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Abstract: In this study, we propose and fabricate a perfect absorber on a planar substrate using
alternate silicon dioxide and ultrathin metallic lossy chromium (Cr) films. Furthermore, we transfer
the absorber to a curved substrate via an optimization design of symmetric structures. The absorber
exhibits a highly efficient absorption and large incident-angular tolerance characteristics in the whole
visible region. We investigate each layer contribution to the absorption theoretically, and find that
ultrathin (~5 nm) lossy Cr films play a dominant absorptive role. Using the effective interface
method, we calculate the phase difference on the lossy Cr front surface. It is close to the destructive
interference condition, from which we clarify why the proposed structures can produce a highly
efficient absorption.

Keywords: thin film; coatings; perfect absorber

1. Introduction

Highly efficient light absorbers are greatly attractive in wide science and technology applications,
such as stray light reduction, blackbody cavity, optical, and optoelectronic devices [1–4]. For example,
improving the stray light suppression is greatly important for optical instruments, especially space-flight
optical instruments. Earth and space astrophysical observations are tremendously impacted by stray
light, which obscures very dim objects and degrades signal to noise in optical measurements. Stray
light suppression using high-efficient absorbing surface can simplify instrument stray light controls
and increase observational efficiencies [5,6]. Various approaches are utilized to produce a perfect
absorber including plasmonic microstructures or metamaterials [7–9], inductively coupled plasma
reactive ion etching (ICP-RIE) black silicon [10], and ultrathin lossy films [11–13]. Many studies have
demonstrated that plasmonic microstructures and metamaterials can achieve a perfect or near-perfect
absorption [14–16]. However, owing to their resonant nature, plasmonic absorbers are generally
limited to a narrow spectral range. Therefore, combining several resonators together with the
neighbor spectrum is an effective method to broaden the absorption spectrum [17]. For plasmonic
microstructures and metamaterials, they often require time-consuming, complex, and expensive
nano-scale fabrication processes.

Lithography-free ICP-RIE black silicon is a high-performance absorber in a broadband range
from the visible to short-wavelength infrared region [10]. The absorber comprises a needle-like
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silicon nanostructure established by ICP-RIE on a highly doped silicon substrate. It can reach an
absorptance higher than 99.5% in the broadband range. Recently, Liu et al. demonstrated an ultra-black
absorber by SiAl film deposition and subsequent chemical etching [18]. They found that nanocone-like
microstructures on the film surface could be fabricated easily by Al atom doping, leading to a significant
decrease in the reflection of incident light. It also exhibits an average absorption higher than 99% from
the visible to short-wavelength infrared region. Both approaches mentioned above are low-cost, but
very effective to produce a large-area broadband ultra-black absorber.

Ultrathin lossy films provide an alternative approach to achieving a perfect absorber [11–13,19].
Usually, highly absorbing films are undesirable in anti-reflection or high-refection coating design
because light propagation through such media destroys interference effects. However, under
appropriate conditions, Capasso’s group have demonstrated that interference could instead persist in
ultrathin, highly absorbing films with a few to tens nanometer thickness [12]. These coatings require
minimal amounts of absorbing material that can be as thin as 5–20 nm for visible light, and have a low
sensitivity to incident angle.

Up to now, all the demonstrated absorbers based on plasmonic microstructures or metamaterials,
ICP-RIE black silicon, and ultrathin lossy films are done on a planar substrate. It is difficult to fabricate
them on a curved substrate, particularly irregular ones. In this study, we propose and fabricate a
perfect absorber on a planar substrate using ultrathin metallic lossy chromium (Cr) films. Furthermore,
we transfer the absorber to a curved substrate via an optimization design of symmetric structures.
The absorber on curved substrate exhibits a high absorption characteristic in the whole visible region.
Detailed absorptive mechanisms are discussed.

2. Materials and Methods

The proposed broadband absorber is composed of alternate silicon oxide (SiO2) and metallic films,
as depicted in Figure 1a. To achieve a highly efficient absorption characteristics in the structure, Cr
with high index and extinction coefficient is adopted. The upper two thin Cr films mainly play an
absorptive role, and the bottom Cr films with 200 nm thickness are assumed to be thick enough to
block any light transmission. All layer thicknesses are optimized based on accurately characterizing
optical constants of Cr and SiO2 films, and the absorption distributions and the light phase difference
are analyzed by the transfer matrix method.
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Figure 1. (a) The proposed absorber structure diagram; (b) a photograph of the fabricated absorber
under 45◦ incidence; (c) the transmission electron microscopy (TEM) image of the absorber structures;
(d) high-resolution TEM image.
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The alternate Cr/SiO2 films are deposited in an OPTRUN (OTFC-1300, OPTRUN, Kawagoe,
Japan) coating machine, and the deposition method is ion beam-assisted electron beam evaporation.
The thickness and deposition rate are controlled by using a quartz crystal oscillate monitor.
The deposition rates are 1.5 Å/s for Cr and 6 Å/s for SiO2, respectively. Transmission electron
microscopy (TEM) measurement is taken to clarify all layer morphology. The reflectance (R) and
transmittance (T) spectra are measured in a Lambda-1050 spectrometer (PerkinElmer, Billerica, MA,
USA), from which the absorptance (A) spectra are extracted through A = 1 − R − T.

