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Abstract: Recently, there has been significant growth in the popularity of cloud computing systems.
One of the main issues in building cloud computing systems is task scheduling. It plays a critical role
in achieving high-level performance and outstanding throughput by having the greatest benefit from
the resources. Therefore, enhancing task scheduling algorithms will enhance the QoS, thus leading
to more sustainability of cloud computing systems. This paper introduces a novel technique called
the dynamic round-robin heuristic algorithm (DRRHA) by utilizing the round-robin algorithm and
tuning its time quantum in a dynamic manner based on the mean of the time quantum. Moreover,
we applied the remaining burst time of the task as a factor to decide the continuity of executing
the task during the current round. The experimental results obtained using the CloudSim Plus tool
showed that the DRRHA significantly outperformed the competition in terms of the average waiting
time, turnaround time, and response time compared with several studied algorithms, including
IRRVQ, dynamic time slice round-robin, improved RR, and SRDQ algorithms.

Keywords: cloud computing; task scheduling; round-robin; quantum time; CloudSim

1. Introduction

Cloud computing has become a buzzword in today’s IT industry, where it is one of
the essential modern trends that has caused a fundamental change in this area. In a cloud
computing environment, technology is introduced in the form of services. It allows the use
of servers, storage, and applications at any time by using different types of computers or
smartphones securely and at the lowest cost [1].

Cloud computing can be identified as Internet-based computing that provides a pool
of adaptable computing resources, including networks, storage, servers, applications,
and services without a need to interact with the service provider and with the minimum
management effort. Moreover, customers are supplied with resources in the form of
different service models. The resources can be infrastructure as a service model (IaaS),
a platform as a service model (PaaS), or software as a service model (SaaS) [2].

One of the critical research issues in a cloud computing environment is task scheduling.
With the increasing number of cloud users, sufficient access to remote resources and
maximum profit are two of the main objectives of service providers. Task scheduling is
the technique used for mapping clients’ tasks to the available and appropriate virtualized
resources by using an efficient algorithm [3]. In heterogeneous computing such as cloud
computing, the issue of task scheduling becomes more challenging since it is a distributed
and scalable environment. Therefore, there is a need for an effective task scheduling
algorithm, which is considered key for the performance of the system [3–5].

In a cloud computing environment, there are three common categories of task schedul-
ing algorithms [6], which are (1) traditional algorithms, such as first come first serve (FCFS),
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shortest job first (SJF), largest job first (LJF), and round-robin (RR) [7], (2) heuristic algo-
rithms, such as Min-Min and Max-Min algorithms [8], and (3) meta-heuristic algorithms,
such as the ant colony optimization algorithm (ACO) [9] and particle swarm optimization
(PSO) [10].

The round-robin (RR) algorithm is one of the most commonly used scheduling tra-
ditional algorithms. It is simple and depends on sharing CPU time [11,12]. In the RR
algorithm, the jobs share the CPU time by allocating a slice of time, usually between
10 and 100 ms for each job, called quantum time (QT) [13]. If the current job is over, its ex-
ecution will be paused, and it will be placed at the end of the ready queue. These steps
are repeated for all jobs in the ready queue. If the job’s execution is completed, it will be
deleted directly from the ready queue. It is obvious from the above discussion that the
efficiency of the RR algorithm depends on the QT, and therefore, the choice of the QT size is
a critical issue for improving the overall performance of the RR algorithm. If the QT size is
too large, RR tends to become an FCFS algorithm, whereas if the QT is too small, RR might
perform poorly due to the context switches that cause much overhead [14]. Algorithm 1
shows the pseudocode of the RR algorithm as described in [15].

Algorithm 1 The Pseudocode of the RR Algorithm in CPU Scheduling [15]

Step 1: Keep the ready queue as a FIFO queue of tasks
Step 2: New tasks added to the tail of the queue will be selected, set a timer to interrupt after one
time slot, and dispatch the tasks.
Step 3: The task may have executed less than one time quantum. In this case:

1. The task itself will release the resources voluntarily;
2. The scheduler will then proceed to the next task in the ready queue.

Step 4: Otherwise, if the running task is longer than one time quantum,
the timer will go off and will cause an interruption to the OS.

The main contribution of this paper is to propose a novel technique focusing on the
traditional RR algorithm disadvantages. The proposed model optimizes the functionality
of the traditional RR algorithm for scheduling tasks in the cloud computing environment
through optimizing the performance metrics by decreasing the average waiting time,
average turnaround time, and average response time.

The rest of this paper is organized as follows. In Section 2, the literature review is
presented. In Section 3, the problem statement is illustrated, while the proposed technique
is explained in detail in Section 4. Section 5 presents the simulation setting, and Section 6
comprises the evaluation and discussion. Finally, the conclusion and future work are
discussed in Sections 7 and 8, respectively.

2. Literature Review

Since the selection of quantum time is an important issue affecting the RR algorithm’s
efficiency, many researchers have conducted several studies to improve its efficiency by
proposing various techniques to calculate the optimal quantum time.

In [14], the authors presented a survey on studies related to enhancing the RR al-
gorithm. We found that some researchers improved the RR algorithm by considering a
fixed quantum time, while other studies proposed improving the performance of the RR
algorithm by calculating a dynamic quantum time, which may be dynamic in each round
or for each task.

