially available ZnO (not specified) pulsed laser deposition RF plasma pretreatment antimicrobial activity [15]

Polyurethane Hydrothermal nanoneedles L: 2−3 µm,
D: 30 nm dip-coating polydopamine pretreatment photocatalytic degradation,

antimicrobial activity [109]

Silk
in situ rod-like L: 0.9−13 µm,

D: 70−160 nm in situ pad-dry after-treatment with
n-octadecenethiol

UV protection,
superhydrophobicity [110]

in situ nanorod arrays D: 100−200 nm electro-deposition no additional treatment electrical conductivity [111]

in situ tower-like nanowires not specified cathodic deposition Au-metallization as a
pretreatment electrical conductivity [9]

Sisal precipitation not specified not specified dip-coating butane tetracarboxylic acid in
the functionalization process fire retardancy [6]

(a) L—length, D—diameter.
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3.1. Photocatalytic Self-Cleaning Properties

The self-cleaning properties of ZnO Ps are derived from their photocatalytic
performance [13,25,28,37,112–115]. If ZnO Ps are present on the surface of textile fibers, ZnO is
capable of photodegrading various organic colored and colorless dirt stains when it encounters
them [116]. In this case, the direct photooxidation of the organic compounds by reaction with h+

VB and
the indirect photooxidation of the organic compounds by reaction with ROS occur [75,117]. This leads to
the decomposition of organic compounds and their removal from textile fibers. Since the textile surface
is cleaned without the use of washing processes, this phenomenon is called photocatalytic self-cleaning.

The self-cleaning activity of ZnO Ps has mostly been studied on ZnO surface-modified
cotton [13,107,114,118] and polyester [101,105,115] fibers, as well as cotton/polyester blends [94].
As stains, coffee, tea, and the dyes methylene blue and rhodamine B were applied to the textile
fabric surface before exposure to solar and UV light irradiation for different intervals under different
humidity conditions. The self-cleaning efficiency of ZnO was determined based on the color difference
measurement between the irradiated and non-irradiated stained samples or by the observation
and calculation of color intensity. To determine the durability of the photocatalytic self-cleaning
properties of the coating, dyes or colored stains were consecutively applied to the same position on the
sample surface.

The results showed that the self-cleaning properties depended on the content of ZnO Ps. A higher
concentration of ZnO Ps resulted in increased photocatalytic degradation [94,105,115,118]. A treatment
of polyester with sodium hydroxide to increase the surface area and wettability of fibers enhanced
the adsorption of ZnO Ps and consequently the self-cleaning degradation of methylene blue [101,107].
The self-cleaning effect was also enhanced with increasing relative humidity, indicating that the water
molecules present at the surface of the ZnO Ps contribute to ROS formation [13]. Accordingly, the
highest self-cleaning effect was achieved at 90% relative humidity, where coffee stains were almost
completely removed from cotton fabric after 15 h of exposure without washing.

Furthermore, the photocatalytic activity of ZnO was enhanced when coupled with other
semiconductors or carbon materials [94,118]. Accordingly, if Fe3O4/ZnO nanocomposites were
deposited on a cotton/polyester fabric, an increase in the self-cleaning properties of the sample
was obtained with an increase in the concentration of iron sulphate [94]. It was believed that the
presence of Fe3O4 increased the possibility of the separation of photo-generated charges, prolonging
the electron-hole recombination. If a reduced-graphene graphene oxide-ZnO nanocomposite was
applied to cotton fabric, excellent photodegradation of methylene blue dye and tea stains was observed,
even under sunlight irradiation [118].

ZnO-coated textile substrates have previously been used for the solar-driven photodegradation
process of toxic organic compounds in water and air. To this end, ZnO-coated polyester [21,103,104,119]
or cotton [12] substrates were immersed in different dye solutions, such as methylene blue, methyl
orange, C.I. Acid Blue 9, C.I. Reactive Orange 13 and C.I. Reactive Violet 5, and the photocatalytic
degradation of the dye was monitored spectrophotometrically during UV and solar light irradiation.
The decomposition of the dye chromogen resulted in solution decolorization, reflecting a decrease in
the dye absorbance (Figure 3).
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Figure 3. Untreated (a) and ZnO-coated (b) polyester fibers; UV-Vis absorption spectra of methylene
blue solution in the course of photocatalysis by ZnO-coated polyester fabric (c); reusability test of
ZnO-coated polyester fabric for methylene blue degradation (d). Reprinted with permission from [105].
Copyrights 2017 Elsevier.

