
computers

Article

Insights into Mapping Solutions Based on OPC UA
Information Model Applied to the Industry 4.0 Asset
Administration Shell

Salvatore Cavalieri * and Marco Giuseppe Salafia

Department of Electrical Electronic and Computer Engineering, University of Catania, 95125 Catania, Italy;
marcogiuseppe.salafia@unict.it
* Correspondence: salvatore.cavalieri@unict.it; Tel.: +39-095-738-2362

Received: 29 March 2020; Accepted: 13 April 2020; Published: 14 April 2020
����������
�������

Abstract: In the context of Industry 4.0, lot of effort is being put to achieve interoperability among
industrial applications. As the definition and adoption of communication standards are of paramount
importance for the realization of interoperability, during the last few years different organizations have
developed reference architectures to align standards in the context of the fourth industrial revolution.
One of the main examples is the reference architecture model for Industry 4.0, which defines the
asset administration shell as the corner stone of the interoperability between applications managing
manufacturing systems. Inside Industry 4.0 there is also so much interest behind the standard open
platform communications unified architecture (OPC UA), which is listed as the one recommendation
for realizing the communication layer of the reference architecture model. The contribution of
this paper is to give some insights behind modelling techniques that should be adopted during
the definition of OPC UA Information Model exposing information of the very recent metamodel
defined for the asset administration shell. All the general rationales and solutions here provided
are compared with the current OPC UA-based existing representation of asset administration shell
provided by literature. Specifically, differences will be pointed out giving to the reader advantages
and disadvantages behind each solution.

Keywords: interoperability; mapping; industry 4.0; OPC UA; asset administration shell

1. Introduction

The very recent fourth industrial revolution, known with the name of Industry 4.0, aims to create
more flexible and innovative products and services leading to new added-value business models [1,2].

In the context of Industry 4.0, lot of effort is being put to achieve full integration of the industrial
applications. According to the Industry 4.0 vision, a variety of areas related to manufacturing, security,
and machine communication, among others, need to interoperate and align their respective information
models. As the definition and adoption of communication standards are of paramount importance for
the realization of interoperability, during the last few years, different organizations have developed
reference architectures to align standards in the context of the fourth industrial revolution. One of the
main examples is the “Reference Architecture Model for Industry 4.0 (RAMI 4.0)” [3].

In order to fulfil the main requirements of Industry 4.0, especially in terms of interoperability, the
concept of the asset administration shell (AAS) has been defined in RAMI 4.0. The AAS is intended to
provide digital representations of all information being available about and from an asset, which can be
a hardware system or a software component. For this reason, in November 2018, Plattform Industrie 4.0
(www.plattform-i40.de) released the first draft of the document “Details of the Asset Administration
Shell” [4] defining the so-called AAS metamodel; it is mainly aimed to define internal structure of AAS

Computers 2020, 9, 28; doi:10.3390/computers9020028 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0001-9077-3688
www.plattform-i40.de
http://dx.doi.org/10.3390/computers9020028
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/9/2/28?type=check_update&version=2

Computers 2020, 9, 28 2 of 28

in terms of digital information available for an asset. In November 2019, the version 2.0 of the same
document has been released [5]. AAS is not just a set of structured information about assets but offers
service interfaces to access properties and functions provided by the physical assets [6]. In RAMI 4.0,
the conjunction of the physical asset and its AAS is referred as I4.0 Component. These components can
exchange information in a uniform manner since all the different aspects of the implementation and
communication of the assets are abstracted by means of the AASs.

In the context of interoperability inside Industry 4.0, there is also so much interest behind the
standard OPC UA (open platform communications unified architecture) [7]. OPC UA plays an
important role in current industry environments [8] and it is considered the most accepted protocol
which harmonizes the machine to machine (M2M) interaction [9]. During these last years, OPC UA has
proven to be an effective communications middleware mainly in industrial applications [10]. Due to
its powerful functionalities, OPC UA is one of the main candidates to lead the standardization and
systems integration for present and future frameworks [10]. In particular, OPC UA is listed as the one
recommendation for realizing the communication layer of RAMI 4.0 [11]. Furthermore, it has been
identified as one candidate to build I4.0 Component interface and an important means to provide
information models of assets.

The standard OPC UA is based on both client/server and publish/subscribe communication models
and provides a semantically enriched information model in order to represent data. Literature provides
several publications taking advantage in terms of interoperability of OPC UA information model to
structure and expose information coming from different domains of interest. Several papers describe
how OPC UA information models for specific domains can be generated starting from the information
models belonging to these domains. Some of the most relevant works include the mapping between IEC
61850 and CIM to OPC UA information models (e.g., [12–16]). There also exist approaches for mapping
and transformation of Unified Modeling Language (UML) to OPC UA (e.g., [17,18]). In [19], analogies
between IEC 62714 (AutomationML) and OPC UA are examined in order to simplify the creation of
OPC UA information model based on already existing AutomationML (AML) data. Reiswich and
Fay in [20] discuss how it is possible taking advantage of OPC UA information model properties to
improve the work situation of operators and engineers. In [21], the software model of IEC 61131-3
for programmable logic controller (PLC) is translated into an OPC UA information model discussing
also the advantage of adopting OPC UA for a secure data exchange. Several companion specifications
dealing with the mapping of specific domain into OPC UA information models, are also available.
OPC UA/PLC open companion specification [22] deals with modelling PLCs. Another example is the
OPC UA/AML companion specification [23], which describes the transformation between AML and
OPC UA information models. Another one, which is important for the manufacturing domain, is the
OPC UA/MTConnect companion specification [24]. Finally, it is important to recall the existence of
OPC UA/IEC61850 companion specification for electrical substation automation systems [25].

On account of what just pointed out and due to the important role played by AAS and OPC UA
inside Industry 4.0, an OPC UA information model may be defined to structure and expose the current
AAS metamodel [5]. This may led to several advantages, among which the possibility to exchange
AAS digital information between industrial applications through the OPC UA communication system.
To the best of authors’ knowledge, some activities about this issue already exist. Document [5] provides
a proposal of mapping the AAS metamodel into several technologies, including OPC UA. Mapping of
AAS metamodel into OPC UA information model is also under consideration by the ZVEI, VDMA and
OPC Foundation joint working group [26], aimed to the definition of a draft of a new OPC UA
Companion Specification for AAS; no outcomes were still produced by this group.

The contribution of this paper is to give some insights behind modelling techniques that should
be adopted during the definition of OPC UA information models exposing information relevant to the
Industry 4.0 specific domains of interest. The current AAS metamodel [5] is considered in this work.
All the general rationales here provided are compared with the only other mapping proposal between

Computers 2020, 9, 28 3 of 28

AAS metamodel and OPC UA available in literature (contained in [5] as said before), when needed.
Specifically, differences will be pointed out giving to the reader pros and cons behind each solution.

It is important to point out that the work presented in this paper must not be considered an
alternative to the document [5] or to the ongoing work carried on by the ZVEI, VDMA and OPC
Foundation joint working group or any activities done by other research groups. Since AAS metamodel,
and thus its mapping in OPC UA, is continuously developed and improved, authors’ aim is only
to provide reasoning about mapping choices that may be considered for future versions of such
mapping solutions.

This paper is an extended version of the earlier publication by the same authors [27], which
reported very preliminary results of their studies and has been published before the document [5].
This last information is given to the reader only to point out that many reasoning exposed in this paper
have been conceived before the OPC UA information model presented in [5].

The paper is structured as it follows. In Section 2 a background of the AAS metamodel is provided,
describing the fundamental entities specified in [5]. In Section 3 the OPC UA Information Model is
presented. Section 4 gives an overview about general techniques to be adopted to map specific domains
of interest into OPC UA Information Model. In Section 5, the general mapping techniques shown in
the previous section will be exemplified for the AAS metamodel, providing rationales behind mapping
decisions and comparisons with actual solutions given in [5]. Section 6 points out how adoption of
new OPC UA mechanisms defined in recent amendments may led to enhancements in the mapping
process based on OPC UA information model. In Section 7, a case study will be presented in order to
help the reader to better understand the reasoning discussed in the paper. Finally, Section 8 will point
out the software implementations made by the authors, some of which are open source and available
on GitHub.

2. The Asset Administration Shell Metamodel

The internal structure of AAS was described in a very high level of abstraction in [3] and
in [28]; its definition takes in account lot of requirements summarized in [28]. As shown by Figure 1,
AAS consists of a header and a body; the former contains information about identification of the AAS and
the asset it represents, whilst the latter contains a certain number of submodels. Submodels represent
different aspects of the concerned asset (e.g., engineering, communication, and drilling). Standardized
submodels defining functions and properties are foreseen to represent each aspect [29].

Computers 2020, 9, x FOR PEER REVIEW 3 of 28

metamodel and OPC UA available in literature (contained in [5] as said before), when needed. Specifically,
differences will be pointed out giving to the reader pros and cons behind each solution.

It is important to point out that the work presented in this paper must not be considered an
alternative to the document [5] or to the ongoing work carried on by the ZVEI, VDMA and OPC
Foundation joint working group or any activities done by other research groups. Since AAS
metamodel, and thus its mapping in OPC UA, is continuously developed and improved, authors’
aim is only to provide reasoning about mapping choices that may be considered for future versions
of such mapping solutions.

This paper is an extended version of the earlier publication by the same authors [27], which
reported very preliminary results of their studies and has been published before the document [5].
This last information is given to the reader only to point out that many reasoning exposed in this
paper have been conceived before the OPC UA information model presented in [5].

The paper is structured as it follows. In Section 2 a background of the AAS metamodel is
provided, describing the fundamental entities specified in [5]. In Section 3 the OPC UA Information
Model is presented. Section 4 gives an overview about general techniques to be adopted to map
specific domains of interest into OPC UA Information Model. In Section 5, the general mapping
techniques shown in the previous section will be exemplified for the AAS metamodel, providing
rationales behind mapping decisions and comparisons with actual solutions given in [5]. Section 6
points out how adoption of new OPC UA mechanisms defined in recent amendments may led to
enhancements in the mapping process based on OPC UA information model. In Section 7, a case
study will be presented in order to help the reader to better understand the reasoning discussed in
the paper. Finally, Section 8 will point out the software implementations made by the authors, some
of which are open source and available on GitHub.

2. The Asset Administration Shell Metamodel

The internal structure of AAS was described in a very high level of abstraction in [3] and in [28];
its definition takes in account lot of requirements summarized in [28]. As shown by Figure 1, AAS
consists of a header and a body; the former contains information about identification of the AAS and
the asset it represents, whilst the latter contains a certain number of submodels. Submodels represent
different aspects of the concerned asset (e.g., engineering, communication, and drilling).
Standardized submodels defining functions and properties are foreseen to represent each aspect [29].

Asset Identification
AAS Identification

...and others

Asset
Administration Shell

Header
BodySubmodel 1 e.g. energy efficiency

Property 1.1
Property 1.1.1
Property 1.1.2

Information

Function

Submodel 2 e.g. positioning mode
Property 2.1

Property 2.1.1
Property 2.1.1.1

Information

Function
Property 2.1.1.2 Function

Submodel 3 e.g. CAD model
Property 3.1

Property 3.1.1
Property 3.1.2

Information (CAD)

Information (CAD)

Figure 1. Internal structure of an asset administration shell (AAS).

Every sub model contains a hierarchy of Properties related to the domain of the sub model itself.
The format of the property descriptions should follow a standard, like IEC 61360 [30]. Sub models
are composed of Sub model elements, each of which is an abstract class for all the entities in the
metamodel that can be aggregated by a sub model.

Figure 1. Internal structure of an asset administration shell (AAS).

Every sub model contains a hierarchy of Properties related to the domain of the sub model itself.
The format of the property descriptions should follow a standard, like IEC 61360 [30]. Sub models are

Computers 2020, 9, 28 4 of 28

composed of Sub model elements, each of which is an abstract class for all the entities in the metamodel
that can be aggregated by a sub model.

In [4,5] the AAS metamodel is introduced. These documents describe how information is
structured inside an AAS. In the remainder, details about the latest AAS metamodel will be provided
giving a description of its fundamental entities [5].

Entities in the AAS metamodel can inherit from more than one common class (multiple inheritance).
Common classes are abstract classes used to describe aspects shared by metamodel entities; they are
Identifiable, Referable, HasKind, HasSemantics, and HasDataSpecification. Due to lack of space, only
the most important attributes of common classes and AAS entities will be described in the following.
For a complete description, the reader should refer to [5]. From now on the name of a common class
will be used for a particular metamodel entity if it inherits from that common class. For example,
“HasSemantics entity” will refer to an entity inheriting from the HasSemantics common class; saying
that an asset is either “Identifiable” or an “Identifiable entity” means that the asset entity inherits from
the identifiable common class.

2.1. Identifiable and Referable

In the digitalization process of an asset, everything should be unambiguously identified: parts,
products, people, software and services. But in order to achieve interoperability, relationships between
entities shall be identifiable too. For this reason, the AAS metamodel makes a distinction between
elements that are identifiable, referable or none of both.

An identifiable entity can be uniquely identified by means of a globally unique identifier. This is
a very important feature for an entity, because this makes possible to refer the entity in any context.
Table 1 summarizes the attributes of identifiable entities. Identifier is a structured type and is composed
of a string field (id), and a second field (idType) of type IdentifierType; according to [5] IdentifierType
is an enumerative type made up the following elements: IRDI, URI and Custom. Values of identifier
type are used inside the attribute identification of identifiable entities, as shown in Table 1.

Table 1. Attributes of identifiable.

Attribute Description Type

administration Administrative information AdministrativeInformation
identification (Mandatory) Global unique identification Identifier

Table 2 summarizes the attributes of referable entities. A referable entity provides a short identifier
(idShort) that is unique only in the context of its name space. The name space for a referable entity
is defined as its parent element that is either referable or identifiable. Identifiable entities are also
referable but the vice versa is not true.

Table 2. Attributes of Referable.

Attribute Description Type

idShort Identifying string of the entity within its name space String

category Additional meta information about the class of the element,
affecting the expected existence of certain attributes String

description Description or comment of the element String
parent Reference to the next referable parent element Reference

2.2. Reference

The reference entity is needed in order to establish relationships between entities composing the
AAS. References can also be used to refer entities not defined internally the AAS but in some external
source. An entity should be at least referable to be pointed by a reference.

Computers 2020, 9, 28 5 of 28

The AAS reference entity features the attribute key, which is logically structured as an ordered
list of keys where each element refers an entity by means of its identifier. The structure of this key
list resembles an URI structure, where the first key refers to the root element and every following key
identifies the next element in the hierarchy leading to the referred element, identified by the last key of
the list.

Each key in the list belongs to a structured type named Key, featuring several attributes.
The mandatory attributes are local, type, value and idType. The attribute local specifies whether the
referred element is local to the AAS or not. The attribute type specifies the class name of the referenced
entity; its value belongs to a custom type named KeyElements, which is an enumeration consisting of
all the names of the entities in the metamodel (e.g., property, asset, submodel). The attribute value is a
string containing the identifier of the entity referred by the key. The attribute idType describes the
kind of identifier used in attribute value; its value is of type KeyType which is an enumeration of all
the different kinds allowed for both global and local identifiers, i.e., IRDI, IRI, Custom, idShort and
FragmentId (see [5] for the relevant definitions).

2.3. HasKind

The common class HasKind identifies all those entities that can have the double nature of template
and instance; the concept of template represents the concept of class in object-oriented programming
(OOP), so that an entity instance derives from an entity template in the same way as an object instance
derives from a class in OOP.

Templates define common features for all its instances. An entity that can be either a template
or an instance is referred in the metamodel as a HasKind entity. It is featured by a unique optional
attribute, named kind, which can take either the value “Template” or “Instance”.

2.4. HasSemantics

HasSemantics entity is whatever AAS entity that can be described by means of a concept.
A HasSemantics entity owns a reference to another external entity that describes its meaning in a
proper manner. To this aim, the HasSemantics element has only one optional attribute, the semanticId,
which is a reference to the semantic definition of the element.

2.5. HasDataSpecification and DataSpecification

One of the requirements for the AAS mandates that the definition of additional attributes (e.g.,
manufacturer specific) for some entities must be possible. An entity that allows its instances to contain
additional attributes to those already defined in the entity itself is identified as HasDataSpecification
entity. Such an entity contains one or more References to so-called data specification templates
(DST), which are used to define the additional attributes. The only attribute inherited by the
HasDataSpecification common class is the optional hasDataSpecification, which contains References to
the DSTs eventually used.