In [16], the authors proposed a novel approach to improving the RR algorithm, relying
on the median burst time of the ready queue tasks. These tasks should be sorted in
ascending order at the beginning. Then, tasks will be divided into two subqueues: light
and heavy task queues. The tasks are rearranged after each round based on the remaining
burst time. In each round, the quantum time is equal to the burst time for the medium task.
This approach has proven its effectiveness in reducing the waiting time and turnaround
time compared with the traditional RR and IRRVQ algorithms.
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In [17], the researchers proposed a new approach named the eighty-five percentile
RR algorithm (EFPRR). It is based on computing a TQ using 85% of the burst time of the
tasks. The processes are initially arranged in incremental order based on their burst time,
and then the TQ is calculated by multiplying the average time of all tasks by the 85%
constant (85% average). Then, the remainder of the BT for the tasks is checked. If it is
less than or equal to the TQ, the running tasks are executed until completion. Otherwise,
the tasks are relocated at the tail of the ready queue. The EFPRR was evaluated through
several experiments, showing the effectiveness of the proposed algorithm in reducing the
average burst times.

In [18], the authors developed a new mechanism to calculate the quantum time in the
RR algorithm based on the average burst time of all ready queue tasks. The SJF is applied
initially, and then the quantum time is calculated for the first round. This calculation is
repeated every round as new tasks enter the ready queue. The results showed an enhance-
ment of the RR algorithm by reducing the average waiting time, average turnaround time,
and the number of context switches (CSs). Similarly, the authors in [19] proposed a new
technique to calculate the quantum time in the RR algorithm. The tasks should be located
in the ready queue as they arrived. Then, the QT will be calculated based on the average
of the tasks’ burst time. The evaluation experiments showed the efficiency of the new
technique in reducing the waiting time and turnaround time.

In [20], the authors suggested improving the RR algorithm based on an analytic
model that considers several parameters, such as the execution time and the task order.
The improved model was evaluated by conducting several different scenarios. These
experiments proved the model’s effectiveness in improving the average waiting time and
average response time. Similarly, in [21], the authors proposed improving the RR algorithm
by using a dynamic time quantum, which was calculated using a mathematical equation
based on the median of the tasks’ burst time and the smallest burst time in the ready queue.
The efficiency of the improved RR was investigated by a comparison with the traditional
RR algorithm. The results showed the efficiency of the improved algorithm in terms of
the maximum CPU utilization, throughput, and minimized waiting time, response time,
and the number of context switches.

In [22], the authors proposed a new approach to enhancing the RR algorithm, where
the quantum time was determined by computing the maximum difference among the
differences of adjacent consecutive processes in the ready queue. The results showed an
improvement in the system performance due to reducing the average turnaround time,
average waiting time, and the number of context switches.

In [23], the authors proposed a combination of SJF and RR algorithms to improve
the performance of the RR algorithm. The main idea in their proposed technique was to
distribute the presented tasks into two queues, where the median was used as a threshold
for distributing the tasks among the two queues. The results of the experiments showed
the success of this algorithm in reducing both the waiting time and response time.

In [24,25], the authors proposed an enhancement to the dynamic RR algorithm, tuning
the quantum time by assigning a value for the quantum time equal to the average of the
burst time of the tasks in the ready queue. On other hand, in [26], the authors proposed
assigning the average of the burst time for the quantum time, but by applying the remaining
burst time principle [27]. This principle states that if the remaining burst time of the task is
less than the quantum time, the task completes its execution and then exits the ready queue.

3. Problem Statement Gap Analysis

To identify the main gap and shortages with the proposed algorithms discussed in the
literature review, we studied the behavior of the algorithm in [26] by considering the three
datasets used in [26], which involve tasks with a different burst time order but an arrival
time equal to zero. Table 1 shows samples from such a dataset with numerical values to
reflect the properties of them.
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Table 1. Dataset used in the analytical study.

Datasets with Zero Arrival Time

Task

Case 1
Increasing Order

Case 2
Decreasing Order

Case 3
Random Order

Arrival Time Burst Time Arrival Time Burst Time Arrival Time Burst Time

T1 0 20 0 105 0 105
T2 0 25 0 85 0 60
T3 0 35 0 55 0 120
T4 0 50 0 43 0 48
T5 0 80 0 35 0 75
T6 0 90 - - - -

Figure 1 presents an analytical study considering the following cases: (1) the behavior
of the proposed dynamic round-robin (DRR) algorithm discussed in [26], (2) the behav-
ior of the same algorithm when it is integrated with FCFS, and (3) the behavior of the
same algorithm when it is integrated with SJF. Finally, a comparison with the traditional
algorithms including both FCFS and SJF is made.
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Figure 1. Comparison of the proposed model integrated with SJF and FCFS.

It can be observed from Figure 1 that if the quantum time equals the average of the
tasks’ burst time and the RR algorithm applied the remaining burst time principle, there
are two cases as follows. The first case is when the same order of tasks is maintained;
in other words, the RR algorithm is integrated with the FCFS algorithm. The second case
is when the RR algorithm is integrated with SJF. In the first case, it is obvious that the RR
algorithm tends to be FCFS with the same average waiting, turnaround, and response
times. Moreover, the CS number is equal to the number of tasks, which means that each
task is allocated the CPU one time and is executed during its own burst time. Similarly,
for the second case, it is clear that the RR algorithm tends to be SJF with the same average
waiting, turnaround, and response times. Moreover, the CS number is equal to the number
of tasks, which means that each task is allocated the CPU one time and is executed during
its own burst time.