The results also showed that the photocatalytic degradation activity of ZnO-coated textile substrates
increased with increasing surface porosity, roughness, specific surface area, and hydrophilicity [12,21].
These factors facilitate the adsorption of the dye onto the ZnO Ps and enhance the formation of ROS. On
the other hand, an increase in the initial concentration of dye decreased the rate of ZnO photocatalytic
degradation [119]. The reason for this was attributed to the blocking of the active sites by the dye
molecules, which also prevent UV rays from reaching ZnO Ps. The photocatalytic performance of ZnO
Ps slightly decreased after successive dye degradation cycles due to the liberation of ZnO Ps from the
surface of the textile substrate [105].

Beside dyes, the effective photocatalytic degradation of other toxic compounds such as
p-nitrophenol [120], organophosphate methyl parathion [34], and formaldehyde [102], in the presence
of ZnO- or ZnO nanocomposite-modified fabrics, was observed. The application of silver/ZnO
composite films onto polyester fabric improved the photocatalytic activity of ZnO, resulting in
increased formaldehyde degradation rates compared to fabrics coated only with ZnO film [102].

It was found that the mechanism of pollutant degradation by ZnO Ps depends directly on
the pollutant chemical structure. Accordingly, when studying the mechanism of methylene blue
and formaldehyde degradation in the presence of different chemical scavengers, it was found that
•OH radicals play a vital role in the dye oxidation reaction [105] and that •O−2 plays a vital role
in formaldehyde degradation [120]. On the other hand, hydrolysis was assumed to be the major
mechanism for the photocatalytic degradation of the organophosphate methyl parathion in the presence
of ZnO [34].

3.2. Antimicrobial Properties

The antimicrobial activity of ZnO is attributed to ROS generated through ZnO photocatalysis
and to Zn2+ cations liberated from the surface of ZnO Ps. Despite much research in this field, the
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exact mechanism of the antimicrobial activity of ZnO is still not completely understood [36,100]. The
reason for some contradictory results most likely arises from the use of different zinc precursors,
synthesis conditions, ZnO concentrations, ZnO crystal structures, sizes, shapes, surface textures,
defects, and functionalizations, which influence the antimicrobial mechanism [36]. The different
proposed mechanisms of antimicrobial activity of ZnO Ps are presented in Figure 4. Because of
these multiple simultaneous antimicrobial mechanisms of action, it is much more difficult to develop
microbial resistance against ZnO.
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It is assumed that the photocatalytic generation of ROS, especially H2O2 and •OH, is crucial for
the antimicrobial activity of ZnO under UV and visible light exposure [26,32,35,36,100,121]. When
ZnO NPs encounter bacterial cells, they can directly adsorb to the cell surface and disrupt the cell wall.
The generated highly reactive ROS can easily incorporate into the bacterial cell membrane, causing the
disruption of cellular components, such as DNA, lipids, and proteins, via oxidative stress. Furthermore,
Zn2+ cations released from ZnO dissolution can also penetrate the bacterial cell, where they inhibit the
action of respiratory enzymes. Under dark conditions, the antimicrobial activity of ZnO is assumed
to be less related to the generation of ROS and is mainly attributed to the attachment of ZnO NPs to
bacterial cell walls and increasing concentrations of Zn2+ cations in the bacterial cytoplasm [121].

To create antimicrobial textiles, cellulose fibers represent the most attractive textile substrate
for the application of ZnO Ps [11,32,42,66,68,69,72,73,76,82,84–86,88,90,122–127]. In addition to
cellulose, ZnO Ps have been applied to different synthetic fibers, such as polyester [16,99,100,128],
polypropylene [15,99,129], polyamide [99], polyurethane [109] and cellulose/polyester blends [14,94].