Even if [5] specifies that DST does not belong explicitly to the metamodel, its internal structure is
described using an entity named DataSpecification; it is identifiable, so that its identifier can be used
inside references. It consists of an entity named DataSpecificationContent containing the definition of
the additional attributes. In other words, if a particular instance of a metamodel class features some
additional attributes not defined in the class itself, such instance shall refer a DataSpecification defining
such additional attributes in order to declare the presence of these last.

2.6. AssetAdministrationShell

The main element of the entire AAS metamodel is represented by the AssetAdministrationShell
entity. This entity is both Identifiable and HasDataSpecification. It provides more attributes based on
how an AAS is structured [28]; Table 3 summarizes some of them.

Computers 2020, 9, 28 6 of 28

Table 3. Attributes of the AssetAdministrationShell.

Attribute Description Type

derivedFrom A Reference to the AAS the current AAS was derived from Reference
asset (Mandatory) A Reference to the Asset entity Reference

submodel References to the Submodels Reference
conceptDictionary One or more Concept Dictionary entities ConceptDictionary

The derivedFrom attribute is used to establish a relationship between two AASs that are derived
from each other; it contains a Reference. In case of an AAS representing an asset instance, this reference
points to the AAS representing the corresponding asset type or another asset instance it was derived
from. The same holds for AAS of an asset type as types can also be derived from other types.

The other attributes shown in Table 3 (i.e., asset, submodel and conceptDictionary) refer to the
Asset, Submodel and ConceptDictionary entities described in the following subsections, respectively.

2.7. Asset

The Asset entity contains all metadata of an asset represented by an AAS. This entity is Identifiable
and HasDataSpecification. Usually it owns a reference to a Submodel entity describing identification
aspect of the asset itself, but this is not mandatory.

It features an attribute kind that specifies whether the asset is a type or an instance, in accordance
to the asset life cycle as said in [31]. This attribute is used to maintain the relationship between an asset
type and its asset instances for their whole lifecycle; in this way, updates on the AAS of the asset type
can be reflected on the AASs of the respective asset instances.

2.8. Submodel and SubmodelElement

The Submodel entity defines a specific aspect of the asset represented by the AAS. It is used to
structure the AAS into distinguishable parts, organizing related data and functionalities of a domain
or subject. Submodels can become standardized, but at the time of writing this paper, no standard
Submodels have been released.

This entity is Identifiable, HasKind, HasDataSpecification, and HasSemantics. In case of a
Submodel with kind = “Instance”, the semanticId attribute may refer to another Submodel entity
with kind = “Template”.

Submodel aggregates SubmodelElements that are related to the same aspect of the asset identified
by the Submodel itself. For this reason, the Submodel entity defines another additional attribute, named
submodelElement, which is a composition of zero or more SubmodelElements. A SubmodelElement
entity is suitable for the description and differentiation of assets. The SubmodelElement entity
is Referable, HasKind, HasDataSpecification and HasSemantics. All the SubmodelElements of a
Submodel with kind = “Template” are in turn SubmodelElement templates (i.e., kind = “Template”).

2.9. DataElement and Property

DataElement is a SubmodelElement that is no further composed out of other SubmodelElements.
A Property is a DataElement that is made up by the additional attributes shown in Table 4.

The attributes value and valueType are the most important; the latter specifies which kind of data
value is contained in the former. This information is necessary to decode such a value.

Table 4. Attributes of Property.

Attribute Description Type

value The value of the Property instance ValueDataType
valueType Data type of the value DataTypeDef

valueId A Reference to the global unique id of a coded value Reference

Computers 2020, 9, 28 7 of 28

2.10. ConceptDictionary and ConceptDescription

One of the core entities of the AAS metamodel to achieve interoperability is ConceptDescription;
it is used to define the semantics of entities inside the AAS metamodel. The ConceptDescription entity
is Identifiable and HasDataSpecification. Every element in AAS that is HasSemantics should have its
semantics described by a ConceptDescription, unless a more specific solution is adopted.

The entity ConceptDictionary represents a collection of ConceptDescription instances.
ConceptDictionary is referable and it defines an additional attribute named conceptDescription.
Such attribute is a composition of AAS References pointing to ConceptDescription instances.

Typically, a concept description dictionary of an AAS contains only concept descriptions of
elements used within submodels of the AAS. In certain scenarios, the concept dictionary may contain
copies of property definitions coming from external standards. In this case, a semantic definition
to the external standard shall be added; for this reason, ConceptDescription defines the additional
optional attribute isCaseOf, which represents a global reference to an external definition the concept
is compatible with or was derived from. For instance, if the semantics of a Property in the AAS is
defined in eCl@ss [32], a ConceptDescription instance must be created and its attribute isCaseOf must
be filled with a reference pointing to the relevant eCl@ss ID [5]. ConceptDescription should follow a
standardized template to describe a concept. The only templates available in the metamodel are used
to define both semantics of Properties according IEC 61360 [30] and physical unit of measurement.

3. OPC UA Information Model

The OPC UA Information Model provides a standard way for servers to expose information to
clients. The set of information is maintained through OPC UA Nodes grouped together to compose
the so-called OPC UA AddressSpace [7,33]. The OPC UA Information Model is based on OOP, so that
some nodes representing instances inherit from other nodes defining types; multiple inheritance is not
recommended in OPC UA even though the specification does not restrict type hierarchies to single
inheritance [34].

Each OPC UA Node belongs to a class named NodeClass, some of which will be described in
the following. Among the available NodeClasses, there is the variable NodeClass which is used to
model data. This NodeClass features an attribute named Value, containing the data, and an attribute
named DataType, specifying the type of the content of the attribute Value. DataType may be Built-in,
Enumeration or Structured. Arrays of elements belonging to Built-in, Enumeration and Structured
DataTypes are also allowed. Two types of Variables are defined: Properties and DataVariables;
differences between them and the relevant data they can model, will be discussed in Section 4.

Another NodeClass is the Object. It is a container for other OPC UA Objects and Variables.
For example, since the Object Node does not feature an attribute that can be used to contain a data
value (e.g., the temperature value of a sensor), an OPC UA DataVariable Node is used as a component
of an OPC UA Object Node to represent data associated to that Object.

OPC UA includes NodeClasses defining types. ObjectType NodeClass is used to define types
for OPC UA Objects; Objects are instances of ObjectTypes in the sense that they inherit the Nodes
beneath their ObjectTypes. OPC UA defines the BaseObjectType which all the ObjectTypes must be
extended from. OPC UA already defines several standard ObjectTypes derived from BaseObjectType.
An example of ObjectType is FolderType whose instance, named Folder, is an Object organizing
the AddressSpace into a hierarchy of OPC UA Nodes; it represents the root node of a subtree.
VariableType is another NodeClass used to provide type definition for Variables. OPC UA defines
the BaseVariableType which all the VariableTypes must be extended from. Among the standard
VariableTypes derived from BaseVariableType, there are the DataVariableType and the PropertyType.
The former is used to define a DataVariable Node, whilst the latter defines a Property Node.

Relationships may be defined between OPC UA Nodes; they are called References. The ReferenceType
NodeClass is used to define different semantics for References. References may be classified in two different
main categories: Hierarchical and NonHierarchical. Among the Hierarchical References, the following

Computers 2020, 9, 28 8 of 28

ones will be used in the paper: HasComponent, Organizes and HasProperty. The HasComponent
Reference allows to specify that an OPC UA Object contains another OPC UA Object or OPC UA
DataVariable. Organizes Reference allows to organize OPC UA Nodes inside a Folder. The HasProperty
Reference is used to link a source OPC UA Node to a target OPC UA Property; the semantics is that the
source Node features a property described by the target Node.

Among the NonHierarchical References there are the HasTypeDefinition, HasSubtype, and
HasModellingRule. The first one is used to bind an OPC UA Object or Variable to its ObjectType or
VariableType, respectively. HasSubtype Reference expresses a subtype relationship between types.

For each OPC UA type, the relevant instances may have some mandatory elements (e.g., a particular
Object as component), whilst other elements may be optional (e.g., a certain Property). HasModellingRule
Reference allows to point out this kind of information for each OPC UA type. For each Variable or Object
(henceforward called InstanceDeclaration) referenced by an OPC UA type Node, a HasModellingRule
Reference points to a ModellingRule Object as target Node. A ModellingRule associated to an
InstanceDeclaration specifies whether a copy of such InstanceDeclaration must be present or not in every
instance of an OPC UA type Node. A ModellingRule Mandatory for a specific InstanceDeclaration
specifies that instances of the OPC UA type must have that InstanceDeclaration. A ModellingRule
Optional, instead, specifies that instances of the OPC UA type may have that InstanceDeclaration, but it is
not mandatory.

OPC UA defines standard graphical representation for both Nodes and References [33]. Some of
them are summarized by Tables 5 and 6.

Table 5. Graphical representation of some open platform communications unified architecture (OPC
UA) nodes.

OPC UA Node Standard Graphical Representation

DataType

Computers 2020, 9, x FOR PEER REVIEW 8 of 28

BaseVariableType, there are the DataVariableType and the PropertyType. The former is used to define a
DataVariable Node, whilst the latter defines a Property Node.

Relationships may be defined between OPC UA Nodes; they are called References. The
ReferenceType NodeClass is used to define different semantics for References. References may be
classified in two different main categories: Hierarchical and NonHierarchical. Among the Hierarchical
References, the following ones will be used in the paper: HasComponent, Organizes and HasProperty.
The HasComponent Reference allows to specify that an OPC UA Object contains another OPC UA Object
or OPC UA DataVariable. Organizes Reference allows to organize OPC UA Nodes inside a Folder. The
HasProperty Reference is used to link a source OPC UA Node to a target OPC UA Property; the semantics
is that the source Node features a property described by the target Node.

Among the NonHierarchical References there are the HasTypeDefinition, HasSubtype, and
HasModellingRule. The first one is used to bind an OPC UA Object or Variable to its ObjectType or
VariableType, respectively. HasSubtype Reference expresses a subtype relationship between types.

For each OPC UA type, the relevant instances may have some mandatory elements (e.g., a
particular Object as component), whilst other elements may be optional (e.g., a certain Property).
HasModellingRule Reference allows to point out this kind of information for each OPC UA type. For
each Variable or Object (henceforward called InstanceDeclaration) referenced by an OPC UA type
Node, a HasModellingRule Reference points to a ModellingRule Object as target Node. A
ModellingRule associated to an InstanceDeclaration specifies whether a copy of such
InstanceDeclaration must be present or not in every instance of an OPC UA type Node. A
ModellingRule Mandatory for a specific InstanceDeclaration specifies that instances of the OPC UA
type must have that InstanceDeclaration. A ModellingRule Optional, instead, specifies that instances
of the OPC UA type may have that InstanceDeclaration, but it is not mandatory.

OPC UA defines standard graphical representation for both Nodes and References [33]. Some of
them are summarized by Table 5,6.

Table 5. Graphical representation of some open platform communications unified architecture (OPC
UA) nodes.

OPC UA Node Standard Graphical Representation

DataType

ObjectType
(e.g., FolderType)

Object
The relevant ObjectType is specified on the top

Variable
(DataVariable/Property)

The VariableType is specified on the top

ObjectType
(e.g., FolderType)

Computers 2020, 9, x FOR PEER REVIEW 8 of 28

BaseVariableType, there are the DataVariableType and the PropertyType. The former is used to define a
DataVariable Node, whilst the latter defines a Property Node.

Relationships may be defined between OPC UA Nodes; they are called References. The
ReferenceType NodeClass is used to define different semantics for References. References may be
classified in two different main categories: Hierarchical and NonHierarchical. Among the Hierarchical
References, the following ones will be used in the paper: HasComponent, Organizes and HasProperty.
The HasComponent Reference allows to specify that an OPC UA Object contains another OPC UA Object
or OPC UA DataVariable. Organizes Reference allows to organize OPC UA Nodes inside a Folder. The
HasProperty Reference is used to link a source OPC UA Node to a target OPC UA Property; the semantics
is that the source Node features a property described by the target Node.

Among the NonHierarchical References there are the HasTypeDefinition, HasSubtype, and
HasModellingRule. The first one is used to bind an OPC UA Object or Variable to its ObjectType or
VariableType, respectively. HasSubtype Reference expresses a subtype relationship between types.

For each OPC UA type, the relevant instances may have some mandatory elements (e.g., a
particular Object as component), whilst other elements may be optional (e.g., a certain Property).
HasModellingRule Reference allows to point out this kind of information for each OPC UA type. For
each Variable or Object (henceforward called InstanceDeclaration) referenced by an OPC UA type
Node, a HasModellingRule Reference points to a ModellingRule Object as target Node. A
ModellingRule associated to an InstanceDeclaration specifies whether a copy of such
InstanceDeclaration must be present or not in every instance of an OPC UA type Node. A
ModellingRule Mandatory for a specific InstanceDeclaration specifies that instances of the OPC UA
type must have that InstanceDeclaration. A ModellingRule Optional, instead, specifies that instances
of the OPC UA type may have that InstanceDeclaration, but it is not mandatory.

OPC UA defines standard graphical representation for both Nodes and References [33]. Some of
them are summarized by Table 5,6.

Table 5. Graphical representation of some open platform communications unified architecture (OPC
UA) nodes.

OPC UA Node Standard Graphical Representation

DataType

ObjectType
(e.g., FolderType)

Object
The relevant ObjectType is specified on the top

Variable
(DataVariable/Property)

The VariableType is specified on the top

Object
The relevant ObjectType is specified on the top

Computers 2020, 9, x FOR PEER REVIEW 8 of 28

BaseVariableType, there are the DataVariableType and the PropertyType. The former is used to define a
DataVariable Node, whilst the latter defines a Property Node.

Relationships may be defined between OPC UA Nodes; they are called References. The
ReferenceType NodeClass is used to define different semantics for References. References may be
classified in two different main categories: Hierarchical and NonHierarchical. Among the Hierarchical
References, the following ones will be used in the paper: HasComponent, Organizes and HasProperty.
The HasComponent Reference allows to specify that an OPC UA Object contains another OPC UA Object
or OPC UA DataVariable. Organizes Reference allows to organize OPC UA Nodes inside a Folder. The
HasProperty Reference is used to link a source OPC UA Node to a target OPC UA Property; the semantics
is that the source Node features a property described by the target Node.

Among the NonHierarchical References there are the HasTypeDefinition, HasSubtype, and
HasModellingRule. The first one is used to bind an OPC UA Object or Variable to its ObjectType or
VariableType, respectively. HasSubtype Reference expresses a subtype relationship between types.

For each OPC UA type, the relevant instances may have some mandatory elements (e.g., a
particular Object as component), whilst other elements may be optional (e.g., a certain Property).
HasModellingRule Reference allows to point out this kind of information for each OPC UA type. For
each Variable or Object (henceforward called InstanceDeclaration) referenced by an OPC UA type
Node, a HasModellingRule Reference points to a ModellingRule Object as target Node. A
ModellingRule associated to an InstanceDeclaration specifies whether a copy of such
InstanceDeclaration must be present or not in every instance of an OPC UA type Node. A
ModellingRule Mandatory for a specific InstanceDeclaration specifies that instances of the OPC UA
type must have that InstanceDeclaration. A ModellingRule Optional, instead, specifies that instances
of the OPC UA type may have that InstanceDeclaration, but it is not mandatory.

OPC UA defines standard graphical representation for both Nodes and References [33]. Some of
them are summarized by Table 5,6.

Table 5. Graphical representation of some open platform communications unified architecture (OPC
UA) nodes.

OPC UA Node Standard Graphical Representation

DataType

ObjectType
(e.g., FolderType)

Object
The relevant ObjectType is specified on the top

Variable
(DataVariable/Property)

The VariableType is specified on the top

Variable
(DataVariable/Property)

The VariableType is specified on the top

Computers 2020, 9, x FOR PEER REVIEW 8 of 28

BaseVariableType, there are the DataVariableType and the PropertyType. The former is used to define a
DataVariable Node, whilst the latter defines a Property Node.

