Supplementary Materials: Prospects of Low-Pressure Cold Spray for Superhydrophobic Coatings

Anna Gibas 1,*, Agnieszka Baszczuk 1, Marek Jasiorski 1 and Marcin Winnicki 2

1 Department of Mechanics, Materials Science and Engineering, Wroclaw University of Science and Technology, 25 Smoluchowskiego St., Pl-50370 Wroclaw, Poland; agnieszka.baszczuk@pwr.edu.pl (A.B.); marek.jasiorski@pwr.edu.pl (M.J.)
2 Department of Materials Science, Strength and Welding Technology, Wroclaw University of Science and Technology, 5 Łukasiewicza St., Pl-50371 Wroclaw, Poland; marcin.winnicki@pwr.edu.pl
* Correspondence: gibas@kobalt.immt.pwr.wroc.pl or ammgibas@gmail.com

Figure S1. Scheme of functionalization process.
Figure S2. Wettability of coating SiO$_2$–Fx as a measure of contact angle (where x denotes the added amount of FOTS).

Figure S3. SEM images of substrate material (a–1,a–2) after sand-blasting and (b–1,b–2) after cold-spraying with SiO$_2$–F powder on the previously sandblasted substrate.
Figure S4. SEM images of coatings (a) in the as-prepared form and (b) after abrasive wear test on the distance 5.55 m.

Figure S5. SEM images of 2 h-annealed coating at different temperatures: (a) as-prepared with no heat-treatment and heat-treated at (b) 350 °C, (c) 400 °C, (d) 500 °C.