The antibacterial activity of textile fibers has been most often tested against Staphylococcus aureus
Gram-positive bacteria [14–16,42,67,68,72,75,76,82,94,99,126,127,129] and Escherichia coli Gram-negative
bacteria [15,16,42,67,68,76,94,99,109,124,126,127,129]. In addition, testing against methicillin-resistant
Staphylococcus aureus (MRSA) [82], Staphylococcus epidermidis [82], Propionibacterium acnes [82],
Candida albicans [16,42,94,124], Bacillus subtilis [67], Pseudomonas aeruginosa [67], Saccharomyces
cerevisiae [125], Gluconobacter cerinus [88], and Klebsiella pneumonia [72] has been performed. The
antifungal activity has been tested against Aspergillus flavus [126].

The results of the antibacterial efficiency of ZnO Ps showed that at lower concentrations, ZnO Ps
were more effective against Gram-positive than Gram-negative bacteria (Figure 5) [11,15,67,85,100],
since the former are more susceptible to inhibition by ZnO Ps than the latter. However, the growth
inhibition of Gram-negative bacteria significantly increased at higher ZnO concentrations and with
longer contact times, resulting in excellent antimicrobial activity against both Gram-positive and
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Gram-negative bacteria [84,99]. A difference in the susceptibility of Gram-positive and Gram-negative
bacteria to ZnO Ps was attributed to the difference in their bacterial wall structure [25,82]. It is
believed that the more complex, multilayered structure of Gram-negative bacteria, with an outer
plasma membrane, could provide greater protection against ROS in comparison to the less complex
structure of Gram-positive bacteria. However, the reverse results were also presented, where a greater
sensitivity of Gram-negative bacteria was attributed to their thinner cell wall peptidoglycan, which
could be more easily damaged by ROS than the thicker cell wall of Gram-positive bacteria [68,99].
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Figure 5. Particle size distribution curves of ZnO NPs (a), antimicrobial activity of ZnO NPs coated
cotton fabric (b). Sample codes: Zn600, Zn300 and Zn100 are ZnO nanopowders calcined at 100, 300
and 600 ◦C, respectively; Zn100F, Zn300F and Zn600F are fabric samples coated with different ZnO
nanopowders. Reprinted with permission from [11]. Copyrights 2017 Elsevier.

The antibacterial activity of ZnO Ps on textile fibers is directly influenced by the ZnO
concentration [78], particle size [11], crystalline structure [69] and surface-to-volume ratio [99,100], and
by the pH of the solution [128] as well as the chemical and morphological properties of textile
fibers [99,128]. Increasing ZnO concentration resulted in higher antimicrobial activity [72,85].
Furthermore, a decrease in the ZnO particle size, which consequently increases the particle
surface-specific area, significantly enhanced the antimicrobial activity (Figure 5) [11]. It was also
observed that an increase in fiber hydrophilicity and surface roughness enhanced the amount of
absorbed ZnO Ps, reflecting higher antimicrobial activity [99]. Accordingly, plasma and alkali
pre-treatment of textile fibers has already been established in ZnO modification processes to increase
both wettability and roughness [77,129,130]. It was also observed that the antimicrobial activity of
ZnO NPs is shape-dependent [69]. Nano-rod NPs showed enhanced antibacterial properties against
Gram-negative and Gram-positive bacteria compared to hexagonal ZnO NPs.

For textile application, the washing fastness of the antimicrobial coating is of high importance.
This property is directly related to the shape and size of ZnO particles and their stabilization and
fixation to the fiber surface. To this end, cotton fibers were pre-activated with different fixing agent
networks, such as polydopamine [88] or enzymatically crosslinked gallic acid [75], in which ZnO NPs
were embedded. A newer amino-silicone binder was also applied in the presence of Zn NPs in a
one-step application process onto cotton fibers [72]. The entrapment of ZnO NPs into cotton fabric was
increased by the usage of ionic liquid, influencing the enhanced swelling property of the fibers [78].
Different surfactants were used to control the shape and size of ZnO NPs as encapsulated species,
and sodium dodecyl sulphate was found to be a very effective stabilizing agent that improved the
durability and decreased the leaching of the coated ZnO NPs from cotton fibers [91]. The coating
durability was also increased by the in situ synthesis of ZnO NPs within the cotton fibers in the
presence of appropriate reducing and stabilizing agents, such as plant extracts, hexamethyltriethylene



