VUV Pump and Probe of Phase Separation and Oxygen Interstitials in La$_2$NiO$_{4+y}$ Using Spectromicroscopy

Antonio Bianconi1,2,3,4,*,1, Augusto Marcelli1,5,1, Markus Bendele1, Davide Innocenti6, Alexei Barinov7, Nathalie Poirot8 and Gaetano Campi1,*,2

1 Rome International Center of Materials Science Superstripes, RICMASS, Via dei Sabelli 119A, 00185 Rome, Italy; augusto.marcelli@lnf.infn.it (A.M.); markus.bendele@gmail.com (M.B.)
2 Institute of Crystallography, Consiglio Nazional delle Ricerche, IC-CNR, Via Salaria Km 29.300, Monterotondo, I-00015 Rome, Italy
3 National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoye sh. 31, 115409 Moscow, Russia
4 Latvia Academy of Science, Akadēmijas laukums 1, LV-1050 Riga, Latvia
5 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati, Italy
6 Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; davide.innocenti@liverpool.ac.uk
7 Sincrotrone Trieste S.C.p.A., Area Science Park, 34012 Basovizza, Italy; alexey.barinov@elettra.eu
8 Institut Universitaire de Technologie de Blois (IUT Blois), Université de Tours, 15, Rue de la Chocolaterie, 41029 Blois, France; nathalie.poirot@univ-tours.fr

* Correspondence: antonio.bianconi@ricmass.eu (A.B.); gaetano.campi@ic.cnr.it (G.C.)

Received: 17 January 2018; Accepted: 9 February 2018; Published: 11 February 2018

Abstract: While it is known that strongly correlated transition metal oxides described by a multi-band Hubbard model show microscopic multiscale phase separation, little is known about the possibility to manipulate them with vacuum ultraviolet (VUV) light. We have investigated the photo-induced effects of VUV light illumination of a super-oxygenated La$_2$NiO$_{4+y}$ single crystal by means of scanning photoelectron microscopy. VUV light exposure induces the increase of the density of states (DOS) in the binding energy range around $E_b = 1.4$ eV below E_F. The photo-induced states in this energy region have been predicted due to clustering of oxygen interstitials by band structure calculations for large supercell of La$_2$CuO$_{4.125}$. We finally show that it is possible to generate and manipulate oxygen rich domains by VUV illumination as it was reported for X-ray illumination of La$_2$CuO$_{4+y}$. This phenomenology is assigned to oxygen-interstitials ordering and clustering by photo-illumination forming segregated domains in the La$_2$NiO$_{4+y}$ surface.

Keywords: defects in multi-band Hubbard model; photo-induced effects; oxygen interstitials; phase separation; quasi stationary states out of equilibrium; metastable phases; defects self-organization

1. Introduction

Writing patterns in organic and inorganic media by illumination, starting from silver-halide processes for traditional photography, is a key method to manipulate materials for advanced technologies. In the last decade, photo-induced effects have been investigated in the families of strongly correlated complex quantum matter like transition metal oxides, showing high temperature superconductivity [1–14] and colossal magneto resistance [15,16]. Controlling photo-induced effects in complex matter is of high interest in nanotechnology for novel oxide nanoelectronics on demand [17–21]. The interest has been mostly addressed on (A$_2$MO$_{4+y}$) systems having the K$_2$NiF$_4$-type structure with $A = Cu$, i.e., La$_2$CuO$_{4+y}$ structure, which received much attention since these compounds show
nano-scale phase separation [22–24]. The emergence of multiscale phase separation from nano-scale to micron-scale has been explained to be driven by tuning the chemical potential at a Lifshitz transition in a multi-band Hubbard model [25–27]. In this regime, the competition between spin, charge, orbital and elastic interactions can drive the system into metastable phases, i.e., quasi stationary states out of equilibrium with the coexistence and competition between a metallic phase and a localized charge ordered phase. While “large polarons” spanning about 8 lattice sites in the intermediate coupling regime have been found in cuprates, “small polarons” localized in a single lattice unit cell in the strong coupling regime have been found in manganites [29]. In these systems a relevant lattice effect is due to mobile oxygen interstitials in the spacer layers, which contribute to the complexity with the formation of dopant rich domains anticorrelated with charge ordered domains which control the nanoelectronic functionality [30].

In these complex systems characterized by a large variety of coexisting superconducting, insulating, ferromagnetic, antiferromagnetic states, X-ray illumination induces electronic and structural changes [1–21] allowing tuning of material functionalities, which allow the development of many device capabilities. The electronic properties of super-oxygenated La2NiO4+y have high technological interest [31–39]. This A2MO4+y system A = Ni having the K2NiF4-type structure has the ability to accommodate a large oxygen over-stoichiometry. It is formed by a stack of bcc atomic NiO2 layers intercalated by [La2O2] atomic layers similar to the simplest high temperature cuprate superconductor La2CuO4+y, but it does not show superconductivity at any measurable doping level. It may be possible that oxygen interstitial ordering at room temperature can be manipulated in La2NiO4+y as in the cuprate La2CuO4+y.