From the above conducted analysis, it can be concluded that applying the concept
of the remaining burst time on the dynamic RR algorithm, where the QT is equal to the
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average of the tasks’ burst time, is not efficient. Moreover, in this way, the RR algorithm
loses its nature. Thus, this paper introduces a novel technique named the dynamic round-
robin heuristic algorithm (DRRHA), which concentrates on providing a solution for the
time quantum problem by tuning the time quantum dynamically for each presented task
in the ready queue based on its burst time. Moreover, we introduce the utilization of the
advantages of the STF algorithm to improve the performance of the proposed model [28].
This novel technique will be discussed in detail in the next section.

4. The Proposed Technique

In our proposed DRRHA approach, presented in Figure 2, the tasks are initially
received from the users and stored in the ready queue according to their order of arrival
(FCFS). Then, each task arrives at the ready queue and is sorted based on the SJF manner.
In each round, the average mean is calculated for all the tasks in the ready queue. After
that, the quantum time is calculated for each task separately according to Equation (1).
If the remaining burst time is less than or equal to its quantum, then the task execution is
completed, and it is removed from the ready queue. Otherwise, the task is stored at the
end of the ready queue and is to be executed in the next round. Moreover, if new tasks
arrive, they are stored in the ready queue until the current round is finished:

QTij =
(m

2

)
+

(m
2
)

BTij
, (1)

where QTij is the quantum time of task i in round j, m is the average mean at the ready
queue, and BTij is the burst time or the remaining burst time for task i in round j.
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The DRRHA is composed of seven main steps and they are as follows:
Step 1: Arrange the submitted tasks in ascending order based on their burst time.
Step 2: Compute the arithmetic mean for all tasks in the ready queue.
Step 3: Calculate the value of the time quantum based on Equation (1).
Step 4: Execute all tasks based on their calculated time quantum.
If the task finishes its time quantum, there are two cases:
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Step 4.1: If the remaining burst time is less than or equal to its time quantum, complete
its execution. Then, remove this task from the ready queue.

Step 4.2: If the remaining burst time of the task is greater than its time quantum, pause
the task and insert it into the tail of the ready queue.

Step 5: When a new task arrives, do the following:

1. Sort all tasks in the ready queue in the STF manner.
2. The m and QTij values for all the tasks in the ready queue will be recalculated.

Step 6: When a task is finished, the m and QTij values for all the tasks in the ready
queue will be recalculated.

Step 7: Repeat all the steps until all the tasks are finished.
The details of the main steps involved in the proposed approach are shown in Algo-

rithm 2. Moreover, Figure 3 shows a flowchart describing the followed procedure of the
proposed approach.

Algorithm 2 Proposed DRRHA

Declarations
Ti: Task i
BTij: Burst time or the remaining burst time of task i in the round j
RQ: Ready Queue
Count_Iteration: an initialized value for iteration j and Quantum Time QTij
M: The arithmetic mean of burst time of tasks.
QTij: Quantum time assigned to task, Ti, in the round j

Input: Tasks, Ti
Output: Rescheduling all tasks, Ti

BEGIN
Submitted tasks in RQ based on arrival time.
WHILE (RQ is not empty)
BEGIN

Arrange all arrived tasks in RQ based on SJF
M = The mean of burst time of the tasks that arrived in RQ.

For (each task Ti in RQ)
BEGIN

QTij = (M/2) + (M/2)/BTij
Execute (Ti)
BTij = BTij − QTij
IF (BTij < QTij): Execute (Ti) again
Else: Add Ti at the end of RQ
IF (BTij (Ti) = 0)
BEGIN

Remove (Ti) from RQ
M = The mean of burst time of the remaining tasks in the RQ.
For (each task Ti in RQ): QTij = (M/2) + (M/2)/BTij

End IF
IF (a new task is arrived)
BEGIN

Sort all tasks in RQ based on SJF
M = The mean of burst time of all tasks in the RQ.
For (each task Ti in RQ): QTij = (M/2) + (M/2)/BTij

End IF
j++

END FOR
END WHILE

END
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Figure 3. The proposed algorithm’s flow chart.

Case Study: The Impact of Integrating the Proposed Model (DRRHA) with the SJF Algorithm

Here, we consider a case of six tasks with non-zero arrival times, as shown in Table 2.

Table 2. Case study.

Task Arrival Time Burst Time

T1 0 12
T2 0 8
T3 1 23
T4 2 10
T5 3 30
T6 4 15
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The following are the detailed steps for the proposed technique (DRRHA) with the
SJF algorithm.

(1) Round 1

After the arrival of tasks T1 and T2, these tasks were arranged in ascending order
based on the burst time. Then, the QT for each task was calculated as illustrated in Table 3.
After that, these tasks were scheduled as shown in Figure 4.

(2) Round 2

Table 3. Round one of the case study.