Coatings 2019, 9, 550 13 of 26

tetramine, polymethylol compounds, and functionalized polyethyleneimine, without the support
of other capping and binding agents [27,83,86]. In addition to washing fastness, the stability and
durability of ZnO particles incorporated into the styrene-acrylic layer on cotton fibers were also
measured during long-term storage in wet and hot environments [122]. The results revealed effective
antibacterial activity of ZnO particles, even after accelerated ageing.

It was also found that the introduction of ZnO into an organic-inorganic composite composed
of epoxy resin and modified Ag/ZnO NPs significantly enhanced antibacterial efficiency as well as
provided a sufficient ZnO antifungal activity (Figure 6) [126]. Simultaneously, the covalent bonding of
the nanocomposite to the cotton fabric was carried out via interactions between the epoxy groups in
the polymer chains and hydroxyl groups on the cotton fiber surface, enhancing its durability.
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Figure 6. Antifungal activity of native cotton fabric (a), fabric coated with ZnO (b), fabric coated with
Ag/ZnO (c). Reprinted with permission from [126]. Copyrights 2019 Elsevier.

In addition to antimicrobial properties, the cytotoxicity of ZnO NPs and ZnO-textile coatings
against human and animal cells was evaluated, since these parameters are essential for biomedical
applications. It was shown that the cytotoxicity of ZnO NPs depends on both size and concentration.
A comprehensive investigation of cytotoxicity and the mechanism of ZnO NPs with three different
sizes on a human model cell revealed that the cytotoxicity of ZnO NPs was attributed to the release of
Zn2+, induction of oxidative stress and inflammatory response, and that the death mode of the human
hepatocyte cells incubated with ZnO NPs was necrotic rather than programmed cell death [131]. It
was also found out that the solubility of ZnO NPs is the most important factor in causing cytotoxicity
in vitro [132]. While Zn2+ at low concentrations is essential for maintaining the cellular processes
and metabolism, Zn2+ at higher concentrations can cause toxicity. Accordingly, the presence of ZnO
NPs at low concentrations in a textile coating did not compromise the cell viability, suggesting their
high biocompatibility [75], and the capping of ZnO NPs with plant extracts further reduced their
cytotoxicity [86]. A comparison of the effects of different coating procedures on ZnO cytotoxicity
showed that the in situ synthesis of ZnO could importantly decrease its cytotoxicity compared to the
deposition of previously synthesized ZnO to a polymer matrix [133]. The reason for this was attributed
to the good distribution and superior performance of the in situ synthesized ZnO within the polymer
matrix in comparison with the previously synthesized and agglomerated ZnO, causing its decreased
cytotoxicity. On the other hand, a recent study on bird representatives confirmed the hypothesis that
even at small doses (i.e., environmentally relevant doses) and for short exposure periods, ZnO NPs
induce erythrocyte changes suggestive of mutagenic and cytotoxic effects, requiring additional studies
to help better understand the health hazards and risks of ZnO NPs [134].

3.3. UV protection

The UV protection properties of ZnO are derived from its excellent chemical stability under
UV radiation exposure and high effectiveness in blocking both UV-A and UV-B radiation [3]. The
proposed mechanism of UV protection in ZnO involves the absorption of UV radiation as well as the
refraction and/or scattering of the UV rays through its high refractive index, which prevents direct and
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diffuse transmittance of UV rays through textile material to reach the skin (Figure 7). The efficiency of
UV protection is expressed in terms of the ultraviolet protection factor (UPF) [135], where according to
the AS/NZ 4399 [136] and EN 13758 standards [137], excellent protective properties are obtained with
UPF values of 40–50 or higher and with UVA average transmission smaller than 5%.Coatings 2019, 9, x FOR PEER REVIEW 15 of 27 
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Figure 7. Schematic presentation of the UV protection mechanism of ZnO particles on textile fibers.