Relationships may be defined between OPC UA Nodes; they are called References. The
ReferenceType NodeClass is used to define different semantics for References. References may be
classified in two different main categories: Hierarchical and NonHierarchical. Among the Hierarchical
References, the following ones will be used in the paper: HasComponent, Organizes and HasProperty.
The HasComponent Reference allows to specify that an OPC UA Object contains another OPC UA Object
or OPC UA DataVariable. Organizes Reference allows to organize OPC UA Nodes inside a Folder. The
HasProperty Reference is used to link a source OPC UA Node to a target OPC UA Property; the semantics
is that the source Node features a property described by the target Node.

Among the NonHierarchical References there are the HasTypeDefinition, HasSubtype, and
HasModellingRule. The first one is used to bind an OPC UA Object or Variable to its ObjectType or
VariableType, respectively. HasSubtype Reference expresses a subtype relationship between types.

For each OPC UA type, the relevant instances may have some mandatory elements (e.g., a
particular Object as component), whilst other elements may be optional (e.g., a certain Property).
HasModellingRule Reference allows to point out this kind of information for each OPC UA type. For
each Variable or Object (henceforward called InstanceDeclaration) referenced by an OPC UA type
Node, a HasModellingRule Reference points to a ModellingRule Object as target Node. A
ModellingRule associated to an InstanceDeclaration specifies whether a copy of such
InstanceDeclaration must be present or not in every instance of an OPC UA type Node. A
ModellingRule Mandatory for a specific InstanceDeclaration specifies that instances of the OPC UA
type must have that InstanceDeclaration. A ModellingRule Optional, instead, specifies that instances
of the OPC UA type may have that InstanceDeclaration, but it is not mandatory.

OPC UA defines standard graphical representation for both Nodes and References [33]. Some of
them are summarized by Table 5,6.

Table 5. Graphical representation of some open platform communications unified architecture (OPC
UA) nodes.

OPC UA Node Standard Graphical Representation

DataType

ObjectType
(e.g., FolderType)

Object
The relevant ObjectType is specified on the top

Variable
(DataVariable/Property)

The VariableType is specified on the top

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Computers 2020, 9, x FOR PEER REVIEW 9 of 28

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Very recently, the OPCFoundation released an amendment introducing a new feature in
Address Space model called Interface [34]. An Interface is an ObjectType representing a generic
feature that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that
inherits all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so.
Furthermore, names of Objects will be written between double quotes, in order to be easier
distinguishable.

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Hierarchical (e.g., Organizes)

NonHierarchical

HasComponent

HasProperty

HasSubtype

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage
in terms of interoperability of OPC UA Information Model to structure and expose information

Computers 2020, 9, 28 9 of 28

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Computers 2020, 9, x FOR PEER REVIEW 9 of 28

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Very recently, the OPCFoundation released an amendment introducing a new feature in
Address Space model called Interface [34]. An Interface is an ObjectType representing a generic
feature that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that
inherits all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so.
Furthermore, names of Objects will be written between double quotes, in order to be easier
distinguishable.

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Hierarchical (e.g., Organizes)

NonHierarchical

HasComponent

HasProperty

HasSubtype

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage
in terms of interoperability of OPC UA Information Model to structure and expose information

Hierarchical (e.g., Organizes)

Computers 2020, 9, x FOR PEER REVIEW 9 of 28

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Very recently, the OPCFoundation released an amendment introducing a new feature in
Address Space model called Interface [34]. An Interface is an ObjectType representing a generic
feature that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that
inherits all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so.
Furthermore, names of Objects will be written between double quotes, in order to be easier
distinguishable.

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Hierarchical (e.g., Organizes)

NonHierarchical

HasComponent

HasProperty

HasSubtype

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage
in terms of interoperability of OPC UA Information Model to structure and expose information

NonHierarchical

Computers 2020, 9, x FOR PEER REVIEW 9 of 28

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Very recently, the OPCFoundation released an amendment introducing a new feature in
Address Space model called Interface [34]. An Interface is an ObjectType representing a generic
feature that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that
inherits all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so.
Furthermore, names of Objects will be written between double quotes, in order to be easier
distinguishable.

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Hierarchical (e.g., Organizes)

NonHierarchical

HasComponent

HasProperty

HasSubtype

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage
in terms of interoperability of OPC UA Information Model to structure and expose information

HasComponent

Computers 2020, 9, x FOR PEER REVIEW 9 of 28

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Very recently, the OPCFoundation released an amendment introducing a new feature in
Address Space model called Interface [34]. An Interface is an ObjectType representing a generic
feature that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that
inherits all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so.
Furthermore, names of Objects will be written between double quotes, in order to be easier
distinguishable.

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Hierarchical (e.g., Organizes)

NonHierarchical

HasComponent

HasProperty

HasSubtype

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage
in terms of interoperability of OPC UA Information Model to structure and expose information

HasProperty

Computers 2020, 9, x FOR PEER REVIEW 9 of 28

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Very recently, the OPCFoundation released an amendment introducing a new feature in
Address Space model called Interface [34]. An Interface is an ObjectType representing a generic
feature that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that
inherits all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so.
Furthermore, names of Objects will be written between double quotes, in order to be easier
distinguishable.

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Hierarchical (e.g., Organizes)

NonHierarchical

HasComponent

HasProperty

HasSubtype

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage
in terms of interoperability of OPC UA Information Model to structure and expose information

HasSubtype

Computers 2020, 9, x FOR PEER REVIEW 9 of 28

ModellingRule Object/HasModellingRule Reference
They are both represented inside the source

InstanceDeclaration Node

Very recently, the OPCFoundation released an amendment introducing a new feature in
Address Space model called Interface [34]. An Interface is an ObjectType representing a generic
feature that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that
inherits all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so.
Furthermore, names of Objects will be written between double quotes, in order to be easier
distinguishable.

Table 6. Graphical representation of some OPC UA References.

OPC UA Reference Standard Graphical Representation

HasTypeDefinition

Hierarchical (e.g., Organizes)

NonHierarchical

HasComponent

HasProperty

HasSubtype

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage
in terms of interoperability of OPC UA Information Model to structure and expose information

Very recently, the OPCFoundation released an amendment introducing a new feature in Address
Space model called Interface [34]. An Interface is an ObjectType representing a generic feature
that can be used by different Objects or ObjectTypes. HasInterface is a new NonHierarchical
ReferenceType; an Object may have more HasInterface References connected to different Interfaces.
When an Object references an Interface by means of a HasInterface Reference, it inherits all the
InstanceDeclarations exposed by the Interface, following the same rules used for an Object that inherits
all InstanceDeclarations exposed by its ObjectType. More details may be achieved in [34].

In the remainders of the paper, to avoid confusion between Reference in AAS metamodel and
Reference in OPC UA, the suffix AAS or OPC UA is added when the context requires to do so. Furthermore,
names of Objects will be written between double quotes, in order to be easier distinguishable.

4. Common Practices in the Definition of OPC UA Information Model

Introduction pointed out that current literature provides several publications taking advantage in
terms of interoperability of OPC UA Information Model to structure and expose information coming
from different domains of interest. In general, the definition of an OPC UA Information Model requires
a phase where all the requirements of the original domain of interest are collected and compared with
the standard elements of the OPC UA Information Model in order to find the best mapping between
them. Often, this is not an easy task because some concepts from the source domain cannot be directly
mapped into OPC UA; in these cases, the definition of new element types extending the original OPC
UA elements must be realized. The aim of this section is to point out the common practices adopted
when OPC UA Information Model is used to model a generic system; this analysis will be carried on
for each of the main OPC UA Information Model elements.

4.1. Variables and DataTypes

Nodes of Variable NodeClass are usually used to represent data. For instance, a Variable may
represent the measurement of a temperature sensor or the engineering unit of the measured temperature.
As the reader can notice, in both cases we are speaking about data associated to the same device, but
the relevant semantics are quite different. In the former case, the Variable represents a value produced
by the temperature sensor. In the latter case, instead, the Variable represents a characteristic of the
same device. To distinguish these cases, OPC UA defines two main VariableTypes that Variables must
inherit from: DataVariableType and PropertyType. As already explained in Section 3, we will refer to
variables inheriting to these two VariableTypes as DataVariable and Property, respectively. As pointed
out in [7], it is not always so easy to decide when a DataVariable or a Property should be used when
modelling data. In general, DataVariable may be chosen to represent data associated to an Object,
whereas a Property may be used to represent some characteristic of a Node that usually cannot be
described by means of the attributes of the Node itself.

Computers 2020, 9, 28 10 of 28

As said in Section 3, the data type of the value contained in a Variable is described by the attribute
DataType. Usually variables may contain simple value like integers or strings, but most of the time,
during the development of an OPC UA Information Model, the definition of domain-specific data type
is required. OPC UA provides the NodeClass DataType for this purpose. If the Information Model
requires user defined types, like structures, enumerations and arrays, proper types must be defined in
OPC UA information model in order to represent such user-defined types. Section 3 pointed out that
Built-in, Enumeration or Structured OPC UA DataTypes are available to this aim. Arrays of elements
belonging to Built-in, Enumeration and Structured DataTypes are also allowed.

It is worth noting that, in case of a structured value, the adoption of a Structured DataType is not
the only solution. In fact, a structured value can be modelled as a complex Object featuring several
Variables Nodes as components (i.e., linked to the Object by HasComponent References), each of
which representing a field of the structured value. Both solutions are valid to represent a structured
value, however there are pros and cons for each solution. Briefly, using a Structured DataType is
possible to easily access all data at once, whereas using an Object with components requires that each
variable component is accessed one by one. In other words, structured DataType provides an implicit
transaction context during the information access, whereas Object does not and it must be explicitly
managed. On the other hand, using Object in order to access individual data of a structured value it is
easier than accessing a value belonging to structured DataType. The latter involves an overhead for
this kind of operation because all the structured value must be read to retrieve the value of a field.
More details can be found in [7].

4.2. Object and ObjectTypes

The OPC UA NodeClass Object is used to represent entities like entire systems, system components,
real-world and software objects. For instance, an Object inheriting from an ObjectType modelling
a type of device (e.g., engine type, motor type) represents a physical device whose complexity is
modelled by all the other nodes connected to it by means of hierarchical references (e.g., HasProperty,
HasComponent). In general, the meanings that an Object can assume are unlimited; the important
thing is understanding how Object and its ObjectType are the building blocks of a well-organized
AddressSpace. As a consequence, for each entity that must be represented in the AddressSpace, a
relevant ObjectType should be properly defined; all the objects belonging to this ObjectType represent
instances of the particular entity represented by the ObjectType.

When modelling a system, representation of attributes belonging to a particular entity occurs.
First of all, the modelling of the attributes must be realized during the definition of ObjectTypes
representing the entities. The two most frequent cases consist of attributes containing data values
or containing some other complex object. An attribute containing value can be mapped as OPC UA
Property (connected with a HasProperty Reference) or DataVariable (connected with a HasComponent
Reference) depending on the consideration made in the previous subsection. An attribute containing a
complex object, instead, may be mapped as OPC UA Object component, which must be connected
to the OPC UA ObjectType by a HasComponent Reference; this is legit as this reference represents a
part-of relationship and attributes may be considered parts of an entity.

OPC UA Objects may also be used to organize the AddressSpace [7], as explained in the
following subsection.

4.3. AddressSpace Organisation

When OPC UA Information Model is used to model a system made up by several entities, a good
practice consists of defining an entry point to all the relevant Nodes. Usually, a Folder Object contained
in the standard “Objects” folder [7] is used as an entry point to the subset of the AddressSpace relevant
to the system modelled. This Folder Object will contain all the OPC UA Nodes modelling the entities
present in the system. All these nodes may be organized in different ways according to the needs to be
fulfilled, as explained in the following.

Computers 2020, 9, 28 11 of 28

Let us assume to model entities linked by a hierarchical relationship. Hierarchical relationship
may occur when entities are organized in a way that resembles the same organization existing between
folder and the relevant content in a generic file system. In this case, this relationship may be modelled
using a folder object modelling the topmost entity and connecting it to the nodes modelling the other
entities, by means of organizes references. If the hierarchical relationship among the entities resembles
an aggregation, particular OPC UA hierarchical references, like HasComponent and HasProperty, may
be used to connect the OPC UA nodes modelling the original entities.

Let us consider now a system to model where a relationship exists between two entities belonging
to different hierarchies. In this case, a common modelling practice in the organization of OPC
UA information model involves the use of non-hierarchical OPC UA references. For example, an
object belonging to a Folder Object may be linked to the relevant ObjectType (usually belonging
to the standard “Types” Folder) by a HasTypeDefinition reference. In general, it is possible to say
that non-hierarchical references organizes the AddressSpace from a semantics point of view [7].
Usually ad-hoc non-hierarchical ReferenceTypes must be defined in order to better represent the kind
of relationships between entities to be modelled.

5. Mapping AAS Metamodel into OPC UA Information Model

The common practices highlighted in the previous section will be exemplified considering the
mapping of the AAS metamodel into the OPC UA information model. The authors will provide
reasoning behind the main decisions to be taken in the mapping, pointing out pros and cons when
different strategies can be adopted. Furthermore, a comparison with the mapping solutions taken
in [5] will be done when different approaches can be adopted for the same scenario.

In Section 5.1, mapping solutions for entities and attributes of the AAS metamodel are discussed.
Section 5.2 contains insights about how to structure the AddressSpace of an OPC UA Server in order
to expose AASs. In Section 5.3, the referencing mechanism of the AAS metamodel is analyzed and
strategies about mapping AAS References in OPC UA are provided and discussed.

5.1. Mapping AAS Entities

One of the first decisions to be taken is deciding which OPC UA NodeClass should be used for
each main AAS elements. An AAS metamodel is composed by entities featuring attributes. In turn,
entities can be classified in entities structuring the AAS (e.g., AssetAdministrationShell, Submodel,
and Asset) and entities defining types for attribute values (e.g., Identifier, Key). Attributes, instead, can
be classified as attributes containing values, attributes realizing composition and attributes containing
AAS References. In particular, attributes realizing composition may contain also AAS References.
In the following, reasoning about choice of the most suitable OPC UA NodeClass to map each of these
AAS metamodel elements will be provided.

On the basis of the content of Section 4.2, the use of OPC UA objects for the representation of the
main entities in the AAS metamodel that structure the AAS, seems reasonable and feasible.

To semantically distinguish OPC UA Objects mapping AAS entities between each other, declaration
of ObjectTypes for each metamodel entity is needed. For instance, an ObjectType AASType may be
defined to represent all Object Nodes mapping an AssetAdministrationShell entity; an ObjectType
AssetType can be defined for all Object Nodes mapping an Asset entity. In general, for all entities
of the metamodel constituting the AAS structure, an ObjectType should be properly defined.
Mapping proposed in [5] seems based on the same assumption, as Objects are used to map main
entities, providing naming convention for the relevant ObjectTypes.

AAS entities in the metamodel defining new types for attribute values (from now on referred as
type in the context of AAS metamodel), often realize structures and enumerations; for this reason they
fit to be mapped as OPC UA DataType since they can be both Structured and Enumeration, as said in
Section 4.1. For instance, in the context of identifiable entities, two main type entities are introduced in
the AAS metamodel: Identifier and IdentifierType. The former is a structured type and the latter is an

Computers 2020, 9, 28 12 of 28

enumerative type. Identifier is composed by a string field (id), and a second field (idType) of type
IdentifierType. Values of Identifier are used inside the attribute identification of Identifiable entities,
as shown in Table 1. OPC UA Structured DataType and Enumeration DataType can be used to map
Identifier and IdentifierType, respectively. A possible mapping solution is depicted in Figure 2.

Computers 2020, 9, x FOR PEER REVIEW 12 of 28

entities can be classified in entities structuring the AAS (e.g., AssetAdministrationShell, Submodel,
and Asset) and entities defining types for attribute values (e.g., Identifier, Key). Attributes, instead,
can be classified as attributes containing values, attributes realizing composition and attributes
containing AAS References. In particular, attributes realizing composition may contain also AAS
References. In the following, reasoning about choice of the most suitable OPC UA NodeClass to map
each of these AAS metamodel elements will be provided.

On the basis of the content of Section 4.2, the use of OPC UA objects for the representation of the
main entities in the AAS metamodel that structure the AAS, seems reasonable and feasible.