Round 1 M = 10 M/2 = 5

Tasks QTij = (M/2) + (M/2)/BTij Remaining BTij

T2 5.625 2.375
T1 5.416 6.584
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In this round, tasks T3, T4, T5, and T6 arrived and were added into the head of the
RQ, which contained task T1 from the previous round. Then, all tasks in the RQ were
arranged in ascending order based on their burst time as shown in Table 4. After that,
the QT was calculated for each task separately as presented in Table 5. Finally, these tasks
were scheduled and executed as shown in Figure 5.

(3) Round 3

Table 4. Round 2 of the case study after applying SJF.

Task Burst Time

T1 6.584
T4 10
T6 15
T3 23
T5 30

Table 5. Round two of the case study.

Round 2 M = 16.91 M/2 = 8.45

Tasks QTij = (M/2) + (M/2)/BTij Remaining BTij

T1 9.73 0
T4 9.29 0.71
T6 9.01 5.99
T3 8.81 14.19
T5 8.73 21.27
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Table 8 shows the evaluation results of the case study presented in this section, where
it shows the overall statistic of the scenario in terms of the waiting time (WT), turnaround
time (TAT), and response time (RT).

Table 8. The evaluation results of the case study.

Task Arrival Time Burst Time WT TAT RT

T1 0 12 8 20 0
T2 0 8 0 8 5.416
T3 1 23 52.73 75.73 13.416
T4 2 10 18 28 22.22
T5 3 30 65 95 32.22
T6 4 15 26 41 40.95

Average 28.28833 44.62167 19.037
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5. Simulation Settings

The proposed DRRHA technique was implemented and tested in the CloudSim
Plus environment [29], which is an extensible and fully featured simulation framework.
It is based on the CloudSim framework and allows cloud computing infrastructure and
application services to be modeled, simulated, and tested. The main reason for choosing
this simulation tool was because it has the capacity for integrated modeling and evaluates
application services. It supports task scheduling policies, virtual machine (VM) selection,
setting the network connections, locating energy models for the resources of data centers,
and supplying various forms of workloads [29,30].

Table 9 summarizes the simulation settings used in the CloudSim Plus experiments
for testing our proposed approach. NetBeans IDE8.2 was used as an environment to run
the CloudSim libraries.

Table 9. Configuration table for simulation.

Data Center Characteristics

Parameters Values
Data Center OS Linux

Data Center VMM Xen
Data Center Architecture X86

VM Parameters

Image Size 10,000
VM_MIPS 1000
Bandwidth 50,000

VM Number of CPUs 10
Ram 512

Cloudlet Parameters

Cloudlet File Size 300
Cloudlet Output Size 300

Cloudlet Utilization (CPU, BW, Ram) Full

6. Evaluation and Discussion

The performance of the proposed DRRHA technique was evaluated considering the
following four performance metrics [31]: (1) waiting time, or the total time tasks spent in
the ready queue; (2) response time, being the time elapsed from the arrival of the task until
starting its execution; (3) turnaround time, which was the time elapsed from the arrival of
the task until completing its execution; and (4) context switches, or the number of times
that the task status changed from one activity to another.

We considered three different scenarios to evaluate the proposed model as follows:

(1) Evaluating the proposed model by comparing it with SJF and FCFS algorithms to study
the impact of integrating the proposed model with these algorithms;

(2) Comparing the proposed model with the related algorithms from the literature review;
(3) Evaluating the performance of the proposed model using two datasets: a real dataset

and a randomly generated dataset.

Moreover, for each experiment, the improvement rate of the proposed algorithm was
measured by calculating the difference between the proposed algorithm and the considered
algorithm for all the performance metrics.

6.1. Evaluation of the Proposed Model (DRRHA) Considering SJF

To evaluate the efficiency of integrating the SJF algorithm with the proposed model,
we used the dataset considered in [32]. The dataset consisted of two experiments, where the
first one assumed arrival times of zero and the second one took into consideration different
arrival times as shown in Table 10. Moreover, each experiment had three cases based on
the order of the burst time in increasing order, decreasing order, and a random order.
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Table 10. Data sets with zero arrival time.

Data Sets with Zero Arrival Time Data Sets with Non-Zero Arrival Time

Task

Case 1
Increasing Order

Case 2
Decreasing Order

Case 3
Random Order

Case 1
Increasing Order

Case 2
DecreasingOrder

Case 3
Random Order

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

T1 0 30 0 77 0 80 0 14 0 80 0 65
T2 0 34 0 54 0 45 2 34 2 74 1 72
T3 0 62 0 45 0 62 6 45 3 70 4 50
T4 0 74 0 19 0 34 8 62 4 18 6 43
T5 0 88 0 14 0 78 14 77 5 14 7 80

The evaluations were performed based on the average waiting time, turnaround time,
response time, and context switching. Figure 7 presents the evaluation results.
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Figure 7. Comparison of the proposed model integrated with SJF and FCFS.

As shown in Figure 7, the integration of the SJF algorithm with the proposed model
resulted in a significant reduction in the average waiting time, average turnaround time,
and response time in all three cases. It also maintained the number of context switches.
Thus, we found that integrating the SJF algorithm with the proposed model had a surprising
effect in improving the overall performance, compared with the integration of the FCFS
algorithm with the proposed model.

