Article

Statistical Modeling for Nanofluid Flow: A Stretching Sheet with Thermophysical Property Data

Alias Jedi 1,*, Azhari Shamsudeen 1, Noorhelyn Razali 2, Haliza Othman 3,
Nuryazmin Ahmad Zainuri 2, Noraishkin Zulkarnain 3, Nor Ashikin Abu Bakar 4,
Kafi Dano Pati 5 and Thanoon Y. Thanoon 6

1 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia; azharibs@ukm.edu.my
2 Department of Engineering Education, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia; helyna@ukm.edu.my (N.R.), haliza@ukm.edu.my (H.O.), nuryazmin@ukm.edu.my (N.A.Z.)
3 Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia; shikinzulkarnain@ukm.edu.my
4 Institute of Engineering Mathematics, Universiti Malaysia Perlis, Arau 02600, Malaysia; ashikinbakar@unimap.edu.my
5 Department of Computer Sciences, Faculty of Science, University of Duhok, 1006 AJ Duhok, Iraq; kafi.pati@uod.ac
6 Department of Business Management Techniques, Administrative Technical College-Mosul, Northern Technical University, 09334 Mosul Iraq; thanoon.younis@ntu.edu.iq
* Correspondence: aliasjedi@ukm.edu.my

Received: 5 September 2019; Accepted: 31 December 2019; Published: 7 January 2020

Abstract: This paper reports the use of a numerical solution of nanofluid flow. The boundary layer flow over a stretching sheet in combination of two nanofluids models is studied. The partial differential equation that governs this model was transformed into a nonlinear ordinary differential equation by using similarity variables, and the numerical results were obtained by applying the shooting technique. Copper (Cu) nanoparticles (water-based fluid) were used in this study. This paper presents and discusses all numerical results, including those for the local Sherwood number and the local Nusselt number. Additionally, the effects of the nanoparticle volume fraction, Brownian motion \(N_b \), and thermophoresis \(N_t \) on the performance of heat transfer are discussed. The results show that the stretching sheet has a unique solution: as the nanoparticle volume fraction \(\varphi \) and \(N_t \) decrease, the rate of heat transfer increases. Furthermore, as \(\varphi \) and \(N_b \) decrease, the rate of mass transfer increases. The data of the Nusselt and Sherwood numbers were tested using different statistical distributions, and it is found that both datasets fit the Weibull distribution for different values of \(N_t \) and rotating \(\varphi \).

Keywords: boundary layer flow; heat transfer; nanofluid; Weibull distribution; Buongiorno model

1. Introduction

In recent years, many researchers have investigated stretching plates, which are used in industry for materials such as lubricants and glass fibers. The theory of flow over a stretching plate was first proposed by Crane [1]. Researchers [2] have also analyzed heat transfer over a stretching sheet with a permeable surface. Related studies involving a stretching surface were conducted by Grubka and Bobba [3], Ali [4], Wang [5], and Hayat et al. [6]. Convective heat transfer is a very important property of nanofluids, and the addition of nanoparticles has been found to improve the thermal conductivity.
Widely used types of nanoparticles include monotubes, carbide nanoparticles, and metal nanoparticles, which can be added to base fluids such as glycol, ethylene, and engine oil. One of the important properties of nanofluids is their ability to enhance the thermal properties of fluids. Nanofluids have numerous applications, including electronics, biomedicine, nuclear reactors, and space technology. Khan [7], Choi [8], Masuda [9], Choi [10], and Wang [11] used nanoparticles to study the thermal conductivity. In the presence of nanoparticles, Wang [12] examined heat transfer and nanofluid flow by using a nanofluid model, which can also be used to study hydromagnetic flow over a permeable sheet [13]. Using a nanofluid model, Bachok [14] studied the effect of two elements in nanofluids, namely, Brownian motion and thermophoresis. These elements have been used to characterize the flow over a permeable surface [15] and an isothermal vertical plate [16]. Flow and heat transfer in turbulent flow were studied by Z. Taghizabeh-Tabari [17], and their results showed that the rate of heat transfer enhancement and pressure drop increment were greater for a plate heat exchanger (PHE) under turbulent flow conditions. Mahian [18] asserted that it is crucial to use measured data for thermophysical properties to predict the heat transfer coefficient with high accuracy. The analysis reported in [19] revealed that the effect of adding nanoparticles to the base fluid has a strong influence on the heat transfer enhancement by increasing the Reynolds number of flows and increasing the heat transfer. Heydari [20] used water as the base fluid and investigated the effect of the volume fraction of nanoparticles (TiO$_2$) on the heat transfer and physical properties of the fluid. In a different approach, Hemmat [21] introduced and used a neural network as a powerful tool for estimating the thermophysical properties of nanofluids. The resulting empirical relationship could predict the thermal conductivity coefficient of water–EG–Al$_2$O$_3$ nanofluid with acceptable precision. Pourfattah [22] numerically investigated the rate of heat transfer enhancement for the flow regime inside a tube. The rotating flow in fluids has also been studied extensively in the past several years. The rotating flow over a stretching sheet is significant in several manufacturing processes, such as the extrusion of plastic sheets, glass blowing, fiber spinning, and continuous molding [23]. Usoicz [24] studied a physical–statistical model that provided highly accurate predictions of the thermal conductivity of nanofluids. Because nanofluids are essential in many applications, understanding their fundamental properties is crucial for exploring their use and potential benefits. Previous studies have demonstrated that the effective enhancement of the base fluid is important for improving its thermal efficiency [25]. Therefore, in this paper, building on previous studies [26,27], we propose combining the two nanofluid equation models developed by Buongiorno [15] and Tiwari and Das [12]. Our objective is to determine the effect of two key parameters: thermophoresis and Brownian motion. The shooting technique was used to obtain the results for the local Sherwood number and local Nusselt number. We present a physical–statistical model, as well as its distribution to predict the thermal conductivity of a fluid containing copper nanoparticles. The proposed model can be used for a wide range of practical applications in further studies on nanofluids.