To semantically distinguish OPC UA Objects mapping AAS entities between each other,
declaration of ObjectTypes for each metamodel entity is needed. For instance, an ObjectType
AASType may be defined to represent all Object Nodes mapping an AssetAdministrationShell entity;
an ObjectType AssetType can be defined for all Object Nodes mapping an Asset entity. In general,
for all entities of the metamodel constituting the AAS structure, an ObjectType should be properly
defined. Mapping proposed in [5] seems based on the same assumption, as Objects are used to map
main entities, providing naming convention for the relevant ObjectTypes.

AAS entities in the metamodel defining new types for attribute values (from now on referred as
type in the context of AAS metamodel), often realize structures and enumerations; for this reason
they fit to be mapped as OPC UA DataType since they can be both Structured and Enumeration, as
said in Section 4.1. For instance, in the context of identifiable entities, two main type entities are
introduced in the AAS metamodel: Identifier and IdentifierType. The former is a structured type and
the latter is an enumerative type. Identifier is composed by a string field (id), and a second field
(idType) of type IdentifierType. Values of Identifier are used inside the attribute identification of
Identifiable entities, as shown in Table 1. OPC UA Structured DataType and Enumeration DataType
can be used to map Identifier and IdentifierType, respectively. A possible mapping solution is
depicted in Figure 2.

In [5] different mapping solutions are adopted for type entities depending on the case; no unique
rule seems to be adopted. For instance, unlike authors’ proposal, identifier is mapped with an
ObjectType named AASIdentifierType structured with two Properties: id and idType. The two
solutions are quite equivalent; the only considerations to be made at this time is that they led to
different implementation strategies for entities featuring attributes containing values, like the
identification attribute inherited by identifiable (containing Identifier values as said before). More
insights about this consideration will be given in the following.

Figure 2. Identifier and IdentifierType mapped as DataTypes.

Since it has been assumed to map an entity structuring the AAS as OPC UA Object/ObjectType,
reasoning to discover the most suitable solution to map its attributes must be done at this time. Let
us start considering attributes containing values (from now on referred as value attributes). In AAS
metamodel, value attributes describe features of the AAS entities. For instance, the value attribute
description of the referable entities (see Table 2) maintains a brief description of the entity itself.
According to what pointed out in Section 4.1, authors believe that attributes containing values can be
mapped as OPC UA Properties. This choice is compliant with the decision of mapping type entities
with DataTypes; in fact, Properties representing such attributes may contain values encoded using
the DataTypes modelling the relevant AAS type entities. For example, resuming the case of the

Figure 2. Identifier and IdentifierType mapped as DataTypes.

In [5] different mapping solutions are adopted for type entities depending on the case; no
unique rule seems to be adopted. For instance, unlike authors’ proposal, identifier is mapped with
an ObjectType named AASIdentifierType structured with two Properties: id and idType. The two
solutions are quite equivalent; the only considerations to be made at this time is that they led to different
implementation strategies for entities featuring attributes containing values, like the identification
attribute inherited by identifiable (containing Identifier values as said before). More insights about this
consideration will be given in the following.

Since it has been assumed to map an entity structuring the AAS as OPC UA Object/ObjectType,
reasoning to discover the most suitable solution to map its attributes must be done at this time. Let us
start considering attributes containing values (from now on referred as value attributes). In AAS
metamodel, value attributes describe features of the AAS entities. For instance, the value attribute
description of the referable entities (see Table 2) maintains a brief description of the entity itself.
According to what pointed out in Section 4.1, authors believe that attributes containing values can be
mapped as OPC UA Properties. This choice is compliant with the decision of mapping type entities
with DataTypes; in fact, Properties representing such attributes may contain values encoded using the
DataTypes modelling the relevant AAS type entities. For example, resuming the case of the attribute
identification, it may be mapped as an OPC UA Property, where the DataTypes shown by Figure 2 are
internally used. The solution proposed in [5] based on the mapping of Identifier with the ObjectType
named AASIdentifierType, sets the constraint to the kind of NodeClass that shall be adopted to map
the identification attribute. According to the solution adopted in [5], identification can be mapped
only as a component (thus, as an Object) having the AASIdentifierType ObjectType as type definition.
Authors strongly believe that semantics of OPC UA Properties better reflect the meaning of value
attributes than semantics of an OPC UA component, which represents a part-of relationship. In fact,
the identifier of an entity cannot be considered a part of the entity but an inherent information of the
entity itself.

Attributes of AAS entities reflecting composition (from now on referred as composition attributes)
do not contain values but contain a collection of other entities. For instance, conceptDictionary attribute
of the entity AssetAdministrationShell (see Table 3) contains a list of ConceptDictionary entities related
to the AAS. Let us focus on the attribute conceptDictionary to discuss mapping solutions that may be
adopted for composition attributes. A first solution is depicted in Figure 3a.

Computers 2020, 9, 28 13 of 28

Computers 2020, 9, x FOR PEER REVIEW 13 of 28

attribute identification, it may be mapped as an OPC UA Property, where the DataTypes shown by
Figure 2 are internally used. The solution proposed in [5] based on the mapping of Identifier with the
ObjectType named AASIdentifierType, sets the constraint to the kind of NodeClass that shall be
adopted to map the identification attribute. According to the solution adopted in [5], identification
can be mapped only as a component (thus, as an Object) having the AASIdentifierType ObjectType
as type definition. Authors strongly believe that semantics of OPC UA Properties better reflect the
meaning of value attributes than semantics of an OPC UA component, which represents a part-of
relationship. In fact, the identifier of an entity cannot be considered a part of the entity but an inherent
information of the entity itself.

Attributes of AAS entities reflecting composition (from now on referred as composition attributes)
do not contain values but contain a collection of other entities. For instance, conceptDictionary attribute
of the entity AssetAdministrationShell (see Table 3) contains a list of ConceptDictionary entities related to
the AAS. Let us focus on the attribute conceptDictionary to discuss mapping solutions that may be
adopted for composition attributes. A first solution is depicted in Figure 3a.

Figure 3. (a) basic and (b) optimized mapping solutions for attributes defining compositions.

Since ConceptDictionary is an entity structuring the AAS, all the ConceptDictionary entities
contained in the conceptDictionary attribute are mapped as OPC UA Objects; furthermore, this
mapping may be realized by the definition of a Hierarchical ReferenceType (which could be called
“HasConceptDictionary” as shown by Figure 3a) and by the use of References of this type to connect
the Object mapping the AssetAdministrationShell (“SampleAAS” Object in the Figure 3) to the
Objects mapping the ConceptDictionary entities (“Dictionary_1” and “Dictionary_2” in Figure 3). In
other words, the reasoning behind this mapping solution consists of using ad-hoc defined
hierarchical references to represent the list of the entities contained in the composition attributes. The
solution adopted in [5] uses HasComponent references to map this kind of attributes similarly to
what is depicted in Figure 3a. On the other hand, the solution here proposed requires the definition
of new Hierarchical ReferenceTypes (that can inherit from HasComponent) to semantically enrich
the connection between an object and its components. The use of ad-hoc defined ReferenceType has
the advantages to give more clarity about the structure of an Object and provides more filtering
options for the Object browsing. Although the solution in Figure 3a can realize the mapping of
composition attributes, it has the disadvantage that such attributes disappear in the mapping process
(even though its informative content is spread over multiple hierarchical references). Considering the
example shown in Figure 3a, no OPC UA elements represent at glance the conceptDictionary
attribute. Authors believe that a second solution based on the use of Folder Objects provides a cleaner
solution to map this kind of attribute. As said in Section 4.3, composition attributes may be mapped
creating a Folder Object containing all the OPC UA objects mapping the entities of the composition;
such a Folder collects the objects by means of OPC UA Organizes References. The solution is shown
in Figure 3b. In this figure, it has been assumed to name the folder using the plural noun of the
mapped attribute (i.e., “ConceptDictionaries” for the attribute conceptDictionary). This is just a
suggestion for a naming convention to be adopted for mapping composition attributes.

The last category of attributes is the one concerning those ones containing AAS references to
other entities. Since the argument is quite tricky, the discussion for these attributes is postponed in
Section 5.3, which is reserved for this topic.

Figure 3. (a) basic and (b) optimized mapping solutions for attributes defining compositions.

Since ConceptDictionary is an entity structuring the AAS, all the ConceptDictionary entities
contained in the conceptDictionary attribute are mapped as OPC UA Objects; furthermore, this
mapping may be realized by the definition of a Hierarchical ReferenceType (which could be called
“HasConceptDictionary” as shown by Figure 3a) and by the use of References of this type to connect
the Object mapping the AssetAdministrationShell (“SampleAAS” Object in the Figure 3) to the Objects
mapping the ConceptDictionary entities (“Dictionary_1” and “Dictionary_2” in Figure 3). In other
words, the reasoning behind this mapping solution consists of using ad-hoc defined hierarchical
references to represent the list of the entities contained in the composition attributes. The solution
adopted in [5] uses HasComponent references to map this kind of attributes similarly to what is
depicted in Figure 3a. On the other hand, the solution here proposed requires the definition of
new Hierarchical ReferenceTypes (that can inherit from HasComponent) to semantically enrich the
connection between an object and its components. The use of ad-hoc defined ReferenceType has the
advantages to give more clarity about the structure of an Object and provides more filtering options
for the Object browsing. Although the solution in Figure 3a can realize the mapping of composition
attributes, it has the disadvantage that such attributes disappear in the mapping process (even though
its informative content is spread over multiple hierarchical references). Considering the example shown
in Figure 3a, no OPC UA elements represent at glance the conceptDictionary attribute. Authors believe
that a second solution based on the use of Folder Objects provides a cleaner solution to map this kind
of attribute. As said in Section 4.3, composition attributes may be mapped creating a Folder Object
containing all the OPC UA objects mapping the entities of the composition; such a Folder collects
the objects by means of OPC UA Organizes References. The solution is shown in Figure 3b. In this
figure, it has been assumed to name the folder using the plural noun of the mapped attribute (i.e.,
“ConceptDictionaries” for the attribute conceptDictionary). This is just a suggestion for a naming
convention to be adopted for mapping composition attributes.

The last category of attributes is the one concerning those ones containing AAS references to
other entities. Since the argument is quite tricky, the discussion for these attributes is postponed in
Section 5.3, which is reserved for this topic.

In general, every attribute described for entities in the AAS metamodel is annotated with a
cardinality specifying whether the attribute is mandatory or optional for the entity. This behavior
shall be maintained when an attribute is mapped either as a property or a component of an OPC UA
ObjectType. As discussed in Section 3, properties and components are named InstanceDeclaration
in the context of an ObjectType. OPC UA uses ModellingRules to declare an InstanceDeclaration
either as mandatory or optional for all the instances of an ObjectType. It follows that, during the
mapping process of attributes (of every category), proper ModellingRules must be selected for the
InstanceDeclarations realizing the mapping. This reasoning seems adopted also in the approach
presented in [5] since the document describes in detail which ModellingRule is applied in the attribute
mapping according to its cardinality.

Computers 2020, 9, 28 14 of 28

5.2. Structuring the OPC UA AddressSpace

Once defined which OPC UA NodeClasses should be used in the mapping of AAS entities, a
decision about how to structure the AddressSpace shall be made. As pointed out in Section 4.3,
when structuring an OPC UA AddressSpace, a good practice is using a Folder Object contained in
the standard “Objects” folder as an entry point. Since the entity AssetAdministrationShell is the
top-most entity in the hierarchy defined by the AAS metamodel, it makes sense defining a Folder
Object named “Asset Administration Shells” as a component of the “Objects” Folder, as depicted in
Figure 4. Such a Folder will be used to organize all those objects that are instances of AASType. In other
words, it organizes all objects mapping AASs. This same solution is adopted in [5] to structure the
AddressSpace in an OPC UA Server, where a Folder named “AASROOT” is used to aggregate all Object
representing AASs. In the remainder of this section further consideration will be done about extending
this folder-based organization to other entities and not for the entity AssetAdministrationShell only.

Computers 2020, 9, x FOR PEER REVIEW 14 of 28

In general, every attribute described for entities in the AAS metamodel is annotated with a
cardinality specifying whether the attribute is mandatory or optional for the entity. This behavior
shall be maintained when an attribute is mapped either as a property or a component of an OPC UA
ObjectType. As discussed in Section 3, properties and components are named InstanceDeclaration in
the context of an ObjectType. OPC UA uses ModellingRules to declare an InstanceDeclaration either
as mandatory or optional for all the instances of an ObjectType. It follows that, during the mapping
process of attributes (of every category), proper ModellingRules must be selected for the
InstanceDeclarations realizing the mapping. This reasoning seems adopted also in the approach
presented in [5] since the document describes in detail which ModellingRule is applied in the
attribute mapping according to its cardinality.

5.2. Structuring the OPC UA AddressSpace

Once defined which OPC UA NodeClasses should be used in the mapping of AAS entities, a
decision about how to structure the AddressSpace shall be made. As pointed out in Section 4.3, when
structuring an OPC UA AddressSpace, a good practice is using a Folder Object contained in the
standard “Objects” folder as an entry point. Since the entity AssetAdministrationShell is the top-most
entity in the hierarchy defined by the AAS metamodel, it makes sense defining a Folder Object named
“Asset Administration Shells” as a component of the “Objects” Folder, as depicted in Figure 4. Such
a Folder will be used to organize all those objects that are instances of AASType. In other words, it
organizes all objects mapping AASs. This same solution is adopted in [5] to structure the
AddressSpace in an OPC UA Server, where a Folder named “AASROOT” is used to aggregate all
Object representing AASs. In the remainder of this section further consideration will be done about
extending this folder-based organization to other entities and not for the entity
AssetAdministrationShell only.

Since all the objects representing AAS are located under a single folder (i.e., “Asset
Administration Shells”), an OPC UA Client can take advantage of this to select the desired AAS and
to browse all the sub-entities it contains. For instance, since an AAS contains a reference to its asset,
it seems logic to maintain this kind of connection in OPC UA. So that, an OPC UA Reference can be
adopted to connect an AASType object to the AssetType object representing an asset. For the moment
we do not consider which kind of ReferenceType may be adopted (e.g., Hierarchical,
NonHierarchical) because we just want to focus on connections between nodes representing entities
considering all the relationships to structure the information model. In the following, the
aforementioned relationship between AAS and Asset will be used as example to show possible
mapping strategies in the information model structuring process.

Figure 4. (a) basic and (b)(c) optimized strategies to structure objects in the AddressSpace.

Figure 4a depicts a simple scenario where two AASType Objects represent two different versions
of the same AAS (i.e., “AAS_v1” and “AAS_v2”). As the reader can notice, both objects are connected
to the AssetType instance mapping the asset they are representing. It seems correct, but since the
AASType Objects represents two versions of the same AAS, those two instances of AssetType
represents, from a logical point of view, the same Asset. This means that a solution like this led to
redundancy of the same entity on multiple Nodes. This situation can happen with other entities and

Figure 4. (a) basic and (b,c) optimized strategies to structure objects in the AddressSpace.

Since all the objects representing AAS are located under a single folder (i.e., “Asset Administration
Shells”), an OPC UA Client can take advantage of this to select the desired AAS and to browse all the
sub-entities it contains. For instance, since an AAS contains a reference to its asset, it seems logic to
maintain this kind of connection in OPC UA. So that, an OPC UA Reference can be adopted to connect
an AASType object to the AssetType object representing an asset. For the moment we do not consider
which kind of ReferenceType may be adopted (e.g., Hierarchical, NonHierarchical) because we just
want to focus on connections between nodes representing entities considering all the relationships
to structure the information model. In the following, the aforementioned relationship between AAS
and Asset will be used as example to show possible mapping strategies in the information model
structuring process.

Figure 4a depicts a simple scenario where two AASType Objects represent two different versions
of the same AAS (i.e., “AAS_v1” and “AAS_v2”). As the reader can notice, both objects are connected
to the AssetType instance mapping the asset they are representing. It seems correct, but since the
AASType Objects represents two versions of the same AAS, those two instances of AssetType represents,
from a logical point of view, the same Asset. This means that a solution like this led to redundancy
of the same entity on multiple Nodes. This situation can happen with other entities and not only for
Asset. In general, all the Identifiable entities are the ones that can be shared across different AASs.