6.2. Comparative Study on the Proposed Model (DRRHA) and the Related Algorithms

The performance of the proposed model was evaluated by conducting several ex-
periments. For fair evaluation, the benchmark was taken from different algorithms and
simulated with the same parameters considering the task arrival time and burst time.

We conducted four different evaluations, comparing our proposed algorithm with
different related works as follows. (1) The first test was an evaluation to compare our work
with the one presented in [16]. (2) The second test was an evaluation to compare our work
with the one presented in [33,34]. (3) The third test was an evaluation to compare our work
with the one presented in [35]. (4) The fourth test was an evaluation to compare our work
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with the one presented in [23]. These experiments and evaluation studies are discussed in
the following subsections.

A. The First Test

We conducted two experiments taken from [16], as shown in Table 11, where the
proposed model was compared with the traditional RR and IRRVQ algorithms [16] in
terms of the average waiting time and average turnaround time.

Table 11. First test with a random dataset with zero and non-zero arrival times.

CASE 1 CASE 2

Task Arrival Time Burst Time Task Arrival Time Burst Time

T1 0 15 0 7 0
T2 0 32 4 25 4
T3 0 10 10 5 10
T4 0 26 15 36 15
T5 0 20 17 18 17

The proposed model outperformed the other studied algorithms, as shown in Figure 8,
which shows clearly that our proposed algorithm decreased both the waiting time and
turnaround time for the two cases.
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Figure 8. First test’s comparison of results.

To measure the improvement of the proposed algorithm compared with the one
proposed in [16], we calculated the difference between the average waiting times and
turnaround time by the following equation, given in [36]:

Di f f erence =
[
|v1− v2|

(v1 + v2)/2

]
× 100 (2)

where V1 and V2 are the least values.
Table 12 illustrates the improvement of the proposed model over the IRRVQ algo-

rithm [16]. It is clear that the proposed model achieved a 35% improvement in the average
waiting time and 23% improvement in the average turnaround time compared with the
IRRVQ algorithm [16].
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B. The Second Test

Table 12. The improvement rate in the first test.

First Test

The Metrics
Case 1 Case 2

Improvement (%) Improvement (%)

Avg. WT 35% 12%
Avg. TAT 23% 6%

This test included a dataset taken from [33] which consisted of three cases. Table 13
demonstrates these cases in detail. In this experiment, the proposed model was compared
with the traditional RR, optimized round-robin [34], and dynamic time slice round-robin
algorithms [33]. The comparison was performed based on the average waiting time (AWT),
average turnaround time (ATAT), and the number of the context switches (CS).

Table 13. Second test with a dataset with zero and non-zero arrival times.

Task
Case 1 Case 2 Case 3

Arrival Time Burst Time Arrival Time Burst Time Arrival Time Burst Time

T1 0 14 0 33 0 15
T2 0 34 2 22 4 77
T3 0 45 5 48 15 30
T4 0 62 7 70 20 85
T5 0 77 9 74 - -

The results shown in Figure 9 clearly depict that the proposed model demonstrated
superior results for the three cases compared with the benchmarked algorithms.

Computers 2021, 10, 63 14 of 28 
 

 
Figure 9. Comparison of the results for the second test. 

Table 14 shows clearly the high improvement rate of the proposed algorithm 
compared with the dynamic time slice round-robin algorithm, where our proposed 
algorithm enhanced the average waiting time by 56%, the average turnaround time by 
38%, and the number of context switches by 65%. 

Table 14. The improvement rate in the second test. 

Second Test 
The 

Metrics 
Case 1 Case 2 Case 3 Overall 

Improvement (%) Improvement (%) Improvement (%) Improvement (%) 
Avg. 
WT 58% 54% 56% 56% 

Avg. 
TAT 38% 39% 38% 38% 

CS 61% 61% 74% 65% 

C. The Third Test 

In this experiment, the dataset was adopted from [35], which had three different cases 
as shown in Table 15. In each case, the proposed model was evaluated and compared with 
the traditional RR algorithm and the benchmarked algorithm in [35]. Moreover, the 
evaluation process was conducted based on the average waiting time, average turnaround 
time, and number of context switches. 

Table 15. Third test’s dataset. 

Task 
Case 1 Case 2 Case 3 

Arrival 
Time Burst Time Arrival Time Burst Time 

Arrival 
Time Burst Time 

T1 0 12 0 42 0 11 
T2 0 11 0 32 0 10 
T3 0 22 0 82 0 22 
T4 0 31 0 45 0 31 
T5 0 21 0 22 0 25 
T6 - - - - 0 13 

0
50

100
150
200
250

RR

Op
tim

ize
d 

Ro
un

d
Ro

bi
n

Dy
na

m
ic 

Ti
m

e 
Sl

ice
Ro

un
d 

Ro
bi

n

DR
RH

A RR

Op
tim

ize
d 

Ro
un

d
Ro

bi
n

Dy
na

m
ic 

Ti
m

e 
Sl

ice
Ro

un
d 

Ro
bi

n

DR
RH

A RR

Op
tim

ize
d 

Ro
un

d
Ro

bi
n

Dy
na

m
ic 

Ti
m

e 
Sl

ice
Ro

un
d 

Ro
bi

n

DR
RH

A

CASE1 CASE 2 CASE 3

M
ill

ise
co

nd
s

Algorithm's Name

AWT ATAT CS

Figure 9. Comparison of the results for the second test.