The [NiO2] layers are typical charge transfer Mott insulators [31–39]. The Ni2+ ion has a Ni 3d8 configuration whereas the antiferromagnetic order is comparable to NiO. The mobile oxygen interstitials in La2NiO4+y enter in the rocksalt spacer layer [La2O2+y] and sit at (1/4,1/4,1/4) type positions of the orthorhombic lattice creating \(nh = 2y \) holes into the NiO2 planes. The doped holes enter in the oxygen 2p orbital L forming 3d8L localized states, similar to NiO [40]. The 3d8L states form “small polarons” localized on single atomic oxygen L sites in the NiO2 plane where the doped charge is associated with a local lattice distortion of the NiO2 plane similarly to the insulating phase of manganites [29]. The idea of polaron ordering in doped NiO2, as the source of magnetic stripes driven by doping, has been proposed by Zaanen and Littlewood [33]. In doped Mott–Hubbard insulators, the electron-phonon interaction and the strong Coulomb repulsion can reinforce each other to stabilize small polarons, domain walls, and charge-density waves. At low temperature, the holes are ordered such that they form polaronic stripes of localized charges and magnetic moments in the diagonal direction of the Ni-O bond direction. The complexity of the striped magnetic phase is related to phase separation and ordering of oxygen interstitials. Measurements of the in-plane resistance in the nickelates suggest that oxygen interstitial orderings appear below \(T_{CO} = 320 \) K. In comparison, the magnetic and small polaron ordering occurs at temperature lower than \(T_m = 110 \) K.

The ordering of oxygen interstitials in the CuO2 plane in the families of cuprates is controlled by the compressive misfit strain [41,42] in the [CuO2] active layer near the spacer layer [La2O2+y]. The [CuO2] compressive strain is compensated by the [La2O2+y] tensile misfit strain in the formation of the multilayer crystal. The increase of the [CuO2] compressive misfit strain pushes the system to the formation of small polarons, but at the same time the [La2O2+y] tensile misfit strain determines the increase of the mobility of the \(y \) oxygen interstitials. This is the case of doped La2NiO4+y where, due to the large tensile misfit strain in the [La2O2+y], the mobility of oxygen interstitials is high. The latter is in fact an oxygen ion conductor at high temperature with high technological relevance [43–50]. Synchrotron radiation investigations of La2NiO4+y [51,52] and La2CuO4+y [53] have been performed using standard XANES, X-ray absorption near edge structure, [54–58] interpreted considering many body final states configurations, relevant in these strongly correlated oxides [59–65].
2. Results and Discussion

Scanning photoelectron microscopy (SPEM) was performed on the insulating La$_2$NiO$_{4+y}$ ($y = 0.14$) [34,35,66]. The SPEM measurements were performed at the SPECTROMICROSCOPY-3.2L beamline at the Elettra synchrotron light source, Trieste (Italy) [67,68]. Data presented here were collected at the photon energy of 27 eV. The beam size in focus is ~500 nm FWHM by a Schwarzschild objective. The VUV illumination was performed by leaving sample under same but defocused beam having donut like shape due to a presence of central stop in the optics. Surface effects such as topographical contrast were eliminated by following the procedure described in [67].

Energy distribution curves of selected micro-spots of illuminated and non-illuminated regions are presented in Figure 1. A clear difference between these photoelectron spectra has been observed. In the light exposed regions an increase of the DOS compared to the non-illuminated DOS can be observed. The difference of the DOS between illuminated and non-illuminated photoelectron spectra is represented by the blue curve in Figure 1. It reveals that states in the region around 1.4 eV below E_F are those affected by light illumination. Actually, photons in the VUV region with an energy $h\nu = 27$ eV lead to a significant change of the DOS in La$_2$NiO$_{4+y}$. This result is in excellent agreement with the theoretical simulations of the increase of ordered oxygen interstitial domains presented in Figure 2 that suggest that the DOS increases in this energy region due to oxygen interstitials.

![Figure 1](image1.png)

Figure 1. The density of states (DOS) of the La$_2$NiO$_{4+y}$ below the Fermi level E_F before (black line, non-illuminated) and after light illumination (red line, illuminated) measured by vacuum ultraviolet (VUV) photoemission using an incident photon beam of 27 eV. A clear increase of the DOS is seen in the binding energy $E_b = E - E_F$ range centered around $E_b = 1.4$ eV, illustrated by the difference curve (blue line).