For human skin protection against UV irradiation, ZnO has mostly been applied to woven and
knitted cotton fabrics, since natural cellulose fibers are usually used for the tailoring of light summer
protective clothing [11,71–73,77,78,80,83,84,86–88,90–92]. Research on other textile substrates has been
presented as well [106,110,129].

The efficiency of the UV protection of ZnO is strongly dependent on its concentration, particle
size and shape. As expected, an increased concentration of ZnO in the textile substrate enhances
the UV protection properties [51,71,72,78,84]. Furthermore, ZnO NPs maintained much higher
UV protection than micro-sized ZnO Ps because of their high specific surface area and refractive
index [11,129]. Furthermore, the application of previously prepared ZnO suspensions, in which
particles were agglomerated, could not preserve the excellent UV protection properties since the
agglomeration phenomenon significantly hindered the UV-blocking efficiency [73,92]. To decrease
the particle size and avoid particle agglomeration, in situ synthesis of ZnO NPs in the presence of
appropriate reducing agents as well as stabilizing and capping agents has been recommended to
achieve excellent UV protection [51,83,88]. Among stabilizing and capping agents, different chemicals,
such as hexamethyltriethylene tetramine [83], polydopamine (Figure 8) [88], folic acid [87], plant
extracts [11,73], proteins isolated from fungus [67], and surfactants [83] have been used in the ex
situ and in situ syntheses of ZnO NPs. Some stabilizing agents, such as plant extracts, also exhibit
UV-absorbing and UV-blocking properties themselves [73,138]. Another important advantage of the in
situ synthesis of ZnO NPs is the good adhesion between NPs and textile substrates, which consequently
improves the durability of UV protection.

To enhance the absorptivity of ZnO, textile fibers were pre-treated with plasma [77]. An increase
in the ZnO-textile substrate adhesion and a prolonged coating durability were provided by the usage
of binding [72] and capping [86] agents. When methacryloxypropyl trimethoxysilane was used as a
binding agent, a covalent bonding of ZnO to the organic-inorganic hybrid polymer film exhibited
excellent washing fastness in the coating, even after 40 washing cycles [106].
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Figure 8. Schematics of the frowth of ZnO NPs on PDA-templated cotton fabric (a); surface morphology
of pristine (b) and ZnO-coated (c) cotton fibres; UPF values, transmission (T) in the UVA and UVB
regions, and UPF rating of the cotton fabric samples (d).

3.4. Thermal Insulation and Moisture Management

The presence of ZnO on fibers can contribute considerably to the wear comfort performance of
textiles, since it can significantly increase the thermal insulation and improve the moisture management
capability of fabrics. Accordingly, a cotton fabric with increased thermal insulation for cold weather
clothing was created by covering the pores of twill woven fabric using a ZnO coating [139]. Consequently,
the water vapor permeability of the fabric decreased, and the resistance to evaporative heat loss
increased significantly. Furthermore, the thermal insulation properties of cotton fabric were increased
by coating the fibers with aluminum-doped ZnO-embedded lemon microcapsules due to the decreased
transmittance in the visible and near-infrared region. This performance was gradually enhanced with
increased microcapsule loading [71].

Moisture management properties were developed on polyester/cotton woven fabric for sportswear
applications by treating it with ZnO NPs of different particle sizes [14]. It was observed that the
moisture flow speed increased with decreasing ZnO particle size. It was believed that smaller particles
created finer capillaries in the fabric structure, allowing for faster moisture transport than in the case
of larger capillaries present between larger particles. Furthermore, a fabric with superior moisture
management can successfully remove sweat, thus preventing bacterial growth on the human body [14].
To create moisture-wicking dual-layer hydrophilic-hydrophobic textiles, ZnO NPs were covalently
attached onto an electrospun hydrophobic poly(vinylidene fluoride) inner layer to induce a push-pull
effect to improve water transport behavior [140]. At the same time, the antimicrobial behavior of ZnO
was also beneficial.

