Supplementary Materials: Facile route of fabricating long-term microbicidal silver nanoparticle clusters against Shiga toxin-producing *Escherichia coli* O157:H7 and *Candida auris*

Sheeana Gangadoo 1, Aaron Elbourne 1, Alexander E. Medvedev 2, Daniel Cozzolino 1, Yen B. Truong 3, Russell J. Crawford 1, Pengyuan Wang 4, Vi Khanh Truong 1,5,*, and James Chapman1,*

1 Nanobiotechnology Lab, School of Science, RMIT University, Melbourne VIC 3001, Australia; sheeana.gangadoo@rmit.edu.au (S.G.); aaron.elbourne@rmit.edu.au (A.E.); daniel.cozzolino@rmit.edu.au (D.C.); russell.crawford@rmit.edu.au (R.J.C.)
2 RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne VIC 3001, Australia; alexander.medvedev@rmit.edu.au (A.M.)
3 CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia; yen.truong@csiro.au (Y.B.T.)
4 Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China; py.wang@siat.ac.cn (P.Y.W.)
5 Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695, USA

* Correspondence: vi.khanh.truong@rmit.edu.au (V.K.T.); james.chapman@rmit.edu.au (J.C.)

Figure S1. Scanning electron micrographs of *E. coli* and *C. auris* on glass surfaces (scale bar 2 µm). The morphology of *E. coli* and *C. auris* were found to be intact and no damage on glass substrates.
Figure S2. Confocal scanning laser microscopic images of *E. coli* and *C. auris* on glass surfaces (scale bar 10 µm). Most of the cells were found to be viable on glass substrates.