To avoid redundant nodes in the AddressSpace representing the same entity, the solution depicted
in Figure 4b is here proposed to be used when a single node representing an asset is shared across
two objects representing the AASs. This solution solves the problem of redundant data but has the
drawback of having very important data nested inside the AddressSpace structure. As previously said,
sharable entities are identifiable. Such entities are identifiable because they contain very important
information that shall be easy locatable and globally identifiable. With a solution like the one in
Figure 4b, in order to know which assets are contained in the AddressSpace of the OPC UA Server, a
client should browse the folder “Asset Administration Shells” and repeat the browsing again. This kind
of operation leads to a graph traversal which can be very complex in some cases. To cope with this issue,

Computers 2020, 9, 28 15 of 28

the solution adopted in Figure 4c involves the use of a folder object named “Assets” to organize all
the AssetType objects inside the AddressSpace, in the same manner the folder “Asset Administration
Shells” organizes AASType objects. In general, creating a Folder Object as entry point for each kind
of identifiable entity seems a good solution. This structures the AddressSpace like a sort of look-up
table for identifiable entities, which is an important feature in the context of the AAS environment.
The validity of this solution is confirmed by the choices made for the mappings of AAS into XML and
JSON provided by [5]; in particular, in this document all identifiable entities are aggregated at root
level to reduce redundancy. It is important to point out that these same considerations have not been
adopted for OPC UA. Explanation about the choice to limit this mapping solution to XML and JSON
only is not provided by [5]. The authors would like to point out that their proposal may be easily
included in the current mapping into OPC UA presented in [5].

5.3. Mapping AAS References

The AAS metamodel provides a referencing mechanism deeply discussed in Section 2.2. The entity
AAS Reference is a basic mechanism to connect some entities composing an AAS. For instance, an
AssetAdministrationShell entity does not contain directly the Asset it is representing but its attribute
asset contains an AAS Reference pointing to the asset itself, as said in Section 2.6. AAS Reference is
made up by a list of keys (containing in turn entity identifiers) composing an unambiguous path to the
pointed entity. The most important thing to consider in the mapping process of AAS References is
guaranteeing that the order of keys constituting the path is respected.

A naïve solution could be to use OPC UA References to map AAS References since both create
connections between entities and nodes, respectively. The problem with this solution is that AAS
References contain inherent attributes (i.e., key) whilst OPC UA References, for definition, contain
neither attributes nor properties/components. Furthermore, AAS References can point to an external
source, and such behavior cannot be replicated using OPC UA References, which can point only to
nodes contained in the AddressSpace.

Since the main aim of AAS References is to connect entities structuring the AAS, it seems reasonable
that they may be mapped as OPC UA Objects as done for the entities structuring the AAS. According to
this choice, the entity AAS Reference may be mapped with an ObjectType named AASReferenceType,
whose structure is depicted by Figure 5. In the following, all the details of the mapping based on this
solution will be discussed.

Computers 2020, 9, x FOR PEER REVIEW 16 of 28

5.3. Mapping AAS References

The AAS metamodel provides a referencing mechanism deeply discussed in Section 2.2. The
entity AAS Reference is a basic mechanism to connect some entities composing an AAS. For instance,
an AssetAdministrationShell entity does not contain directly the Asset it is representing but its
attribute asset contains an AAS Reference pointing to the asset itself, as said in Section 2.6. AAS
Reference is made up by a list of keys (containing in turn entity identifiers) composing an
unambiguous path to the pointed entity. The most important thing to consider in the mapping
process of AAS References is guaranteeing that the order of keys constituting the path is respected.

A naïve solution could be to use OPC UA References to map AAS References since both create
connections between entities and nodes, respectively. The problem with this solution is that AAS
References contain inherent attributes (i.e., key) whilst OPC UA References, for definition, contain
neither attributes nor properties/components. Furthermore, AAS References can point to an external
source, and such behavior cannot be replicated using OPC UA References, which can point only to
nodes contained in the AddressSpace.

Since the main aim of AAS References is to connect entities structuring the AAS, it seems
reasonable that they may be mapped as OPC UA Objects as done for the entities structuring the AAS.
According to this choice, the entity AAS Reference may be mapped with an ObjectType named
AASReferenceType, whose structure is depicted by Figure 5. In the following, all the details of the
mapping based on this solution will be discussed.

Figure 5. Structure of the AASReferenceType ObjectType and relevant DataTypes.

Attribute key of AAS Reference is mapped as an OPC UA Property according to the solution
pointed out in Section 5.1. It has been assumed that this Property contains a value made up by one-
dimensional array organizing all the elements modelling the keys (belonging to key type) composing
the path to an AAS entity. For this reason, the name “keys” has been given to the OPC UA Property
because it better reflects the presence of multiple key values inside. Furthermore, it has been assumed
to map the Key type as an OPC UA Structured DataType because this type entity is a structure, as
discussed in Section 5.1. Similar considerations can be done for the type entities KeyType and
KeyElements; since they are enumerations, these last can be seamlessly mapped as OPC UA
Enumeration DataType. Figure 5 depicts the solution proposed for these types and the reader can
notice that, according the proposed approach, it is possible to include both Enumeration DataTypes
as fields of the Key Structured DataType. This solution has the great advantage to organize all the
keys composing the path to an entity as an ordered array, so that the original order is respected in
the mapping. The root of the path is identified by the element at index 0 and the element at last index
identifies the entity pointed by the AAS Reference.

In the following, an example will be provided for a better understanding of the solution just
presented, and to give some insights for further improvements. Let us consider the AAS entity named

Figure 5. Structure of the AASReferenceType ObjectType and relevant DataTypes.

Attribute key of AAS Reference is mapped as an OPC UA Property according to the solution pointed
out in Section 5.1. It has been assumed that this Property contains a value made up by one-dimensional
array organizing all the elements modelling the keys (belonging to key type) composing the path to

Computers 2020, 9, 28 16 of 28

an AAS entity. For this reason, the name “keys” has been given to the OPC UA Property because it
better reflects the presence of multiple key values inside. Furthermore, it has been assumed to map
the Key type as an OPC UA Structured DataType because this type entity is a structure, as discussed
in Section 5.1. Similar considerations can be done for the type entities KeyType and KeyElements;
since they are enumerations, these last can be seamlessly mapped as OPC UA Enumeration DataType.
Figure 5 depicts the solution proposed for these types and the reader can notice that, according the
proposed approach, it is possible to include both Enumeration DataTypes as fields of the Key Structured
DataType. This solution has the great advantage to organize all the keys composing the path to an
entity as an ordered array, so that the original order is respected in the mapping. The root of the path is
identified by the element at index 0 and the element at last index identifies the entity pointed by the
AAS Reference.

In the following, an example will be provided for a better understanding of the solution just
presented, and to give some insights for further improvements. Let us consider the AAS entity named
SampleAAS, shown by Figure 6a; it contains the attribute asset whose value is an AAS Reference
pointing to the local Asset “3S7PLFDRS35” (the figure points out the relevant value of identification
attribute). In Figure 6b an instance of the AASReferenceType ObjectType is applied to map the attribute
asset. The AASReferenceType Object “asset” contains in its Property “keys” an array made up by just
one key containing, in turn, the identifier of the pointed AssetType Object. Figure 6b also shows the
AssetType “SampleAAS” Object modelling the SampleAAS Asset entity. The reader may notice the
presence of the “Assets” Folder introduced in the previous subsection.

Computers 2020, 9, x FOR PEER REVIEW 17 of 28

SampleAAS, shown by Figure 6a; it contains the attribute asset whose value is an AAS Reference
pointing to the local Asset “3S7PLFDRS35” (the figure points out the relevant value of identification
attribute). In Figure 6b an instance of the AASReferenceType ObjectType is applied to map the
attribute asset. The AASReferenceType Object “asset” contains in its Property “keys” an array made
up by just one key containing, in turn, the identifier of the pointed AssetType Object. Figure 6b also
shows the AssetType “SampleAAS” Object modelling the SampleAAS Asset entity. The reader may
notice the presence of the “Assets” Folder introduced in the previous subsection.

The solution until now presented, respects the structure of the AAS metamodel about
referencing mechanism but it presents some limitations from the point of view of an OPC UA Client.
A client browsing “SampleAAS” Object and its “asset” component in the AddressSpace doesn’t know
at a glance which is the object it is referring to, but it knows just the identifier of such object (i.e.,
“http://pk.festo.com/3S7PLFDRS35”). Once taken the complete path to the referred object, a client
should browse the AddressSpace (in the “Assets” Folder, specifically) looking for the Object
associated to that path.

Figure 6. (a) AAS entity and (b) example of AAS Reference mapping applied to the asset attribute of
AAS.

This limitation may be overcome by taking advantage of OPC UA References to connect the
“SampleAAS” AASType Object with the “3S7PLFDRS35”Asset Type Object, as shown by Figure 6b.
According to the general practices pointed out in Section 4.3, a NonHierarchical ReferenceType may
be defined for this purpose for semantic reasons, since most of the time AAS Reference points to
entities to define some relationship (like between AAS and the asset it is representing) and not a
hierarchical relationship (AAS does not own the asset). For this specific case, the “HasAsset”
NonHierarchical ReferenceType can be defined and used instead of the dotted arrow shown by the
Figure 6b.

It is worth noting that with this simple enhancement the number of browsing requests to know
which object is pointed by an AASReferenceType instance is drastically reduced. In the case in
examination, a client can browse SampleAAS for “HasAsset” Reference to look for the Object in the
AddressSpace representing the Asset associated to the AAS.

Analyzing the approach presented in [5] about the mapping of AAS Reference, it is based on similar
considerations done before but applied in different manners. In particular, in [5] AAS Reference is
mapped as an ObjectType with a property named “keys[]”. Furthermore, a NonHierarchical
ReferenceType named “AASReference” has been defined and is used to connect objects mapping AAS
References to the targeted object in the AddressSpace. There are two substantial differences between the
solution proposed in [5] and the one here provided. The first one is that there is no specific mapping for
keys, therefore the complete path of the AAS Reference is converted in a string formatted following a
specific serialization rule mandated in [5]. The choice to map AAS Reference paths in a unique string as

Figure 6. (a) AAS entity and (b) example of AAS Reference mapping applied to the asset attribute
of AAS.

The solution until now presented, respects the structure of the AAS metamodel about referencing
mechanism but it presents some limitations from the point of view of an OPC UA Client. A client
browsing “SampleAAS” Object and its “asset” component in the AddressSpace doesn’t know at
a glance which is the object it is referring to, but it knows just the identifier of such object (i.e.,
“http://pk.festo.com/3S7PLFDRS35”). Once taken the complete path to the referred object, a client
should browse the AddressSpace (in the “Assets” Folder, specifically) looking for the Object associated
to that path.

This limitation may be overcome by taking advantage of OPC UA References to connect the
“SampleAAS” AASType Object with the “3S7PLFDRS35”Asset Type Object, as shown by Figure 6b.
According to the general practices pointed out in Section 4.3, a NonHierarchical ReferenceType may be
defined for this purpose for semantic reasons, since most of the time AAS Reference points to entities
to define some relationship (like between AAS and the asset it is representing) and not a hierarchical

http://pk.festo.com/3S7PLFDRS35

Computers 2020, 9, 28 17 of 28

relationship (AAS does not own the asset). For this specific case, the “HasAsset” NonHierarchical
ReferenceType can be defined and used instead of the dotted arrow shown by the Figure 6b.

It is worth noting that with this simple enhancement the number of browsing requests to know
which object is pointed by an AASReferenceType instance is drastically reduced. In the case in
examination, a client can browse SampleAAS for “HasAsset” Reference to look for the Object in the
AddressSpace representing the Asset associated to the AAS.

Analyzing the approach presented in [5] about the mapping of AAS Reference, it is based on
similar considerations done before but applied in different manners. In particular, in [5] AAS Reference
is mapped as an ObjectType with a property named “keys[]”. Furthermore, a NonHierarchical
ReferenceType named “AASReference” has been defined and is used to connect objects mapping AAS
References to the targeted object in the AddressSpace. There are two substantial differences between
the solution proposed in [5] and the one here provided. The first one is that there is no specific mapping
for keys, therefore the complete path of the AAS Reference is converted in a string formatted following
a specific serialization rule mandated in [5]. The choice to map AAS Reference paths in a unique string
as done in [5] requires that clients parse its content to retrieve all the information the path contains,
whilst mapping key values by means of DataTypes allows information to be understood at an OPC UA
level. The second difference is about the choice made in [5] to use OPC UA References of the same
type (named “AASReference”) to connect Objects mapping AAS References to the targeted Object in
the AddressSpace. According to this solution, an OPC UA Client browsing the AddressSpace cannot
distinguish the type of the Object pointed by the OPC UA Reference on the basis of the reference itself,
but it will have a clear idea about the object once it is reached through the reference. The solution
here provided requires the definition of different ReferenceTypes according to the object to be pointed;
for example, in Figure 6b the “HasAsset” Reference is used as the object pointed represents an AAS
AssetType. In the case of Objects modelling AAS Submodels, a “HasSubmodel” Reference may be
used, instead. According to the solution here proposed, an OPC UA Client browsing the AddressSpace
can immediately understand the type of object pointed by the reference, only by the analysis of the
type of the reference itself.

6. Exploiting Novel OPC UA Features for the Mapping

In this Section authors want to discuss mapping solutions that can be adopted in case of specific
AAS entities. Although the rationales provided in the previous section may also be taken into account,
adoption of new OPC UA mechanisms defined in recent amendments may led to enhancements in the
mapping process.

6.1. Mapping AAS Common Classes

In Section 5.1 general mapping solutions have been covered for main categories of elements
composing the AAS metamodel. In particular, fine-grained mapping solutions about attributes has
been provided. In the following, a step further will be done about mapping common classes in OPC
UA. Common classes are a very important concept of the AAS metamodel since they feature attributes
common to different AAS entities, as discussed in Section 2.

Let us consider the Submodel entity as a use case to introduce possible mapping solutions for
common classes. According to the AAS metamodel, Submodel inherits from the common classes
Identifiable, HasSemantics, HasKind and HasDataSpecification. For the sake of simplicity, only some
of the relevant attributes will be taken into consideration in the following.

As the general rules described in Section 5.1 can be extended to all the metamodel entities
inheriting from common classes, using these rules it is possible to achieve the mapping solution
depicted in Figure 7a.

Computers 2020, 9, 28 18 of 28

Computers 2020, 9, x FOR PEER REVIEW 18 of 28

done in [5] requires that clients parse its content to retrieve all the information the path contains, whilst
mapping key values by means of DataTypes allows information to be understood at an OPC UA level.
The second difference is about the choice made in [5] to use OPC UA References of the same type (named
“AASReference”) to connect Objects mapping AAS References to the targeted Object in the AddressSpace.
According to this solution, an OPC UA Client browsing the AddressSpace cannot distinguish the type of
the Object pointed by the OPC UA Reference on the basis of the reference itself, but it will have a clear
idea about the object once it is reached through the reference. The solution here provided requires the
definition of different ReferenceTypes according to the object to be pointed; for example, in Figure 6b the
“HasAsset” Reference is used as the object pointed represents an AAS AssetType. In the case of Objects
modelling AAS Submodels, a “HasSubmodel” Reference may be used, instead. According to the solution
here proposed, an OPC UA Client browsing the AddressSpace can immediately understand the type of
object pointed by the reference, only by the analysis of the type of the reference itself.

6. Exploiting Novel OPC UA Features for the Mapping

In this Section authors want to discuss mapping solutions that can be adopted in case of specific
AAS entities. Although the rationales provided in the previous section may also be taken into
account, adoption of new OPC UA mechanisms defined in recent amendments may led to
enhancements in the mapping process.

6.1. Mapping AAS Common Classes

In Section 5.1 general mapping solutions have been covered for main categories of elements
composing the AAS metamodel. In particular, fine-grained mapping solutions about attributes has
been provided. In the following, a step further will be done about mapping common classes in OPC
UA. Common classes are a very important concept of the AAS metamodel since they feature
attributes common to different AAS entities, as discussed in Section 2.

Let us consider the Submodel entity as a use case to introduce possible mapping solutions for
common classes. According to the AAS metamodel, Submodel inherits from the common classes
Identifiable, HasSemantics, HasKind and HasDataSpecification. For the sake of simplicity, only some
of the relevant attributes will be taken into consideration in the following.

As the general rules described in Section 5.1 can be extended to all the metamodel entities
inheriting from common classes, using these rules it is possible to achieve the mapping solution
depicted in Figure 7a.

Figure 7. Mapping common Classes using classic OPC UA (a) and new OPC UA Interfaces

mechanism (b).