2. Problem Formulation

We consider the three-dimensional free convection boundary layer flow for an area $y > 0$ past a stretching sheet, with a stagnation point $x = 0$ and conditions for the plane $y = 0$. We consider the flow to be incompressible, laminar, and steady. The flow is assumed to have a stretching velocity $U_w(x)$ that varies linearly from $x = 0$, with $U_w(x) = ax$ and $U_w(x) = bx$ (a, b are constants, with $b > 0$). The scheme of the physical configuration is depicted in Figure 1.
Figure 1. Schematic diagram of the problem.

The same assumption also applies to the velocity of the fluid \(U_\infty(x) \). The governing equations for a stretching sheet, where \(a > b \), are as follows.

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]
(1)

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = U_\infty(x) \frac{dU_\infty}{dx} + \frac{\mu_{nf}}{\rho_{nf}} \frac{\partial^2 u}{\partial y^2}
\]
(2)

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\alpha_{nf}}{\rho_{nf}C_{nf}} \frac{\partial^2 T}{\partial y^2} + \tau \left[D_T \frac{\partial C}{\partial y} \frac{\partial T}{\partial y} + \frac{D_B}{T_{\infty}} \frac{\partial T}{\partial y} \right]
\]
(3)

\[
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_T \frac{\partial^2 C}{\partial y^2} + \frac{D_B}{T_{\infty}} \frac{\partial^2 T}{\partial y^2}
\]
(4)

subject to

\[
u = U_w(x), \quad v = 0, \quad T = T_w, \quad C = C_w \text{ at } y = 0
\]
(5)

\[
u \rightarrow U_\infty, \quad T \rightarrow T_\infty, \quad C \rightarrow C_\infty \text{ as } y \rightarrow \infty
\]

where \(v \) is the velocity of the component in the \(y \)-direction, and \(u \) is the velocity of the component in the \(x \)-direction. \(T_w, T_\infty, \) and \(T \) are the surface temperature, ambient temperature, and temperature, respectively. \(C \) is the nanoparticle volume fraction, \(C_\infty \) is the nanoparticle volume fraction far from the plate, and \(C_w \) is the nanoparticle volume fraction at the plate. \(D_T \) is the coefficient of thermophoretic diffusion, and \(D_B \) is the coefficient of Brownian diffusion. The ratio of heat capacity is \(\tau = (\rho C_p)_b/(\rho C_p)_f \) in which \((\rho C_p)_b \) represents the heat capacity of the nanoparticle, and \((\rho C_p)_f \) represents the heat capacity of the fluid. Further, \(\alpha_{nf} \) is the nanofluid thermal diffusivity, \(\mu_{nf} \) is the nanofluid viscosity, and \(\rho_{nf} \) is the nanofluid density. These parameters were previously described by Oztop [28].