3.5. Flame Retardancy

It has been proposed that the flame retardancy of ZnO is based on a condensed phase mechanism
of action via the heat barrier effect [141,142]. As a highly thermally stable inorganic material, ZnO can
protect the insulation layer on the fiber surface, which reduces the transfer of heat, fuel, and oxygen
between the flame and fibers and consequently reduces the rate and intensity of combustion. ZnO has
already been designated as a smoke suppressant [142].

There are only a few papers involving ZnO-based flame-retardant textiles. In these studies, ZnO
alone or in combination with organic phosphorus compounds was applied to cotton, polyester or
cotton/polyester blends [7,84,142–144], but for technical applications, jute and sisal fibers were also
used as textile substrates [6,96]. The results showed that the flame retardancy of ZnO-coated cellulose
fibers was significantly enhanced if bulk ZnO was replaced with ZnO NPs [6]. The presence of ZnO
increased the limiting oxygen index of the cellulose fibers [6,96], reduced the heat release rate, and
acted as a smoke suppressant [144]. Whereas the thermal stability of cellulose fibers was not improved
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by ZnO, the amount of char residue was significantly increased [13,96,142]. In contrast, the thermal
stability of ZnO-treated polyester fibers even decreased compared to untreated fibers [143]. However,
the loading of ZnO onto an organic-inorganic hybrid soloxane polymer film significantly modified
a decomposition pathway of the coating, which significantly enhanced the thermal stability of the
polyester fibers [106]. Furthermore, even at high mass loadings, ZnO coating could not preserve the
self-extinguishing behavior of cellulose fibers [84,142], but the after-flame time was shorter, and more
char was formed in comparison with untreated fibers (Figure 9) [84].Coatings 2019, 9, x FOR PEER REVIEW 17 of 27 
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3.6. Hydrophobicity

For textile applications, the hydrophobic behavior of ZnO Ps is less relevant, since the hydrophilic
self-cleaning activity of ZnO with a high water absorption capacity is increasingly exploited. It
was found that the synthesis conditions directly influenced the morphology of ZnO crystals and
consequently the hydrophobicity/hydrophilicity of cotton fabric [13]. Namely, ZnO crystals with rod
structures that were grown in a seeding solution at pH 4–5 were more hydrophobic compared with the
flake- and flower-like ZnO structures which preferentially formed at pH 6–7 and pH 10–11 (Figure 10).

According to the literature, several studies have been performed in which ZnO Ps were used in
combination with hydrophobic or oleophobic precursors to provide multifunctional antimicrobial,
UV-protective, and superhydrophobic properties on the textile surface [12,71,79,80,97,106,110,145].
In these studies, ZnO NPs contributed to the development of superhydrophobic properties by
providing hierarchical micro- and nano-scale rough structures at the fabric surface (Figure 11),
representing a crucial morphological factor for the creation of hydrophobic self-cleaning effects
called the “lotus effect”. Regarding further morphological changes, the chemical modification of
fibers to ensure low-surface-energy hydrophobicity, without which the “lotus effect” would not be
achieved, was performed by the application of organic or inorganic-organic hybrid precursors with
alkyl [71,79,97,106,110,145] or perfluoroalkyl [12,80] functional groups.
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Figure 11. Surface morphology of pristine (a), polysilixane coated (b) and polysiloxane-ZnO coated
(c) polyester fibres; water contact angles (d) of pristine polyester (PET), polysilixane coated polyester
(PET-g-PMAPS), polysiloxane-ZnO coated polyester (PET-g-PMAPS/ZnO), polysiloxane-ZnO coated
polyester after annealing (Annealed PET-g-PMAPS/ZnO); relationship between the water contact angles
and storage time (e). Reprinted with permission from [106]. Copyrights 2018 Elsevier.
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3.7. Electrical Conductivity