Figure 7. Mapping common Classes using classic OPC UA (a) and new OPC UA Interfaces mechanism (b).

In particular, the ObjectType named SubmodelType has been defined for all the Objects mapping
Submodel entities. The attributes inherited from the common classes are mapped as OPC UA Properties
and for each of them a ModellingRule is selected according the cardinality specified by each common
class for every attribute.

This solution is quite simple and allows to maintain the same structure of the AAS metamodel.
The drawback is that the OPC UA Properties must be redefined for every other ObjectType that
map entities inheriting from same common classes. For instance, all other ObjectTypes mapping
Identifiable entities shall define again the Properties “identification”, “idShort” and “description”
as InstanceDeclarations.

Figure 7b shows another solution that leverages on the new OPC UA Interfaces mechanism.
Both Identifiable and HasKind common classes are mapped as interfaces called IIdentifiableType and
IHasKindType, respectively. Their names are chosen following the guideline given in [34]. This solution
shows how every InstanceDeclarations related to attributes coming from common classes are moved
from SubmodelType ObjectType to the relevant Interface mapping the common class. SubmodelType
now just make use of HasInterface References pointing the two Interfaces to declare that it inherits
all their InstanceDeclarations. Compared to the solution shown by Figure 7a, attributes of common
classes are mapped only once and different ObjectTypes mapping metamodel entities can point to the
relevant interfaces by means of HasInterface References. This interface-based mapping solution is very
advantageous but, since interface is a quite new feature of OPC UA, could be complicated finding an
OPC UA Software Development Kit (SDK) supporting it for the implementation of an information
model. This reason could lead to choosing the first mapping solution instead of the Interface-based one.

It is worth noting that all common classes can be mapped applying one of the two proposed
solutions but for HasDataSpecification a different approach should be used, as will be discussed in the
following subsection.

In [5] the OPC UA Interface-based mapping solution adopted for common classes is used just
for Referable and Identifiable. For all other common classes different solutions are applied case by
case; detailed explanation for the mapping of every common class is not provided in [5] but should be
guessed from the various examples and mapping rules.

6.2. Mapping HasDataSpecification and DataSpecification

As explained in Section 2, instances of AAS entities inheriting from the HasDataSpecification
common class feature more attributes than the ones defined by its original class. In particular,
instances of an entity may have different additional attributes depending on values specified in

Computers 2020, 9, 28 19 of 28

attributes inherited from HasDataSpecification. The additional attributes are defined in a DST that the
HasDataSpecification entity must point to by means of an AAS Reference. Such a behavior is hard to
realize using the information model mechanisms of OPC UA, since this requires that instances of a
same ObjectType could feature different components and/or Properties depending on which DST they
are referring to. Furthermore, a HasDataSpecification entity can point to more than one DST.

Beside Interface, in [34] a new interesting feature named AddIn is specified; it seems useful for
the mapping of HasDataSpecification. An AddIn is an Object that associate features (represented by its
ObjectType) to the Node it is applied to. OPC UA AddIn model differs from Interface model in that it
is based on composition and not on inheritance. An AddIn is applied to a Node by adding a Reference
pointing to the AddIn Instance; a HasAddIn Reference or a subtype shall be used [34]. There are no
restrictions for AddIn ObjectTypes and there is no special super type for AddIns.

According to this AddIn model, an ObjectType named DataSpecificationType may be created
as an AddIn ObjectType to map the entity DataSpecification, which is an abstract entity all the DST
entities must inherit from. In order to map a concrete DST entity, an ObjectType inheriting from
DataSpecificationType must be created.

Recalling that DST entities are Identifiable, all the ObjectTypes created must expose all the related
attributes mapped according one of the two solutions discussed in the previous subsection and depicted
by Figure 7; in the following, it will be assumed to use the solution depicted in Figure 7a.

The proposed mapping solution will be described using a showcase. In particular, the concrete DST
entity DataSpecificationIEC61360 will be considered. As said in Section 2, DSTs can be used to define
which attributes (besides those predefined by the metamodel) are used to define a submodel element or a
concept description. The DST following the IEC 61360 property definitions (DataSpecificationIEC61360)
is explicitly predefined and recommended to be used by the Plattform Industrie 4.0 [5].

As depicted in Figure 8, an ObjectType named DataSpecificationIEC61360Type is created to map the
DataSpecificationIEC61360 DST entity as an OPC UA AddIn ObjectType. Such an ObjectType defines
Properties and components as InstanceDeclarations mapping all the additional attributes defined by the
DST. Due to lack of space, only few attributes are considered in Figure 8 (i.e., preferredName, shortName,
unitId and valueFormat). The reader can notice that all the attributes of DataSpecificationIEC61360
inherited by Identifiable are mapped as Properties and components, as shown in the dashed squared
area of Figure 8. These last ones contain all the information useful for the identification of the DST in
the OPC UA AddressSpace.

In the following the mapping of instance of an AAS entity inheriting from HasDataSpecification
common class will be shown, using another example. In particular, it will be considered an instance of
a ConceptDescription describing an AAS property using the DataSpecificationIEC61360.

Assuming that the ConceptDescriptionType ObjectType maps the ConceptDescription entity, the
“SampleDescription” Object shown in Figure 8 represents an instance of this entity.

An AddIn Object of the DataSpecificationIEC61360Type ObjectType is created (i.e., “IEC61360
Content”), as shown in Figure 8. This Object will be connected to SampleDescription by means of a
HasDataSpecification reference.

Authors prefer to define the HasDataSpecification ReferenceType as subtype of HasAddIn so that a
generic OPC UA client may easily detect the References involved in the mapping of HasDataSpecification
entity. For this reason, Figure 8 shows such a Reference.

Adoption of AddIn to implement the concept of DST in OPC UA has been assumed also in [5].
In this document, AddIn is used to map HasDataSpecification entities in a similar manner. DST are
mapped as ObjectType featuring properties and components mapping the additional attributes.
The AddIn in this solution uses a pair of elements: one property that is a reference to the DST,
and a component that is an instance of the ObjectType mapping the DST. In comparison with the
solution here provided by authors, the main difference is the presence of the DST identifier in the
adopted AddIn Object, whilst in the authors’ solution the identifier of the DST is exposed by the
AddIn ObjectType.

Computers 2020, 9, 28 20 of 28

Computers 2020, 9, x FOR PEER REVIEW 20 of 28

The proposed mapping solution will be described using a showcase. In particular, the concrete
DST entity DataSpecificationIEC61360 will be considered. As said in Section 2, DSTs can be used to
define which attributes (besides those predefined by the metamodel) are used to define a submodel
element or a concept description. The DST following the IEC 61360 property definitions
(DataSpecificationIEC61360) is explicitly predefined and recommended to be used by the Plattform
Industrie 4.0 [5].

As depicted in Figure 8, an ObjectType named DataSpecificationIEC61360Type is created to map
the DataSpecificationIEC61360 DST entity as an OPC UA AddIn ObjectType. Such an ObjectType
defines Properties and components as InstanceDeclarations mapping all the additional attributes
defined by the DST. Due to lack of space, only few attributes are considered in Figure 8 (i.e.,
preferredName, shortName, unitId and valueFormat). The reader can notice that all the attributes of
DataSpecificationIEC61360 inherited by Identifiable are mapped as Properties and components, as
shown in the dashed squared area of Figure 8. These last ones contain all the information useful for
the identification of the DST in the OPC UA AddressSpace.

Figure 8. Mapping data specification templates (DST) entities as AddIn ObjectTypes and using them
to map HasDataSpecification entities.

In the following the mapping of instance of an AAS entity inheriting from HasDataSpecification
common class will be shown, using another example. In particular, it will be considered an instance
of a ConceptDescription describing an AAS property using the DataSpecificationIEC61360.

Assuming that the ConceptDescriptionType ObjectType maps the ConceptDescription entity,
the “SampleDescription” Object shown in Figure 8 represents an instance of this entity.

An AddIn Object of the DataSpecificationIEC61360Type ObjectType is created (i.e., “IEC61360
Content”), as shown in Figure 8. This Object will be connected to SampleDescription by means of a
HasDataSpecification reference.

Authors prefer to define the HasDataSpecification ReferenceType as subtype of HasAddIn so
that a generic OPC UA client may easily detect the References involved in the mapping of
HasDataSpecification entity. For this reason, Figure 8 shows such a Reference.

Adoption of AddIn to implement the concept of DST in OPC UA has been assumed also in [5]. In
this document, AddIn is used to map HasDataSpecification entities in a similar manner. DST are mapped
as ObjectType featuring properties and components mapping the additional attributes. The AddIn in this
solution uses a pair of elements: one property that is a reference to the DST, and a component that is an
instance of the ObjectType mapping the DST. In comparison with the solution here provided by authors,

Figure 8. Mapping data specification templates (DST) entities as AddIn ObjectTypes and using them to
map HasDataSpecification entities.

6.3. Mapping ConceptDictionary and ConceptDescription

Considering all the rationales provided so far, both ConceptDictionary and ConceptDescription
entities can be mapped in an OPC UA Information Model defining proper ObjectTypes. But it
is worth noting that, very recently, OPC Foundation released an amendment [35] of the OPC UA
Specification defining new ObjectTypes and ReferenceTypes to define classification and additional
semantics of a device in terms of an external data dictionary. In other words, such new types can
be used to attach semantics to nodes in the AddressSpace referring entries in an external dictionary
like IEC CDD or eCl@ss [5,32]. In particular, two main ObjectTypes defined in the amendment [35]
are DictionaryFolderType that represents a dictionary, and DictionaryEntryType that represents a
pointer to an entry in an external dictionary. Mapping ConceptDictionary and ConceptDescription by
using these new ObjectTypes seems feasible and coherent with the strategies proposed in Section 5.1,
even though some observations must be done. Both AAS entities inherit from some common classes
and they feature attributes that seem not directly representable by properties defined in ObjectTypes
proposed in [35]. This leads to the definition of suitable subtypes of these ObjectTypes able to map such
AAS entities. Since ConceptDescription represents the entry of an external dictionary, it exposes the
same attributes that the dictionary entry provides. These attributes can change case by case depending
on the DST the ConceptDescription is adopting to describe semantics (because ConceptDescription is a
HasDataSpecification entity, see Section 2.10); this requires the definition of suitable mapping solutions,
like those discussed in Section 5.1 involving the creation of new ObjectTypes for AAS entities.

The solution adopted in [5] uses the DictionaryEntryType ObjectType to map the ConceptDescription
entity. In particular, it defines specific subtypes of DictionaryEntryType that have at least one AddIn Object
to allow the usage of the IEC 61360 DST, as described in the previous subsection.

It is worth mentioning that in the amendment [35] a new ReferenceType named “HasDictionaryEntry”
has been defined and used to connect Objects to the relevant DictionaryEntryType; it follows that OPC
UA References of this type can be adopted to map HasSemantics entities in case DictionaryEntryType
ObjectType is used to map ConceptDescription entity. This solution has been also provided in [5] to map
HasSemantics entities.

Computers 2020, 9, 28 21 of 28

7. Case Study

In this section a case study is presented to the reader, in order to clarify some of the concepts and
the mapping rules discussed so far. The case study takes into account an AAS modelling a motor
controller; it is a simplified version of the example provided in [4]. Figure 9 shows the UML of this
AAS. In the following, after a brief description of this AAS and the relevant mapping into OPC UA
information model, the case study will be clearly defined and discussed.

Computers 2020, 9, x FOR PEER REVIEW 21 of 28

the main difference is the presence of the DST identifier in the adopted AddIn Object, whilst in the authors’
solution the identifier of the DST is exposed by the AddIn ObjectType.

6.3. Mapping ConceptDictionary and ConceptDescription

Considering all the rationales provided so far, both ConceptDictionary and ConceptDescription
entities can be mapped in an OPC UA Information Model defining proper ObjectTypes. But it is
worth noting that, very recently, OPC Foundation released an amendment [35] of the OPC UA
Specification defining new ObjectTypes and ReferenceTypes to define classification and additional
semantics of a device in terms of an external data dictionary. In other words, such new types can be
used to attach semantics to nodes in the AddressSpace referring entries in an external dictionary like
IEC CDD or eCl@ss [5,32]. In particular, two main ObjectTypes defined in the amendment [35] are
DictionaryFolderType that represents a dictionary, and DictionaryEntryType that represents a
pointer to an entry in an external dictionary. Mapping ConceptDictionary and ConceptDescription
by using these new ObjectTypes seems feasible and coherent with the strategies proposed in Section
5.1, even though some observations must be done. Both AAS entities inherit from some common
classes and they feature attributes that seem not directly representable by properties defined in
ObjectTypes proposed in [35]. This leads to the definition of suitable subtypes of these ObjectTypes
able to map such AAS entities. Since ConceptDescription represents the entry of an external
dictionary, it exposes the same attributes that the dictionary entry provides. These attributes can
change case by case depending on the DST the ConceptDescription is adopting to describe semantics
(because ConceptDescription is a HasDataSpecification entity, see Section 2.10); this requires the
definition of suitable mapping solutions, like those discussed in Section 5.1 involving the creation of
new ObjectTypes for AAS entities.

The solution adopted in [5] uses the DictionaryEntryType ObjectType to map the
ConceptDescription entity. In particular, it defines specific subtypes of DictionaryEntryType that
have at least one AddIn Object to allow the usage of the IEC 61360 DST, as described in the previous
subsection.

It is worth mentioning that in the amendment [35] a new ReferenceType named
“HasDictionaryEntry” has been defined and used to connect Objects to the relevant
DictionaryEntryType; it follows that OPC UA References of this type can be adopted to map
HasSemantics entities in case DictionaryEntryType ObjectType is used to map ConceptDescription
entity. This solution has been also provided in [5] to map HasSemantics entities.

7. Case Study

In this section a case study is presented to the reader, in order to clarify some of the concepts
and the mapping rules discussed so far. The case study takes into account an AAS modelling a motor
controller; it is a simplified version of the example provided in [4]. Figure 9 shows the UML of this
AAS. In the following, after a brief description of this AAS and the relevant mapping into OPC UA
information model, the case study will be clearly defined and discussed.

Figure 9. UML class diagram showing the AAS of the case study. Figure 9. UML class diagram showing the AAS of the case study.

As shown by Figure 9, the AAS (named SampleAAS) contains a Submodel (named 123456789)
and an asset (3S7PLFDRS35). The Submodel features only a property (NMax). Furthermore, the AAS
has a ConceptDictionary (SampleDict) containing a ConceptDescription (NMaxDef).

All the Identifiable entities feature the attribute identification containing a globally unique
identifier. Since NMax is a HasSemantics entity, its attribute semanticId contains the identifier of the
ConceptDescription defining its semantics, i.e., NMaxDef. In particular, the semantics specifies that
the Property value (2000) represents the maximum rotation speed supported by the motor controller,
and it is expressed in rpm (revolutions per minute). Even if Submodel is also a HasSemantics entity,
the figure does not show the relevant attributes due to lack of space. In this example, the Property
NMax is used to show how semantics is mapped in the OPC UA Information Model.

All the attributes containing an AAS Reference are depicted in Figure 9 with a <<ref>> association.
All the names of attributes featuring a composition are depicted using an array notation (e.g., submodel
[0], conceptDescription [0]) when pointing to a specific instance of an entity.

In the following, the mapping into OPC UA AddressSpace of the AAS shown in Figure 9 will be
given. The AddressSpace may be organized creating a Folder for each kind of identifiable entity, as
discussed in Section 5.2. Therefore, the Folders “Asset Administration Shells” and “Assets” (shown in
Figure 10) will organize objects mapping the AAS and the asset, respectively; in a similar manner, the
folders “Submodels” and “ConceptDescriptions” will organize objects mapping the Submodel and the
ConceptDescription, respectively. It is important to point out that these last two Folders are depicted
in Figure 10, but for space reason, their contents are shown in Figure 11.

All the identifiable entities in the use case are mapped using instances of OPC UA ObjectTypes as
discussed in Section 5.1: AASType for SampleAAS (see Figure 10), AssetType for 3S7PLFDRS35 (see
Figure 10), SubmodelType for 123,456,789 (see Figure 11) and ConceptDescriptionType for NMaxDef
(see Figure 11). Since all these ObjectTypes represent Identifiable entities of the metamodel, they
point to an OPC UA Interface “IIdentifiableType”, as discussed in Section 6.1; this is not depicted in
Figures 10 and 11 for space reason. All these instances feature a property “identification” that contains
the relevant identifier of the entity represented.