\[
\alpha_{nf} = \frac{k_{nf}}{(\rho C_p)_{nf}}, \quad \rho_{nf} = (1 - \varphi)\rho_f + \varphi \rho_s, \quad \mu_{nf} = \frac{\mu_f}{(1 - \varphi)^{\frac{3}{2}}}
\]
(6)
\[
\left(\rho C_p \right)_{nf} = (1 - \varphi) \left(\rho C_p \right)_f + \varphi \left(\rho C_p \right)_{nf} \frac{k_{nf}}{k_f} = \left(\frac{k_s + 2k_s}{k_s + 2k_s} \right) \left(\frac{k_f - k_s}{k_f} \right)
\]

where the parameter \(\varphi \) is the nanoparticle volume fraction, \((\rho C_p)_{nf}\) is the heat capacity of the nanofluid, \(k_{nf}\) is the thermal conductivity of the nanofluid, \(k_f\) is the thermal conductivity of the fluid, \(k_s\) is the thermal conductivity of the solid, \(\rho_f\) is the fluid density, \(\mu_f\) is the fluid viscosity, and \(\rho_s\) is the density of the solid. According to Abu-Nada [25], the term \(k_{nf}\) is used for spherical nanoparticles, and its value is negligible for other shapes. Next, given the constraints in Equation (5), the similarity solution of Equations (1)–(4) is computed; Equation (4) was proposed by Buongiorno [15]. We introduce the similarity transformations below.

\[
\eta = \left(\frac{U_w}{v_f x} \right)^{1/2} y, \quad \psi = (v_f x U_w)^{1/2} f(\eta), \quad \theta(\eta) = \frac{T - T_w}{T_w - T_\infty}, \quad \phi(\eta) = \frac{C - C_\infty}{C - C_\infty}
\]

where \(\theta(\eta) \) is a dimensionless variable for temperature, and \(\phi(\eta) \) is a dimensionless variable for nanoparticle concentration. The boundary conditions are

\[
u = U_w(x), v = 0, T = T_w, C = C_w \text{ at } y = 0
\]

\[
u \to U_w, T \to T_w, C \to C_w \text{ as } y \to \infty,
\]

\[
\frac{1}{(1 - \varphi)^{2.5} \left(1 - \varphi + \varphi \rho_s / \rho_f \right)} f''' + ff'' - f'^2 + 1 = 0
\]

\[
\frac{1}{Pr} \frac{k_{nf}/k_f}{(1 - \varphi + \varphi \rho_C_p / \rho_f)} \theta'' + \frac{1}{2} f \theta' + Nb \psi \theta' + Nt \theta' = 0
\]

subject to the boundary conditions

\[
f(0) = 0, f'(0) = \varepsilon, \theta(0) = 1, \phi(0) = 1,
\]

\[
f'(\eta) \to 1, \theta(\eta) \to 0, \phi(\eta) \to 0 \text{ as } \eta \to \infty
\]

The Brownian motion parameter is

\[
Nb = \left(\frac{\rho c}{\rho_f} \right) D_B (C_w - C_\infty)
\]

the thermophoresis parameter is

\[
Nt = \left(\frac{\rho c}{\rho_f} \right) D_T (T_w - T_\infty)
\]

the Prandtl number is

\[
Pr = \frac{\nu}{\alpha}
\]

the Lewis number is

\[
Pr = \frac{\nu}{D_B}
\]

the stretching parameter is

\[
\varepsilon = a/b,
\]

the skin friction coefficient is

\[
C_f Re_s^{1/2} = \frac{1}{(1 - \varphi)^{2.5}} f''(0),
\]
the local Nusselt number is
\[Nu_x Re_x^{-1/2} = -\frac{k_n}{k_f} \theta'(0), \]
the local Sherwood number is
\[Sh_x Re_x^{-1/2} = -\phi'(0), \]
and the local Reynolds number is
\[Re_x = U \times \frac{v_f}{\cdot} \]