3. Results and Discussions

Figure 1b displays the optical image of fabricated absorber on K9 glass substrate with optimized
film thickness. It looks perfectly black because the incident light in the visible region is completely
absorbed. Figure 1c displays the absorber TEM image, where the bright layers are SiO2 films and the
black layers are Cr films. The upper Cr layer shown in the high-resolution TEM image of Figure 1d is
as thin as 5 nm, indicating that a highly accurate deposition is required.

Figure 2a,b show the theoretical absorption spectra of the designed absorber and the experimental
absorption spectra of our fabricated absorber under different incident angle. As the bottom Cr layer
with 200 nm thickness is thick enough to block any light transmission, the absorption spectra are
extracted through A = 1 − R. The average theoretical and experimental absorption in the whole working
region is up to 99.6% and 98.5% under normal incidence, respectively. With the incidence angle
increasing, it still maintains a high-efficiency absorption (96.5%) even under a large incident angle of
45◦. Thus, the absorber exhibits a large-angular tolerance feature on visible light absorption.
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Figure 2. (a) The calculated absorption spectra of the designed absorber under different incident angle;
(b) the measured absorption spectra of our fabricated absorber under different incident angles.

In order to clarify the absorption mechanism, we draw the optical admittance diagrams in Figure 3.
As there is no transmitted light through the bottom thick Cr layer, the high absorptions correspond to
the low reflections, which can be studied by the optical admittance. The admittance rotated trajectory
is dependent on both the thickness and optical constant of deposited films. In Equation (1), we give
the relationship between surface reflection and optical admittance [20]:

R =

(
1− (x + iy)
1 + (x + iy)

)2

(1)

where x and y are the real and imaginary parts, respectively, of the admittance termination point.
It is very clear from Equation (1) that minimizing the difference between the overall admittance (i.e.,
termination point of deposited films) and that of the air (1, 0) can suppress the surface reflection
effectively. As shown in Figure 3, the starting admittance is simply 1.52, the admittance of K9 glass.
It is found from admittance termination that the SiO2 layer plays an importantly antireflection role to
reduce the surface reflection of the previous Cr layer. After each double Cr/SiO2 layers coating, the
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admittance terminates at the points of (0.31, −0.24), (0.71, −0.12), and (1.08, −0.03) for 550 nm light
and (0.34, −0.50), (0.78, −0.21), and (1.09, −0.06) for 650 nm light, respectively, and gradually tends to
1. In another word, after six-layer film coating, the termination admittance is very close to air as the
incident medium. This implies that the absorber composed of six-layer films shown in Figure 1 has
a perfect anti-reflection surface and, therefore, it exhibits a very low surface reflection in the whole
visible region.
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In the following section, we will discuss how the visible light is absorbed greatly in the designed
structures. To quantify the absorbed energy distributed into different layers of the absorber, we
calculated it by using the simple equation [13]:

P =
1
2

cε0αn
∣∣∣E(x)∣∣∣2 (2)

where c is the speed of light, ε0 is the permittivity of free space, n is the real part of the refractive index,
α = 4πk/λ is the absorption coefficient with k being the imaginary part of the refractive index, and E(x)
is the electric field amplitude. Figure 4 displays the absorbed energy distribution, from which it can
be found that a dominate absorption occurs in the upper Cr layer. Its absorption peak is four times
higher than that in the middle Cr layer. When incident lights penetrate the structure, about half of the
energy is first dissipated within the upper Cr layer, although it has only 5 nm thickness. Then, the
transmitted light is further dissipated within the middle Cr layer. Finally, the residual is absorbed
within the bottom thick Cr layer. Although the bottom Cr layer has a very weak absorption, it plays a
really important role in the absorption process. It can bounce back the remaining light and increase the
absorption. If the bottom Cr layer is removed, partial incident light will transmit through the absorber
structure directly and the theoretical absorption within the working wavelength range will decrease to
84.7% from 99.6%. Thus, the bottom Cr layer mainly works as a reflection mirror and contributes little
to the direct absorption.
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To further study the absorption in the thin Cr layer, we treat the six-layer structures in Figure 1 as
a single Cr layer by effective interface method [21], as shown in Figure 5a,b, and calculate the reflection
phase difference (Φ) between the decomposed partial wave r and other reflection components at the
interface 1/2 (i.e., r′, r”, . . . ) according to the following equation [12,22]:

r =
r12 + r23e2iβ2

1 + r12r23e2iβ2
(3)

where rpq = (mp − mq)/(mp + mq), β2 = (2π/λ)m2d2, and mp = np + ikp is the complex refractive index
of layer p (np is the refractive index and kp is the extinction coefficient). As shown in Figure 5c, φ for
both upper and middle Cr layers is close to the destructive interference condition (i.e., φ ≈ π) in the
working wavelength range. The average Φ is 0.88π for the upper Cr layer and 0.90π for the middle Cr
layer. Generally, the dielectric layer thickness should be λ/4n to meet the π phase difference, which is
the mechanism of the conventional Gires–Tournois etalon [23,24]. However, for the lossy films, an
additional phase difference can be introduced by its complex refractive index, which is the key issue to
tune the phase difference to meet destructive interference even under its thickness <<λ/4n [12].
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Figure 5. (a) Effective upper Cr layer diagram for six-layer structures; (b) effective middle Cr layer
diagram for six-layer structures; (c) the calculated reflection phase difference on the front surface of
both upper and middle Cr layers.

The above-mentioned absorber can be fabricated only on a planar or smooth curved substrate.
It becomes extremely difficult to be done on a curved substrate owing to serious oblique-angle
deposition influence [25]. In order to extend its application on a curved substrate, we optimized the
absorber structure and its fabrication process. Figure 6a displays the optimized absorber with a total
thickness of 700 nm composed of double symmetric structures in Figure 1a. The double symmetric
structures lead to both upper and bottom surfaces having a perfect anti-reflection effect, as shown
in Figure 6b. It has a greatly beneficial effect on its fabrication on a curved substrate, which will be
interpreted in the following. Meanwhile, in Figure 1, the absorber bottom surface has a high reflection
around 50%.
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Figure 7a displays how the absorber is fabricated on a curved substrate. First, thin positive
photoresist films are prepared on a planar substrate through a spin coating method, and subsequently,
the double symmetric structures are deposited on photoresist films. Second, the sample is dipped
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into acetone solutions to strip out the absorber from the substrate. Third, the absorber is grinded
into small pieces, mixed with transparent glue water by a ratio of around 1:5, and finally coated on
a curved substrate. Figure 7b displays a curved substrate image before and after absorber coating
taken under 45◦ incidence. The curved substrate has a hemisphere surface with a diameter of 30 mm.
It looks greatly black even under a large angle observation. Its integrated absorption spectra are
given in Figure 7c. The average integrated absorption is as high as 97.5% in the whole visible region.
The perfect absorption mainly originates from two factors. One is that it has a large-angular tolerance
feature, shown in Figure 2. Another is that double sides of the design structures shown in Figure 6a
are super black. No matter which side is up when small pieces are coated on substrate, highly efficient
absorption can be achieved. The proposed absorber is grinded into small pieces and mixed with
transparent glue water; it is like viscous liquid. Thus, in general, it can be applied on both any small
radius and any irregular-shape structure. It has great potential application on stray light suppression
for complex components in optical instruments, especially space-flight optical instruments. It can
simplify instrument stray light controls and increase observational efficiencies.
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Figure 7. (a) The processes of the absorber fabricated on a curved substrate; (b) a hemisphere substrate
image before and after absorber coating taken under 45◦ incidence; (c) the integrated absorption spectra.

4. Conclusions

In summary, we have demonstrated a broadband absorber working in the visible light range using
alternate SiO2 and lossy Cr films. Furthermore, we transfer the absorber to a curved substrate via an
optimization design of symmetric structures. The absorber fabricated on a planar substrate exhibits a
highly efficient absorption from 400 to 800 nm, and a large incident-angular tolerance characteristic.
By theoretical analysis, we found that the upper ultrathin Cr layer played a dominant absorptive role.
After that, the transmitted light was further absorbed within the middle Cr layer. Using the effective
interface method, we calculated the phase difference on the front surface of lossy Cr films, and we
found that the phase differences were close to the destructive interference condition, leading to a highly
efficient absorption within the proposed structures.
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