All the attributes consisting in AAS References (depicted with <<ref>> in Figure 9) have been
mapped using instances of the AASReferenceType ObjectType according to the solution proposed
in Section 5.3. Furthermore, ad-hoc defined Non-Hierarchical ReferenceTypes are used to enhance
the representation of AAS References in OPC UA and simplify the browsing of an OPC UA Client,

Computers 2020, 9, 28 22 of 28

again said in Section 5.3. The Reference HasAsset in Figure 10, and the References HasSubmodel,
HasSemantics, HasConceptDescription in Figure 11 are examples of this concept.

Computers 2020, 9, x FOR PEER REVIEW 22 of 28

As shown by Figure 9, the AAS (named SampleAAS) contains a Submodel (named 123456789)
and an asset (3S7PLFDRS35). The Submodel features only a property (NMax). Furthermore, the AAS
has a ConceptDictionary (SampleDict) containing a ConceptDescription (NMaxDef).

All the Identifiable entities feature the attribute identification containing a globally unique
identifier. Since NMax is a HasSemantics entity, its attribute semanticId contains the identifier of the
ConceptDescription defining its semantics, i.e., NMaxDef. In particular, the semantics specifies that
the Property value (2000) represents the maximum rotation speed supported by the motor controller,
and it is expressed in rpm (revolutions per minute). Even if Submodel is also a HasSemantics entity,
the figure does not show the relevant attributes due to lack of space. In this example, the Property
NMax is used to show how semantics is mapped in the OPC UA Information Model.

All the attributes containing an AAS Reference are depicted in Figure 9 with a <<ref>>
association. All the names of attributes featuring a composition are depicted using an array notation
(e.g., submodel [0], conceptDescription [0]) when pointing to a specific instance of an entity.

In the following, the mapping into OPC UA AddressSpace of the AAS shown in Figure 9 will be
given. The AddressSpace may be organized creating a Folder for each kind of identifiable entity, as
discussed in Section 5.2. Therefore, the Folders “Asset Administration Shells” and “Assets” (shown
in Figure 10) will organize objects mapping the AAS and the asset, respectively; in a similar manner,
the folders “Submodels” and “ConceptDescriptions” will organize objects mapping the Submodel
and the ConceptDescription, respectively. It is important to point out that these last two Folders are
depicted in Figure 10, but for space reason, their contents are shown in Figure 11.

Figure 10. Mapping of the AAS considered in the case study into OPC UA information model.

All the identifiable entities in the use case are mapped using instances of OPC UA ObjectTypes
as discussed in Section 5.1: AASType for SampleAAS (see Figure 10), AssetType for 3S7PLFDRS35
(see Figure 10), SubmodelType for 123,456,789 (see Figure 11) and ConceptDescriptionType for
NMaxDef (see Figure 11). Since all these ObjectTypes represent Identifiable entities of the metamodel,
they point to an OPC UA Interface “IIdentifiableType”, as discussed in Section 6.1; this is not depicted

Figure 10. Mapping of the AAS considered in the case study into OPC UA information model.

Computers 2020, 9, x FOR PEER REVIEW 23 of 28

in Figures 10 and 11 for space reason. All these instances feature a property “identification” that
contains the relevant identifier of the entity represented.

All the attributes consisting in AAS References (depicted with <<ref>> in Figure 9) have been
mapped using instances of the AASReferenceType ObjectType according to the solution proposed in
Section 5.3. Furthermore, ad-hoc defined Non-Hierarchical ReferenceTypes are used to enhance the
representation of AAS References in OPC UA and simplify the browsing of an OPC UA Client, again
said in Section 5.3. The Reference HasAsset in Figure 10, and the References HasSubmodel,
HasSemantics, HasConceptDescription in Figure 11 are examples of this concept.

All the attributes consisting of composition are mapped as folder objects named using the plural
noun of the relevant attribute. Such folders organize objects mapping the entities contained by such
composition attributes, as discussed in Section 5.1. The folders “Submodels”, “ConceptDictionaries”
and “SubmodelElements” are examples of what was just said. The first two are present in Figure 10,
but their contents are highlighted in Figure 11.

The ConceptDictionary SampleDict and the AAS Property NMax shown in Figure 9 are mapped
using instances of ad-hoc defined ObjectTypes as said in Section 5.1, i.e., ConceptDictionaryType and
SubmodelPropertyType, respectively. As seen in Figure 11, these instances are the Objects
“SampleDict” and “NMax”.

Finally, since the ConceptDescription NMaxDef features additional attributes coming from the
DST for IEC 61360, an AddIn instance of the DataSpecificationIEC61360Type ObjectType (i.e.,
“IEC61360 Content” in Figure 11) is created and connected to the “NMaxDef” object by means of a
HasDataSpecification Reference, as discussed in Section 6.2. Therefore, all the properties of this
AddIn instances are filled accordingly to all the relevant values of the ConceptDescription.

Figure 11. More details of the mapping of the AAS considered in the case study.

Starting from this example of AAS (named SampleAAS, as said before) and its mapping into
OPC UA, let us consider a realistic case study consisting of an assembly system. Several models of a
certain product are assembled by human operators in the same flow line. It is assumed that the
assembly system provides an operator support system (OSS) for the human operators in the assembly
line; in particular, the OSS has the main task to provide information to perform the assembly cycle in

Figure 11. More details of the mapping of the AAS considered in the case study.

Computers 2020, 9, 28 23 of 28

All the attributes consisting of composition are mapped as folder objects named using the plural
noun of the relevant attribute. Such folders organize objects mapping the entities contained by such
composition attributes, as discussed in Section 5.1. The folders “Submodels”, “ConceptDictionaries”
and “SubmodelElements” are examples of what was just said. The first two are present in Figure 10,
but their contents are highlighted in Figure 11.

The ConceptDictionary SampleDict and the AAS Property NMax shown in Figure 9 are mapped
using instances of ad-hoc defined ObjectTypes as said in Section 5.1, i.e., ConceptDictionaryType and
SubmodelPropertyType, respectively. As seen in Figure 11, these instances are the Objects “SampleDict”
and “NMax”.

Finally, since the ConceptDescription NMaxDef features additional attributes coming from
the DST for IEC 61360, an AddIn instance of the DataSpecificationIEC61360Type ObjectType (i.e.,
“IEC61360 Content” in Figure 11) is created and connected to the “NMaxDef” object by means of
a HasDataSpecification Reference, as discussed in Section 6.2. Therefore, all the properties of this
AddIn instances are filled accordingly to all the relevant values of the ConceptDescription.

Starting from this example of AAS (named SampleAAS, as said before) and its mapping into
OPC UA, let us consider a realistic case study consisting of an assembly system. Several models of
a certain product are assembled by human operators in the same flow line. It is assumed that the
assembly system provides an operator support system (OSS) for the human operators in the assembly
line; in particular, the OSS has the main task to provide information to perform the assembly cycle
in the correct way as function of the model to assemble. For more details about Industry 4.0-based
assembly systems and OSS, the reader may refer to [36].

In this case study, let us assume that the models of products to be produced are made up by
several components to be assembled, among which there is the motor controller considered before in
this case study. Different models to be assembled feature a motor controller, but each model requires a
motor controller of a given maximum rotation speed. For example, assembly of Model X requires a
motor controller with a maximum rotation speed value greater or equal to 2000, whilst the Model Y
must be assembled including a motor controller with a maximum rotation speed greater or equal to
3000. For each product arrived to the human operator in the flow line, the OSS must suggest him the
right motor controller component to be assembled according to the model of the product received; the
OSS must specify an unambiguous id of the product part to be assembled in order to avoid assembling
errors by the human operator.

Let us assume the scenario shown by Figure 12. The OSS includes an OPC UA Client which
communicates with an OPC UA Server implementing the mapping of the AAS metamodel shown by
Figure 9. Different instances of AASType “SampleAAS” are present; in the figure only two instances
are depicted for space reason, Motor Controller 1 and Motor Controller 2. These instances differ for the
NMAX property, as shown by Figure 12, i.e., the motor controllers represented by these instances differ
for the maximum rotation speeds supported.

Let us assume that at a certain moment the OSS has to suggest to an human operator a specific
motor controller to be assembled, and let us assume that the model of the product to be assembled
requires that that the maximum rotation speed supported must be greater than 1800. The OSS will use
the OPC UA Client to realize a search inside the AddressSpace of the OPC UA Server, exploring the
available AASs, looking for an AASType “SampleAAS” instance featuring NMAX > 1800.

On the basis of the content of Figure 9, it is clear that the search in the AddressSpace is based on
the knowledge that Maximum Rotation Speed has an identification = “0173-1#02-BAA120#007”.

Starting from folder “Concept Descriptions” (see point 1 in Figure 11), the object of
ConceptDescriptionType type featuring a property “identification” containing the identification
“0173-1#02-BAA120#007” is selected. In this case the object “NMaxDef” is chosen (point 2 in Figure 11).
Starting from this Object, the OPC UA HasSemantics Reference is followed in the opposite sense in
order to look for Objects of SubmodelPropertyType type. Considering Figure 11, the object “NMAX”
is reached (Point 3 in the figure). On the property “value” it is possible to perform the query given in

Computers 2020, 9, 28 24 of 28

input. In this case, the condition subject of the query is satisfied. The last step is to give back the id of
the AAS, modelling the real motor controller featuring a rotation speed greater than 1800. Starting from
object “NMAX” it is possible to reach its container, i.e., the SubmodelType Object “123456789” (point 4 in
Figure 11). Finally, following the OPC UA Reference “HasSubmodel” in the opposite sense it is possible
to reach the id of the AAS, i.e., Motor Controller 1 (Point 5 of Figure 11). This information will be passed
to the human operator, in order to realize the correct assembly. 8. Software Implementation

Computers 2020, 9, x FOR PEER REVIEW 24 of 28

the correct way as function of the model to assemble. For more details about Industry 4.0-based
assembly systems and OSS, the reader may refer to [36].

In this case study, let us assume that the models of products to be produced are made up by
several components to be assembled, among which there is the motor controller considered before in
this case study. Different models to be assembled feature a motor controller, but each model requires
a motor controller of a given maximum rotation speed. For example, assembly of Model X requires a
motor controller with a maximum rotation speed value greater or equal to 2000, whilst the Model Y
must be assembled including a motor controller with a maximum rotation speed greater or equal to
3000. For each product arrived to the human operator in the flow line, the OSS must suggest him the
right motor controller component to be assembled according to the model of the product received;
the OSS must specify an unambiguous id of the product part to be assembled in order to avoid
assembling errors by the human operator.

Let us assume the scenario shown by Figure 12. The OSS includes an OPC UA Client which
communicates with an OPC UA Server implementing the mapping of the AAS metamodel shown by
Figure 9. Different instances of AASType “SampleAAS” are present; in the figure only two instances
are depicted for space reason, Motor Controller 1 and Motor Controller 2. These instances differ for
the NMAX property, as shown by Figure 12, i.e., the motor controllers represented by these instances
differ for the maximum rotation speeds supported.

Figure 12. Example of OPC UA Server maintaining instances of AASType “SampleAAS”.

Let us assume that at a certain moment the OSS has to suggest to an human operator a specific
motor controller to be assembled, and let us assume that the model of the product to be assembled
requires that that the maximum rotation speed supported must be greater than 1800. The OSS will
use the OPC UA Client to realize a search inside the AddressSpace of the OPC UA Server, exploring
the available AASs, looking for an AASType “SampleAAS” instance featuring NMAX>1800.

On the basis of the content of Figure 9, it is clear that the search in the AddressSpace is based on
the knowledge that Maximum Rotation Speed has an identification = “0173-1#02-BAA120#007”.

Starting from folder “Concept Descriptions” (see point 1 in Figure 11), the object of
ConceptDescriptionType type featuring a property “identification” containing the identification
“0173-1#02-BAA120#007” is selected. In this case the object “NMaxDef” is chosen (point 2 in Figure
11). Starting from this Object, the OPC UA HasSemantics Reference is followed in the opposite sense
in order to look for Objects of SubmodelPropertyType type. Considering Figure 11, the object
“NMAX” is reached (Point 3 in the figure). On the property “value” it is possible to perform the query

Figure 12. Example of OPC UA Server maintaining instances of AASType “SampleAAS”.

On the basis of all the rationales and mapping solutions provided in this work, authors realized
an OPC UA information model, called the “AAS Information Model”, as a proof of concept; it is freely
available at [37]. An extension for the OPC UA SDK in Node.js [38] has been developed providing new
functions for developing OPC UA Server implementing the aforementioned AAS Information Model
and validating the rationales provided in this work [39]. Descriptions of these implementations are
provided on GitHub [37,39] together with installation guides and demos. The authors would like to
point out that the implementations available on GitHub at [37,39] are open source and are distributed
by the authors under the Apache license version 2.0 [40].

In order to realize an automatic process able to map a particular AAS into an OPC UA AddressSpace,
a console application tool has been implemented. It is able to import an XML-serialized AAS and to
generate an OPC UA Server exposing mapped from the AAS metamodel. Such a tool applies some of
the main strategies discussed in this work to map AAS into an OPC UA AddressSpace; furthermore, it
has been developed taking advantage of the authors’ OPC UA SDK extension [39]. In the remainder
of this section, the same AAS proposed as a use case in Section 7 has been used as evaluation of the
console application, thus of the mapping rules. A file representing the AAS of the previous use case is
used as a starting point; it contains the same information depicted in Figure 9, but in XML format.
Information about the XML serialization is available in [5]. Due to lack of space only a short part of the
XML file is depicted in Figure 13, showing the serialization of the 3S7PLFDRS35 Asset information only.

The console application has been developed as a command line application (CLI) running on
Node.js. A command specifies which XML file must be imported. The first step realized by the
application consists of the validation of the XML serialization file against the XML schema provided
in the specification of AAS [5]. If the validation succeeds, the application starts a parsing procedure
of the XML file. Considering the XML shown in Figure 13, the application retrieves all the relevant
information describing the asset. Such information is used to fill the arguments of a function of the

Computers 2020, 9, 28 25 of 28

SDK [39] that creates an instance of the AssetType ObjectType inside the AddressSpace, as depicted in
Figure 10 for the 3S7PLFDRS35 Asset.

Computers 2020, 9, x FOR PEER REVIEW 25 of 28

given in input. In this case, the condition subject of the query is satisfied. The last step is to give back
the id of the AAS, modelling the real motor controller featuring a rotation speed greater than 1800.
Starting from object “NMAX” it is possible to reach its container, i.e., the SubmodelType Object
“123456789” (point 4 in Figure 11). Finally, following the OPC UA Reference “HasSubmodel” in the
opposite sense it is possible to reach the id of the AAS, i.e., Motor Controller 1 (Point 5 of Figure 11).
This information will be passed to the human operator, in order to realize the correct assembly. 8.
Software Implementation

On the basis of all the rationales and mapping solutions provided in this work, authors realized
an OPC UA information model, called the “AAS Information Model”, as a proof of concept; it is freely
available at [37]. An extension for the OPC UA SDK in Node.js [38] has been developed providing
new functions for developing OPC UA Server implementing the aforementioned AAS Information
Model and validating the rationales provided in this work [39]. Descriptions of these
implementations are provided on GitHub [37,39] together with installation guides and demos. The
authors would like to point out that the implementations available on GitHub at [37,39] are open
source and are distributed by the authors under the Apache license version 2.0 [40].

In order to realize an automatic process able to map a particular AAS into an OPC UA
AddressSpace, a console application tool has been implemented. It is able to import an XML-
serialized AAS and to generate an OPC UA Server exposing mapped from the AAS metamodel. Such
a tool applies some of the main strategies discussed in this work to map AAS into an OPC UA
AddressSpace; furthermore, it has been developed taking advantage of the authors’ OPC UA SDK
extension [39]. In the remainder of this section, the same AAS proposed as a use case in Section 7 has
been used as evaluation of the console application, thus of the mapping rules. A file representing the
AAS of the previous use case is used as a starting point; it contains the same information depicted in
Figure 9, but in XML format. Information about the XML serialization is available in [5]. Due to lack
of space only a short part of the XML file is depicted in Figure 13, showing the serialization of the
3S7PLFDRS35 Asset information only.