The data for the Nusselt and Sherwood numbers were tested using the Akaike information criterion (AIC). This test is used to find the goodness of fit and determine the distribution that best fits the data. Table 1 lists the different statistical distributions. For each distribution in the table, the AIC was calculated, and the best distribution was identified from the AIC values.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Cumulative Distribution Function, (F(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lognormal</td>
<td>[F(x) = \frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{\ln(x) - \mu}{\sigma \sqrt{2}} \right)] where erf is the complete error function; (\sigma) is the shape of the distribution; (x) is the value used to evaluate the function; (\mu) is the expected value for the normal distribution.</td>
</tr>
<tr>
<td>Weibull</td>
<td>[F(x) = 1 - \exp \left(-\frac{x^\beta}{\alpha} \right)] where (x) is the value used to evaluate the function; (\alpha) is the scale parameter; (\beta) is the shape parameter.</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>[F(x) = 1 - \exp \left(-\frac{x^2}{2\sigma^2} \right)] where (x) is the value used to evaluate the function; (\sigma) is the shape of the distribution.</td>
</tr>
<tr>
<td>Exponential</td>
<td>[F(x) = 1 - \exp \left(-\frac{x}{\theta} \right)] where (x) is the value used to evaluate the function; (\theta) is the scale parameter.</td>
</tr>
<tr>
<td>Gamma</td>
<td>[F(x) = \frac{\gamma(\alpha, \frac{x}{\beta})}{\Gamma(\alpha)}] where (\Gamma(\alpha)) is the incomplete gamma function; (x) is the value used to evaluate the function; (\alpha) is the shape parameter; (\beta) is the scale parameter.</td>
</tr>
<tr>
<td>Inverse Gaussian</td>
<td>[F(x) = \Phi \left(\frac{\lambda (x - \mu)}{\sqrt{\mu}} - 1 \right) + \frac{2\lambda}{\sqrt{\pi}} \Phi \left(-\frac{\lambda (x + 1)}{\sqrt{\mu}} \right)] where (x) is the value used to evaluate the function; (\Phi) denotes the distribution function of the standard normal; (\mu) is the mean; (\lambda) is the shape parameter.</td>
</tr>
<tr>
<td>Inverse Gamma</td>
<td>[F(x) = \frac{\gamma(p, \frac{x}{\alpha})}{\Gamma(p)}] where (\Gamma(p)) is the incomplete gamma function; (x) is the value used to evaluate the function; (\alpha) is the shape parameter; (\beta) is the scale parameter.</td>
</tr>
</tbody>
</table>

The AIC measures the quality of statistical models for a sample set of data. The model that provides the lowest AIC value best fits the data. The formula for the AIC is
\[AIC = -2 \log(L) + 2k \]

where \(L \) is a model of the likelihood function, and \(k \) is the number of parameters.

3. Results and Discussion

The shooting technique was used to determine the numerical solutions for Equations (9)–(11) with the boundary conditions in Equation (12). The shooting method converts a boundary value problem (BVP) into an initial value problem (IVP). The main reason for using the shooting method is that it can establish the applicable initial conditions for a related IVP to generate the solution to the BVP. This method was applied in the Maple programming language using the “dsolve” command and “shoot” implementation. The influences of \(Nb, Nt, \) and \(\varphi \) on the heat transfer rate were investigated for Cu nanoparticles. The values of the thermophysical properties are shown in Table 2.

<table>
<thead>
<tr>
<th>Physical Properties Base Fluid</th>
<th>Nanoparticle, Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_p) (J/kgK)</td>
<td>4179</td>
</tr>
<tr>
<td>(\rho) (kg/m³)</td>
<td>997.1</td>
</tr>
<tr>
<td>(k) (W/mk)</td>
<td>0.613</td>
</tr>
</tbody>
</table>

When \(\varphi = 0 \) for a regular fluid, the range of \(\varphi \) should be 0–0.2 [18]. The value of \(Pr \) (Prandtl number) is 6.2. Figure 2a,b depicts the variation in the local Nusselt number and Sherwood number with \(Nb \) for different \(Nt \) when \(\varphi = 0.1, Pr = 6.2, Le = 3, \) and \(\varepsilon = 1.2 \) for the stretching case. As clearly shown in Figure 2a, as \(Nb \) increases, the local Nusselt number decreases, while Figure 2b shows the opposite trend. Furthermore, Figures 3a,b shows that the local Nusselt number and local Sherwood number vary with \(Nb \) when \(Pr = 6.2, Nt = 0.1, Le = 3, \) and \(\varepsilon = 1.2 \) for the stretching case. These figures reveal that as \(Nb \) increases, the local Nusselt number and local Sherwood number decrease. It is important to note that the Brownian motion parameter \(Nb \) and thermophoresis \(Nt \) are related to the random motion of nanoparticles (Cu). For small values of \(Nb \) and \(Nt \), the viscosity of the base fluid is weak, and the nanoparticles (Cu) tend to move easily among each other. Because of this phenomenon, the fluid is cooled faster, and the heat transfer rate increases.

![Figure 2](image-url)

Figure 2. Variations in (a) the local Nusselt number and (b) the local Sherwood number with \(Nb \) for different \(Nt \) when \(Pr = 6.2, \varphi = 0.1 Le = 3, \) and \(\varepsilon = 1.2 \) for Cu.
Figure 3. Variations in (a) the local Nusselt number and (b) the local Sherwood number with \(Nb \) for different \(\varphi \) when \(Pr = 6.2, \varepsilon = 1.2, Le = 3, \) and \(Nt = 0.1 \) for Cu.