Table 14 shows clearly the high improvement rate of the proposed algorithm com-
pared with the dynamic time slice round-robin algorithm, where our proposed algorithm
enhanced the average waiting time by 56%, the average turnaround time by 38%, and the
number of context switches by 65%.
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C. The Third Test

Table 14. The improvement rate in the second test.

Second Test

The
Metrics

Case 1 Case 2 Case 3 Overall

Improvement (%) Improvement (%) Improvement (%) Improvement (%)

Avg.
WT 58% 54% 56% 56%

Avg.
TAT 38% 39% 38% 38%

CS 61% 61% 74% 65%

In this experiment, the dataset was adopted from [35], which had three different cases
as shown in Table 15. In each case, the proposed model was evaluated and compared with
the traditional RR algorithm and the benchmarked algorithm in [35]. Moreover, the evalua-
tion process was conducted based on the average waiting time, average turnaround time,
and number of context switches.

Table 15. Third test’s dataset.

Task
Case 1 Case 2 Case 3

Arrival Time Burst Time Arrival Time Burst Time Arrival Time Burst Time

T1 0 12 0 42 0 11
T2 0 11 0 32 0 10
T3 0 22 0 82 0 22
T4 0 31 0 45 0 31
T5 0 21 0 22 0 25
T6 - - - - 0 13

The obtained results are presented in Figure 10, which shows that our proposed model
achieved a significant improvement in performance over the other compared algorithms.
For the first case, the performance of the DRRHA in terms of the average waiting time
and turnaround time was slightly higher than the improved RR algorithm [35]. On the
other hand, regarding the number of context switches, it is noted that the improved RR
algorithm [35] recorded 9 CSs, whereas the proposed DRRHA recorded 8 CSs. However,
the performance of the proposed DRRHA was still considered acceptable. In contrast,
for other evaluated cases, it is noted that the performance of the proposed algorithm
achieved remarkably high performance in all the evaluated metrics.

The improvement rate of the proposed algorithm compared with the benchmarks was
measured in the third test, and the results have been presented in Table 16. The statistics
show that our proposed algorithm achieved an overall 29% improvement in the aver-
age waiting time, 20% improvement in the average turnaround time, and finally a 16%
improvement in the number of context switches.

D. The Fourth Test

Table 16. Improvement rate in the third test.

Third Test

The
Metrics

Case 1 Case 2 Case 3 Overall

Improvement (%) Improvement (%) Improvement (%) Improvement (%)

Avg. WT 6% 53% 28% 29%
Avg. TAT 4% 35% 20% 20%

CS −12% 50% 10% 16%
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For this evaluation, the dataset was taken from [23], which was divided into two
experiments based on the arrival time of the tasks. Each one, in turn, was divided into
two cases as shown in Table 17. The dataset was used to evaluate the proposed model by
conducting a comparison with the traditional RR and SRDQ algorithms [23].

Table 17. Dataset with zero and non-zero arrival times in the fourth test.

Zero Arrival Time Non-Zero Arrival Time

Task
Case 1 Case 2 Case 3 Case 4

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

Arrival
Time

Burst
Time

T1 0 20 0 10 0 18 0 10
T2 0 40 0 14 4 70 6 14
T3 0 60 0 70 8 74 13 70
T4 0 80 0 120 16 80 21 120

Figure 11 shows the superiority of the proposed model compared with the other
algorithms for all the comparison criteria. Although the traditional RR algorithm recorded
a slight reduction in the average waiting time in the third case compared with the proposed
model, the overall results show that the proposed algorithm had a significant reduction
in the average waiting time, turnaround time, and number of context switches compared
with the traditional RR and SRDQ algorithms.

Table 18 illustrates the improvement rate of the proposed algorithm, where the pro-
posed algorithm obtained a 29% improvement in the average waiting time and 13% im-
provement in the average turnaround time.

Table 18. The improvement rate in the fourth test.

Fourth Test

The Metrics
Case 1 Case 2 Case 3 Case 4 Overall

Improvement
(%)

Improvement
(%)

Improvement
(%)

Improvement
(%)

Improvement
(%)

Avg. WT 10% 9% 34% 63% 29%
Avg. TAT 6% 4% 19% 24% 13%
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6.3. Evaluating the Performance of the Proposed Model (DRRHA) Using Datasets

In this experiment, the proposed model was validated by conducting several exper-
iments on two different datasets, including the NASA dataset [37,38] and a randomly
generated dataset. The performance of the proposed model was measured based on the
average waiting time, average turnaround time, and average response time under the same
simulation conditions of the previous cases shown in Table 19. The performance of the
proposed model was compared to the other conventional algorithms, including FCFS, STF,
LTF, and fixed RR. It is worth mentioning that this analytical comparison was performed
on one virtual machine, and the experiments were repeated several times while increasing
the number of tasks each time to verify the stability of the results.

A. The First Experiment Using the NASA Dataset

Table 19. The improvement rate in all cases.