The console application has been developed as a command line application (CLI) running on
Node.js. A command specifies which XML file must be imported. The first step realized by the
application consists of the validation of the XML serialization file against the XML schema provided
in the specification of AAS [5]. If the validation succeeds, the application starts a parsing procedure
of the XML file. Considering the XML shown in Figure 13, the application retrieves all the relevant
information describing the asset. Such information is used to fill the arguments of a function of the
SDK [39] that creates an instance of the AssetType ObjectType inside the AddressSpace, as depicted
in Figure 10 for the 3S7PLFDRS35 Asset.

Figure 13. XML serialization of the 3S7PLFDRS35 Asset.

This procedure is repeated recursively for every other entity contained in the XML file filling the
AddressSpace step-by-step. It is worth noting that most of the mapping rules described in this paper
are implemented in the code of the CLI application, whereas strategies for information representation
are implemented in the information model.

Figure 13. XML serialization of the 3S7PLFDRS35 Asset.

This procedure is repeated recursively for every other entity contained in the XML file filling the
AddressSpace step-by-step. It is worth noting that most of the mapping rules described in this paper
are implemented in the code of the CLI application, whereas strategies for information representation
are implemented in the information model.

As a result, the information of the XML file is mapped in the AddressSpace of an OPC UA
Server and is made accessible to different clients in the network by means of OPC UA communication.
The complete AddressSpace produced in this case study is depicted in Figure 14; the graphical
visualization of its structure shown by the figure has been achieved using the OPC UA client by
unified automation available at [41], connected to the OPC UA Server developed by the authors and
maintaining the AddressSpace produced by the mapping process just described.

The reader can notice that the same Folder structure and all the information represented in
Figures 10 and 11 are present in the AddressSpace because they are automatically and seamlessly
generated by the SDK using the information model developed by authors.

Computers 2020, 9, x FOR PEER REVIEW 26 of 28

As a result, the information of the XML file is mapped in the AddressSpace of an OPC UA Server
and is made accessible to different clients in the network by means of OPC UA communication. The
complete AddressSpace produced in this case study is depicted in Figure 14; the graphical
visualization of its structure shown by the figure has been achieved using the OPC UA client by
unified automation available at [41], connected to the OPC UA Server developed by the authors and
maintaining the AddressSpace produced by the mapping process just described.

Figure 14. OPC UA AddressSpace generated on the fly by the command line application (CLI) parsing
an XML serialized AAS.

The reader can notice that the same Folder structure and all the information represented in
Figures 10 and 11 are present in the AddressSpace because they are automatically and seamlessly
generated by the SDK using the information model developed by authors.

8. Conclusions

The main contribution of the paper was that to provide insights and reasoning behind modelling
techniques that should be adopted during the definition of an OPC UA information model exposing
information coming from Asset Administration Shell. Introduction pointed out that this solution
allows to improve interoperability of AAS, as relevant information can be exchanged between
industrial applications using OPC UA which is currently considered a reference standard for the
communications inside Industry 4.0.

Current literature presents only two other activities on the same subject. The first one is a
mapping proposal of the latest release of the AAS metamodel into OPC UA [5]. The other one is an
ongoing activity performed by a joint working group made up by ZVEI, VDMA and OPC Foundation
aimed to the definition of a draft of a new OPC UA Companion Specification for AAS; to the best
authors’ knowledge no outcomes were still produced by this group. For this reason, all the general
rationales and solutions provided in this paper about the mapping of AAS into OPC UA have been
compared only with the proposal defined in [5]. Differences have been pointed out, when occurring,
giving to the reader pros and cons behind each solution. Since AAS metamodel and its mapping in
OPC UA is continuously developed and improved, authors believe that the work here presented
contains reasoning that can be considered for future versions.

Mapping solutions presented in this work have been implemented by the authors; some of them
are freely available on GitHub. Among these implementations, there is a tool able to realize the
mapping of a particular AAS into an OPC UA AddressSpace. The main advantages of this tool is that

Figure 14. OPC UA AddressSpace generated on the fly by the command line application (CLI) parsing
an XML serialized AAS.

Computers 2020, 9, 28 26 of 28

8. Conclusions

The main contribution of the paper was that to provide insights and reasoning behind modelling
techniques that should be adopted during the definition of an OPC UA information model exposing
information coming from Asset Administration Shell. Introduction pointed out that this solution allows
to improve interoperability of AAS, as relevant information can be exchanged between industrial
applications using OPC UA which is currently considered a reference standard for the communications
inside Industry 4.0.

Current literature presents only two other activities on the same subject. The first one is a mapping
proposal of the latest release of the AAS metamodel into OPC UA [5]. The other one is an ongoing
activity performed by a joint working group made up by ZVEI, VDMA and OPC Foundation aimed
to the definition of a draft of a new OPC UA Companion Specification for AAS; to the best authors’
knowledge no outcomes were still produced by this group. For this reason, all the general rationales
and solutions provided in this paper about the mapping of AAS into OPC UA have been compared
only with the proposal defined in [5]. Differences have been pointed out, when occurring, giving
to the reader pros and cons behind each solution. Since AAS metamodel and its mapping in OPC
UA is continuously developed and improved, authors believe that the work here presented contains
reasoning that can be considered for future versions.

Mapping solutions presented in this work have been implemented by the authors; some of them
are freely available on GitHub. Among these implementations, there is a tool able to realize the
mapping of a particular AAS into an OPC UA AddressSpace. The main advantages of this tool is that
this process is totally automated without requiring human intervention. Evaluation of this tool has
been carried out by the authors, allowing to point out that no computational requirements are involved
in the proposed mapping.

Author Contributions: Conceptualization, S.C. and M.G.S.; methodology, S.C.; software, M.G.S.; validation, S.C.;
formal analysis, S.C.; writing—original draft preparation, S.C. and M.G.S.; funding acquisition, S.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by “Piano per la Ricerca 2016/2018”, DIEEI University of Catania.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962.
[CrossRef]

2. Liao, Y.; Deschamps, F.; Loures, E.R.; Ramos, L.F. Past, present and future of Industry 4.0—A systematic
literature review and research agenda proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. [CrossRef]

3. German Institute for Standardization. Reference Architecture Model Industrie 4.0 (RAMI4.0); DIN SPEC 91345;
Deutsches Institut für Normung e.V.: Berlin, Germany, 2016.

4. Plattform Industrie 4.0, ZVEI. Details of the Asset Administration Shell—Part 1: The Exchange of Information
between Partners in the Value Chain of Industrie 4.0 (Version 1.0); Federal Ministry for Economic Affairs and
Energy: Berlin, Germany, November 2018.

5. Plattform Industrie 4.0, ZVEI. Details of the Asset Administration Shell—Part 1: The Exchange of Information
between Partners in the Value Chain of Industrie 4.0 (Version 2.0); Federal Ministry for Economic Affairs and
Energy: Berlin, Germany, November 2019.

6. VDI/VDE. Industrie 4.0 Service Architecture—Basic Concepts for Interoperability. 2016. Available online:
https://www.vdi.de/ueber-uns/presse/publikationen/details/industrie-40-service-architecture-basic-concepts-
for-interoperability (accessed on 23 March 2020).

7. Mahnke, W.; Leitner, S.-H.; Damm, M. OPC Unified Architecture; Springer: Berlin/Heidelberg, Germany, 2009.
8. Gutierrez-Guerrero, J.M.; Holgado-Terriza, J.A. Automatic Configuration of OPC UA for Industrial Internet

of Things Environments. Electronics 2019, 8, 600. [CrossRef]
9. Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E.; Maffei, D.; Malara, M. Impact of Quality of Service on Cloud

Based Industrial IoT Applications with OPC UA. Electronics 2018, 7, 109. [CrossRef]

http://dx.doi.org/10.1080/00207543.2018.1444806
http://dx.doi.org/10.1080/00207543.2017.1308576
https://www.vdi.de/ueber-uns/presse/publikationen/details/industrie-40-service-architecture-basic-concepts-for-interoperability
https://www.vdi.de/ueber-uns/presse/publikationen/details/industrie-40-service-architecture-basic-concepts-for-interoperability
http://dx.doi.org/10.3390/electronics8060600
http://dx.doi.org/10.3390/electronics7070109

Computers 2020, 9, 28 27 of 28

10. González, I.; Calderón, A.J.; Figueiredo, J.; Sousa, J.M.C. A Literature Survey on Open Platform Communications
(OPC) Applied to Advanced Industrial Environments. Electronics 2019, 8, 510. [CrossRef]

11. Diedrich, C.; Belyaev, A.; Schröder, T.; Vialkowitsch, J.; Willmann, A.; Usländer, T.; Koziolek, H.; Wende, J.;
Pethig, F.; Niggemann, O. Semantic interoperability for asset communication within smart factories.
In Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Limassol, Cyprus, 12–15 September 2017.

12. Rohjans, S.; Uslar, M.; Appelrath, H. OPC UA and CIM: Semantics for the smart grid. In Proceedings of the
IEEE PES Transmission and Distribution Conference and Exposition, Sao Paulo, Brazil, 8–10 November 2010;
pp. 1–8.

13. Rohjans, S.; Piech, K.; Lehnhoff, S. UML-based modeling of OPC UA address spaces for power systems.
In Proceedings of the IEEE International Workshop on Intelligent Energy Systems (IWIES 2013), Vienna,
Austria, 14 November 2013; pp. 209–214.

14. Lehnhoff, S.; Mahnke, W.; Rohjans, S.; Uslar, S. IEC 61850 based OPC UA communication—The future of
smart grid automation. In Proceedings of the Power Systems Computation Conference, Stockholm, Sweden,
22–26 August 2011.

15. Cavalieri, S.; Regalbuto, A. Integration of IEC 61850 SCL and OPC UA to improve interoperability in Smart
Grid environment. Comput. Stand. Interfaces 2016, 47, 77–99. [CrossRef]

16. Shin, I.J.; Song, B.K.; Eom, D.S. Auto-Mapping and Configuration Method of IEC 61850 Information Model
Based on OPC UA. Energies 2016, 9, 901. [CrossRef]

17. Lee, B.; Kim, D.K.; Yang, H.; Oh, S. Model transformation between OPC UA and UML. Comput. Stand. Interfaces
2017, 50, 236–250. [CrossRef]

18. Pauker, F.; Wolny, S.; Fallah, S.M.; Wimmer, M. UML2OPC-UA—Transforming UML class diagrams to
OPC UA information models. In Proceedings of the 11th CIRP Conference on Intelligent Computation in
Manufacturing Engineering (CIRP ICME’17), Gulf of Naples, Italy, 19–21 July 2017.

19. Henßen, R.; Schleipen, M. Interoperability between OPC UA and AutomationML. Procedia Cirp 2014, 25,
297–304. [CrossRef]

20. Reiswich, E.; Fay, A. Strategy for the amendment of plant information models by means of OPC UA.
In Proceedings of the 10th IEEE International Conference on Industrial Informatics, Beijing, China,
25–27 July 2012; pp. 495–501.

21. Miyazawa, I.; Murakami, M.; Matsukuma, T.; Fukushima, K.; Maruyama, Y.; Matsumoto, M.; Kawamoto, J.;
Yamashita, E. OPC UA information model, data exchange, safety and security for IEC 61131–3. In Proceedings
of the SICE Annual Conference, Tokyo, Japan, 13–18 September 2011; pp. 1556–1559.

22. OPC Foundation; PLCopen. OPC UA Information Model for IEC 61131-3-Release 1.00; OPC Foundation:
Scottsdale, AZ, USA, 2010.

23. OPC Foundation; AutomationML. OPC UA for AutomationML, OPC UA Companion Specifications; OPC Foundation:
Scottsdale, AZ, USA, 2016.

24. MTConnect-Institute; OPC-Foundation. MTConnect-OPC UA Companion Specification; OPC Foundation:
Scottsdale, AZ, USA, 2012.

25. OPC Foundation. OPC Unified Architecture for IEC 61850, OPC 10040, Release Candidate 1.0; OPC Foundation:
Scottsdale, AZ, USA, 2018.

26. I4AAS-Industrie 4.0 Asset Administration Shell. Available online: https://opcfoundation.org/markets-
collaboration/i4aas/ (accessed on 23 March 2020).

27. Cavalieri, S.; Mule’, S.; Salafia, M.G. OPC UA-based Asset Administration Shell. In Proceedings of the 45th Annual
Conference of the IEEE Industrial Electronics Society (IECON 2019), Lisbon, Portugal, 14–17 October 2019.

28. ZVEI; VDI. Structure of the Administration Shell—Continuation of the Development of the Reference Model for the
Industrie 4.0 Component; Federal Ministry for Economic Affairs and Energy (BMWi): Berlin, Germany, 2016.

29. ZVEI. Examples of the Asset Administration Shell for Industrie 4.0 Components—Basic Part; German Electrical
and Electronic Manufacturers’ Association: Berlin, Germany, 2017.

30. IEC 61360-1:2017. Standard data element types with associated classification scheme. In Part 1:
Definitions—Principles and Methods; International Electrotechnical Commission: Geneva, Switzerland,
2017.

http://dx.doi.org/10.3390/electronics8050510
http://dx.doi.org/10.1016/j.csi.2015.10.005
http://dx.doi.org/10.3390/en9110901
http://dx.doi.org/10.1016/j.csi.2016.09.004
http://dx.doi.org/10.1016/j.procir.2014.10.042
https://opcfoundation.org/markets-collaboration/i4aas/
https://opcfoundation.org/markets-collaboration/i4aas/

Computers 2020, 9, 28 28 of 28

31. Wagner, C.; Grothoff, J.; Epple, U.; Drath, R.; Malakuti, S.; Grüner, S.; Hoffmeister, M.; Zimermann, P.
The role of the Industry 4.0 asset administration shell and the digital twin during the life cycle of a plant.
In Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Limassol, Cyprus, 12–15 September 2017.

32. eCl@ss. Available online: https://www.eclass.eu/en/standard.html (accessed on 23 March 2020).
33. OPC Foundation. OPC UA Part 3—Address Space Model; OPC Foundation: Scottsdale, AZ, USA, 2017.
34. OPC Foundation. Specification Amendment 7: Interfaces and AddIns; Release 1.04; OPC Foundation: Scottsdale,

AZ, USA, 2019.
35. OPC Foundation. Specification Amendment 5: Dictionary Reference; OPC Foundation: Scottsdale, AZ, USA, 2019.
36. Cohen, Y.; Faccio, M.; Galizia, F.G.; Mora, C.; Pilati, F. Assembly system configuration through Industry 4.0

principles: The expected change in the actual paradigms. IFAC PapersOnLine 2017, 50, 14958. [CrossRef]
37. CoreAAS. Available online: https://github.com/OPCUAUniCT/coreAAS (accessed on 23 March 2020).
38. Node-Opcua. Available online: http://node-opcua.github.io/ (accessed on 23 March 2020).
39. Node-Opcua-Coreaas. Available online: https://github.com/OPCUAUniCT/node-opcua-coreaas (accessed on

23 March 2020).
40. Apache Licence, Version 2.0. Available online: https://www.apache.org/licenses/LICENSE-2.0 (accessed on

6 April 2020).
41. UaExpert—A Full-Featured OPC UA Client. Available online: https://www.unified-automation.com/

products/development-tools/uaexpert.html (accessed on 6 April 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.eclass.eu/en/standard.html
http://dx.doi.org/10.1016/j.ifacol.2017.08.2550
https://github.com/OPCUAUniCT/coreAAS
http://node-opcua.github.io/
https://github.com/OPCUAUniCT/node-opcua-coreaas
https://www.apache.org/licenses/LICENSE-2.0
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Asset Administration Shell Metamodel
	Identifiable and Referable
	Reference
	HasKind
	HasSemantics
	HasDataSpecification and DataSpecification
	AssetAdministrationShell
	Asset
	Submodel and SubmodelElement
	DataElement and Property
	ConceptDictionary and ConceptDescription

	OPC UA Information Model
	Common Practices in the Definition of OPC UA Information Model
	Variables and DataTypes
	Object and ObjectTypes
	AddressSpace Organisation

	Mapping AAS Metamodel into OPC UA Information Model
	Mapping AAS Entities
	Structuring the OPC UA AddressSpace
	Mapping AAS References

	Exploiting Novel OPC UA Features for the Mapping
	Mapping AAS Common Classes
	Mapping HasDataSpecification and DataSpecification
	Mapping ConceptDictionary and ConceptDescription

	Case Study
	Conclusions
	References