On the basis of Figures 2 and 3, the data for the Nusselt and Sherwood numbers were further analyzed to obtain the statistical properties for the tested distributions. Tables 3 and 4 show the parameters for different distributions that were tested with the data.

Table 3. Parameters of statistical distributions for the Nusselt number.

<table>
<thead>
<tr>
<th></th>
<th>Nt</th>
<th></th>
<th>(\varphi)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Weibull</td>
<td>alpha 1.114028</td>
<td>0.880117</td>
<td>0.707426</td>
<td>1.147663</td>
</tr>
<tr>
<td></td>
<td>beta 2.071876</td>
<td>2.044809</td>
<td>2.03204</td>
<td>2.042564</td>
</tr>
<tr>
<td>Lognormal</td>
<td>u</td>
<td>0.597253</td>
<td>-0.4527</td>
<td>-0.6728</td>
</tr>
<tr>
<td></td>
<td>sigma</td>
<td>0.205756</td>
<td>0.5687</td>
<td>0.5733</td>
</tr>
<tr>
<td>Exponential</td>
<td>O</td>
<td>5.958346</td>
<td>0.784728</td>
<td>0.63081</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>O</td>
<td>0.783248</td>
<td>0.620077</td>
<td>0.498912</td>
</tr>
<tr>
<td>Gamma</td>
<td>alpha 2.576506</td>
<td>2.532032</td>
<td>2.512095</td>
<td>2.518703</td>
</tr>
<tr>
<td></td>
<td>beta 2.594448</td>
<td>3.226632</td>
<td>3.9823</td>
<td>2.460647</td>
</tr>
<tr>
<td>InvGaussian</td>
<td>u</td>
<td>0.996058</td>
<td>0.784728</td>
<td>0.63081</td>
</tr>
<tr>
<td></td>
<td>lambda</td>
<td>0.585994</td>
<td>0.458409</td>
<td>0.366933</td>
</tr>
<tr>
<td>InvGamma</td>
<td>p</td>
<td>1.128832</td>
<td>1.465284</td>
<td>1.840917</td>
</tr>
<tr>
<td></td>
<td>beta</td>
<td>1.561164</td>
<td>1.537004</td>
<td>1.528137</td>
</tr>
</tbody>
</table>

Table 4. Parameters of statistical distributions for the Sherwood number.

<table>
<thead>
<tr>
<th></th>
<th>Nt</th>
<th></th>
<th>(\varphi)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Weibull</td>
<td>alpha 0.874411</td>
<td>0.898522</td>
<td>0.817144</td>
<td>0.979489</td>
</tr>
<tr>
<td></td>
<td>beta 2.577703</td>
<td>3.371081</td>
<td>1.81384</td>
<td>3.554751</td>
</tr>
<tr>
<td>Lognormal</td>
<td>u</td>
<td>-0.4244</td>
<td>-0.3095</td>
<td>-0.6076</td>
</tr>
<tr>
<td></td>
<td>sigma</td>
<td>0.6062</td>
<td>0.2281</td>
<td>1.1546</td>
</tr>
<tr>
<td>Exponential</td>
<td>O</td>
<td>0.789122</td>
<td>0.805275</td>
<td>0.74553</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>O</td>
<td>1.328239</td>
<td>3.12215</td>
<td>4.058364</td>
</tr>
<tr>
<td>Gamma</td>
<td>alpha 2.809859</td>
<td>5.54345</td>
<td>1.741032</td>
<td>5.098837</td>
</tr>
</tbody>
</table>
4. Conclusions

Nanofluid flow past a stretching sheet and the influences of parameters Nb, Nt, and φ were examined and studied. From this investigation, a unique solution was obtained for the stretching sheet. It was found that as Nb and Nt decrease, the rate of heat transfer increases, but the rate of mass transfer decreases. The case is different when φ decreases: Nb decreases, and the rates of heat and mass transfer decrease. These results show that for different Nt and φ, the Weibull distribution best fits both the Nusselt and Sherwood data.

Author Contributions: A.J. in charge of writing the original draft and editing. A.S. supported on conceptualization. N.R. act as project administration. H.O. run software for analysis. N.A.Z. provided data curation. N.Z. do validation of results. N.A.B. in charge of review and editing. K.D.P., T.Y.T. are in charge of formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Kebangsaan Malaysia, grant number GGPM-2017-036.

Acknowledgments: The authors warmly thank the reviewers for their time spent in reading the manuscript and for their valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.
References.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).