Dual semiconducting and piezoelectric properties enable ZnO to be used for the fabrication of
wearable/textile electronics. Namely, the high piezo-photocatalytic efficiency enables ZnO to convert
solar and mechanical energies into electricity, which is crucial for smart textiles [123–126]. Since this
property is strongly dependent on structure and morphology, only ZnO grown on textile substrates in
the form of a one-dimensional wurtzite nanocrystal structure, such as nanorods (NRs) and nanowires
(NWs), can create a transparent conductive network with excellent electrical conductivity, low sheet
resistance, and mechanical flexibility (Figure 12) [98,146–149]. To synthesize the ZnO NR array layer in
situ on the surface of textile fibers, solvothermal [89], hydrothermal [98], ultrasonic irradiation [10],
sol-gel [90,95], spin-coating [150], electro-deposition [9,111], and atomic layer deposition [93] methods
were recently used.
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For wearable/flexible electronics, piezoelectric nanogenerators (PENGs) based on ZnO NRs arrays
patterned silk and polyamide fabrics were developed [98,111]. The excellent coupled piezoelectric and
semiconducting properties of the ZnO NRs enabled the textile substrates to harvest mechanical energy
from human bodies and act as the mechanical sensing and monitoring devices (Figure 13).
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Figure 13. The structure of ZnO nanorods patterned textile based piezoelectric nanogenerator (PENG)
(a); schematic diagram of PENG construction (b); schematic diagram of test system (c); output voltages
(d) and currents (e) by finger bending and palm clapping. Reprinted with permission from [98].
Copyrights 2019 Elsevier.
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To enhance the electrical conductivity, appropriate external dopants were also used in combination
with ZnO. To this end, ZnO-benzene-1,4-diol superlattice coatings were deposited on a cotton surface
with a predeposited aluminum oxide seed layer [93]; a cotton surface was coated with Sb-ZnO or
Ag-ZnO nanocomposites [89]; keratin/polylactic acid fibers were coated with ZnO-graphene quantum
dots [150]; ZnO NRs were synthesized in situ on the surface of Ag-coated flax [95] and polyamide [98]
fabrics; ZnO NRs were grown in situ on reduced graphene oxide [111] and gold [9] layers previously
prepared on silk fabrics; finally, Mn-doped porous dodecahedral or star-shaped ZnO was applied to
decorate carbon nanofibers [151]. To provide simultaneous electrical conductivity and hydrophobicity
to cotton fibers, ZnO was applied in combination with tetradecanoic acid [81].

4. Conclusions and Future Perspectives

This paper reviews the most recent studies concerning ZnO-functionalized textiles. According to
the literature, the most promising results were obtained in the production of textiles with photocatalytic
self-cleaning, antimicrobial, UV-protective, flame-retardant, hydrophobic, thermo-insulating, and
electrically conductive properties as well as textiles exhibiting moisture management. In some studies,
in addition to the excellent performance of ZnO, a high durability of the functionalized material was
obtained. These results confirm that ZnO is one of the most promising materials for the development
of high-performance textile products and will therefore be intensively investigated in the future.

Future research in the field of ZnO-modified textile fibers will certainly follow the main directions
in the fabrication of green, multifunctional, and smart textiles. Accordingly, investigations into new
green procedures of ZnO synthesis in the presence of textile fibers with the use of environmentally
friendly and nontoxic reagents, which will be able to control the chemical structure and morphological
properties of ZnO Ps, will be of great importance. Other related studies should focus on improving
the photocatalytic activity of ZnO NPs by decreasing their particle size and increasing their specific
surface area, as well as on improving the visible light response and inhibiting the recombination
of photogenerated h+

VB and e−CB by incorporating appropriate external dopants, coupling NPs with
other semiconductors or modifying NPs with carbon materials. Among these research interests,
the fabrication of different heterojunctions or composites with ZnO to broaden the light absorption
region and facilitate the separation and transfer of photocarriers will be of great importance. In the
development of wearable electronics, the enhancement of the piezo-photocatalytic activity of ZnO NRs
by controlling the structure grown on conducting textile substrates will be crucial.

Along with the functional properties, the toxicity of ZnO, and the impact of the use of ZnO-modified
textile fibers on human health and the environment will also play an important role in this field
of research.
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