Metrics
The Improvement Rate Achieved by the Proposed Model Compared with the

Following Algorithms

IRRVQ DTSRR Improved RR [35] SRDQ

Avg. WT 12% 56% 29% 29%
Avg. TAT 6% 38% 20% 13%

No.CS 12% 65% 16%

The dataset used for this experiment was the one from NASA [37,38], which has been
used in various research such as in [39–41]. In this experiment, only the execution time
was taken into account. This is because the tasks in the NASA dataset arrived one by one,
and therefore there was no overlap in the arrival time of the tasks and, accordingly, these
arrival times were not suitable to be used for validating the proposed model. For this
reason, the tasks’ arrival times were discarded and replaced by a zero arrival time in the
first case and a non-zero arrival time in the second case.

For the first experiment using the NASA dataset with a zero arrival time, the DRRHA
was evaluated, assuming that all tasks had the same arrival time. From Figures 12, 14 and 16,
we found the following observations:

(1) The SJF algorithm and the DRRHA achieved the best performance, while the LJF
algorithm was the worst;

(2) There was a clear convergence in the performance of both the SJF algorithm and
the DRRHA;

(3) Although the SJF algorithm succeeded in reducing the average waiting time by 9.31%
and the average turnaround time by 8.01%, the DRRHA succeeded in reducing the
average response time by 38.38%, as shown in Figures 13, 15 and 17;
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(4) The algorithms maintained the same performance despite the repeated experiments
with an increasing number of tasks each time.

For the second case using the NASA dataset with a non-zero arrival time, the DRRHA
was evaluated using the NASA dataset assuming the tasks had different arrival times.
What could be concluded clearly from these experiments are as follows.

(1) The superiority of the SJF algorithms and the proposed model in optimizing the
performance is shown in Figures 18–20;

(2) Despite the superiority of these two algorithms and the convergence of their perfor-
mance, it was found that the SJF algorithm outperformed the others in reducing the
average waiting time by 12.61% and the turnaround time by 12.29%, while the DRRHA
outperformed the others in reducing the average response time by 19.89%;

(3) On the other hand, the longest job first (LJF) algorithm was the worst among the
other algorithms.
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Figure 12. The evaluation of the average waiting time with a dataset with a zero arrival time.
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Figure 13. The performance of the proposed model and SJF algorithm in terms of the average waiting
time, with the first experiment having a zero arrival time.
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Figure 14. The evaluation of the average turnaround time with the NASA dataset with a zero
arrival time.

Computers 2021, 10, 63 19 of 28 
 

 

Figure 16. Performance of the proposed model and SJF algorithm in terms of the average 
turnaround time, with the first experiment having a zero arrival time. 

 
Figure 17. The performance of the proposed model and SJF algorithm in terms of the average 
response time, with the first experiment having a zero arrival time. 

For the second case using the NASA dataset with a non-zero arrival time, the DRRHA 
was evaluated using the NASA dataset assuming the tasks had different arrival times. 
What could be concluded clearly from these experiments are as follows. 

(1) The superiority of the SJF algorithms and the proposed model in optimizing the 
performance is shown in Figures 18–20; 

(2) Despite the superiority of these two algorithms and the convergence of their 
performance, it was found that the SJF algorithm outperformed the others in 
reducing the average waiting time by 12.61% and the turnaround time by 12.29%, 
while the DRRHA outperformed the others in reducing the average response time 
by 19.89%; 

(3) On the other hand, the longest job first (LJF) algorithm was the worst among the 
other algorithms. 

0

5,000

10,000

15,000

20,000

25,000

10 50 100 150 200 250 300 350 400

Av
er

ag
e 

tu
rn

ar
ou

nd
 

tim
e(

M
ill

ise
co

nd
s)

Number of tasks

DRRHA STF

0

5,000

10,000

15,000

20,000

10 50 100 150 200 250 300 350 400

Av
er

ag
e 

re
sp

on
se

 
tim

e(
M

ill
ise

co
nd

s)

Number of tasks

DRRHA STF

Figure 15. Performance of the proposed model and SJF algorithm in terms of the average turnaround
time, with the first experiment having a zero arrival time.
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Figure 16. The evaluation of the average response time with a NASA dataset with a zero arrival time.
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Figure 17. The performance of the proposed model and SJF algorithm in terms of the average
response time, with the first experiment having a zero arrival time.
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Figure 18. The evaluation of the average waiting time with the NASA dataset with a non-zero
arrival time.

The dataset used in this experiment was generated randomly within a specific range
of the tasks’ burst times and the tasks’ arrival times. This range was defined to be 100–400
for the tasks’ burst times and 10–100 for the tasks’ arrival times. Moreover, this dataset has
been commonly used with traditional algorithms like FCFS, shortest task first (STF), LJF,
and RR. It should also be noted that when applying the fixed RR algorithm on this random
dataset, we considered the following:

(1) Calculating the optimal time quantum for each experiment using the mean of the
burst times;

(2) Repeating every experiment 50 times and then taking the average values of the waiting
time, turnaround time, and response time.
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Figure 19. The evaluation of the average turnaround time with the NASA dataset with a non-zero
arrival time.
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Figure 20. The evaluation of the average response time with the NASA dataset with a non-zero
arrival time.

To evaluate our proposed model (DRRHA), the random dataset was used to conduct
two different experiments. The first experiment was where the arrival time of the tasks
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was zero, and the tasks’ burst times were generated randomly. The second experiment
randomly generated both the arrival time and the tasks’ burst times. Both experiments
were applied to our proposed model and the traditional algorithms mentioned above.
Moreover, these experiments were repeated several times while increasing the number of
tasks each time to ensure the steadiness of the algorithms’ performances.

For the first case using the random dataset with a zero arrival time, we evaluated the
DRRHA using the randomly generated dataset while assuming all tasks arrived at the
same time. From Figures 21–23, we observed the following:

(1) The STF algorithm and the DRRHA had the best comparable performances;
(2) The STF algorithm was slightly superior to the DRRHA in terms of the average waiting

time by 21.09% and the turnaround time by 20.31%. However, the DRRHA outper-
formed the others in terms of decreasing the response time by 35.98%;

(3) In contrast, the fixed RR algorithm had the worst performance in terms of reducing the
average waiting time and turnaround time. The LJF algorithm was the worst in terms
of reducing the average response time.

For the second case using the random dataset with a non-zero arrival time, the DRRHA
was evaluated using the randomly generated dataset while assuming the tasks arrived at dif-
ferent times. Figures 24–26 present the experiments’ results with the following observations:

(1) The STF algorithm and DRRHA outperformed the other algorithms in optimiz-
ing performance;

(2) Both the STF algorithm and DRRHA had comparable performances, but the STF
succeeded in reducing the average waiting time by 18.8% and reducing the average
turnaround time by 18.34%. However, the DRRHA reduced the average response time
by 29.65%;

(3) The fixed RR algorithm had the worst performance, as it recorded high values in the
average waiting time and turnaround time;

(4) The LTF algorithm had the worst performance among other algorithms in terms of the
average response time.

As a summary, the overall results from the previous experiments indicate the following:

1. For all the cases, the SJF algorithm and the proposed algorithm (DRRHA) achieved the
best performance compared with the other algorithms;

2. The SJF algorithm outperformed the DRRHA in terms of the average waiting time and
turnaround time. This is because of the SJF algorithm mechanism, which executed the
whole task in one round. In contrast, the DRRHA executed the task in several rounds,
which may have led to putting the task in the ready queue several times;

3. The DRRHA outperformed the SJF algorithm in terms of the average response time.
This is because the DRRHA is preemptive, in which the current task might be paused to
give a chance to another task in the ready queue. The SJF algorithm mechanism allows
for responding to any new task after completing the entire previous task, which results
in increasing the response time;

4. When using the NASA dataset, the LJF algorithm had the worst performance among
the other algorithms. This is because of the mechanism of the LJF algorithm, which
imposes the implementation of the longest task in the queue first. In addition, the LJF
algorithm does not allow for executing the next task until the current one is finished,
which results in increasing the waiting time, turnaround time, and response time.
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Figure 21. The evaluation of the average waiting time with the random dataset with a zero ar-
rival time.
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Figure 22. The evaluation of the average turnaround time with the random dataset with a zero
arrival time.
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Figure 23. The evaluation of the average response time with the random dataset with a zero
arrival time.
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Figure 24. The evaluation of the average waiting time with the random dataset with a non-zero
arrival time.
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Figure 25. The evaluation of the average turnaround time with the random dataset with a non-zero
arrival time.
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Figure 26. The evaluation of the average response time with the random dataset with a non-zero
arrival time.

When using the dataset that was generated randomly, the fixed RR algorithm achieved
the worst performance in terms of the waiting time and turnaround time. The LJF algorithm
achieved the worst performance in terms of the response time. These results of the fixed
RR were because of the fixed quantum time, as well as not applying the remaining burst
time principle, resulting in increasing the overhead of the algorithm and being inefficient.
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7. Conclusions

Task scheduling is one of the critical challenges that affects the overall performance of
the cloud computing environment. The major contribution of this paper is enhancing the
round-robin algorithm by proposing a novel technique named DRRHA. It concentrates
on providing a solution for the time quantum problem by calculating the mean for all the
tasks in the ready queue, which is sorted based on the SJF manner. The process of tuning
the time quantum dynamically is repeated for each task separately and for each round.
Moreover, checking the remaining burst time of the task is an essential principle applied
with our proposed algorithm. If the remaining burst time is less than or equal to the current
task quantum, the task execution is completed and then removed from the ready queue.
Otherwise, the task is stored at the end of the ready queue to be executed in the next round.
Various experiments were conducted using the CloudSim Plus tool to evaluate the DRRHA.
From the obtained experimental results, it can be concluded that our proposed algorithm
(DRRHA) succeeded in optimizing the waiting time, turnaround time, and response time
compared with the IRRVQ algorithm, dynamic time slice round-robin algorithm, improved
RR algorithm, and SRDQ algorithm.

8. Future Work

This study can be considered a starting point for researchers, as there are still some
issues that can be solved and improved in future works, including (1) improving the RR
algorithm by finding a new approach for time quantum calculation that combines the
dynamic and fixed quantum values to improve the RR algorithm performance, (2) applying
new techniques such as fuzzy logic and neural networks to predict the best quantum
values of tasks automatically, (3) integrating the RR algorithm with other meta-heuristic
algorithms to achieve better performance, and (4) more datasets holding a high number
of tasks can be used to evaluate the proposed algorithm, as well as the other related task
scheduling algorithms.
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