![Figure 2](image2.png)

Figure 2. (a) Total DOS for La$_2$NiO$_{4+y}$ for different oxygen interstitials concentrations $y = 0, 0.125$ and 0.25 and (b) the relative increase of the DOS centered at 1.4 eV binding energy the for $y = 0.25$ and $y = 0.125$ oxygen interstitial concentration relative to the undoped lattice ($y = 0$, from [69]).
Detailed simulations on the variation of the electronic band structure vs. oxygen interstitials concentration were performed by Jarlborg et al. [69–71] using the linear muffin-tin orbital method and the local spin density approximation. These simulations on La$_2$CuO$_{4+y}$ are in good agreement with experimental results. The excess oxygen interstitials sit at the interstitial interlayer positions, above the oxygen ion in the CuO$_2$ plane of the orthorhombic unit cell, form 3D ordered puddles below 320 K. The non-magnetic total band DOSs for $n = 0, 1$ and 2 corresponding to $y = 0, y = 0.125$ and $y = 0.25$ are displayed in Figure 2a. It can be seen that the DOS is increasing considerably near E_F when one or two Oi’s are added in form of stripes, as also shown by the relative increase of the DOS in Figure 2b.

In the imaging mode, the analyzer channels well below the Fermi energy E_F can be used to detect surface effects whereas others above E_F are used to determine the background. This allows determining differences in the electronic structure and to spatially resolve the averaged spectroscopic information from photoemission.

In Figure 3a a SPEM image is shown where photoelectrons are collected around normal to the sample surface. The intensity, from white to black, represents the photoemission spectroscopy yield integrated over the binding energies around 1.4 eV below E_F. The DOS in this binding energy range appears homogeneous over the sample surface with no significant visible features. The corresponding histogram of the normalized integrated intensity in an energy window of 0.6 eV around 1.4 eV below E_F is shown in Figure 3b. This Gauss like distribution points that the DOS at every point of the surface is the same.

The illuminated region in the SPEM image shown in Figure 3c is represented as a bright broken circle. In this region, the DOS in the energy window of 0.6 eV around 1.4 eV below E_F is higher than in the non-illuminated regions. This is demonstrated by the shape of the histogram shown in Figure 3d that exhibits a double peak structure. The maximum of the main peak is nearly at the same integrated normalized intensity as the non-illuminated contribution shown in Figure 3b, characteristic of the signal from the non-illuminated area of the sample. The second maximum in Figure 3d occurs at a significantly higher integrated intensity, representing the average intensity after the illumination.

Figure 3. (a) Scanning photoelectron microscopy (SPEM) image of La$_2$NiO$_{4+y}$ of a non-illuminated region with no inhomogeneity; (b) the corresponding histogram shows a homogeneous distribution of the integrated intensity with the Gauss shape; (c) SPEM image after the illumination with the defocused beam with photons of 27 eV. Where the La$_2$NiO$_{4+y}$ sample was exposed to the light, an increase of the integrated intensity is observed. This is also seen in the corresponding histogram; (d) after the illumination two maxima are present representing the low-intensity non-illuminated area of the sample and the illuminated area with higher intensity. The scale bar in panel (a,c) corresponds to 10 μm.
3. Conclusions

In conclusion, scanning photoelectron microscopy measurements of valence band photoemission were performed in order to measure the effect of photon illumination on super-oxygenated La$_2$NiO$_{4+y}$ ($y = 0.14$). The light exposure leads to an increase of the DOS mainly in the region around 1.4 eV below E_F, in agreement with calculations showing an increase of the DOS in the same energy window, due to oxygen interstitials. An effect of light illumination was observed by several other experiments as well. Scanning nano X-ray diffraction studies on La$_2$CuO$_{4+y}$ revealed that light exposure in super-oxygenated LCO lead to an ordering of the oxygen interstitials forming rows in the La$_2$CuO$_{4+y}$, the spacer La$_2$O$_2$ layer between the active layers [9–11]. Such induced ordering can be used to induce new states in transition metal oxides, supporting the development of new device possibilities. Finally, this experiment shows that spectromicroscopy can be successfully used to pump and probe photoinduced mechanisms in complex solids and biological matter in quasi-stationary states out-of-equilibrium [72–76].

Acknowledgments: The authors thank ELETTRA, synchrotron radiation facility at Trieste, Italy for the beam time and the SPECTROMICROSCOPY-3.2L beamline staff for support.

Author Contributions: A.B., M.B. and G.C. conceived and designed the experiment; N.P. provided and characterized the single crystals; M.B. and D.I. performed the experiments; A.B., M.B. and G.C. analyzed the data; A.B., A.M. and G.C. wrote the paper. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

8. Fratini, M.; Campi, G.; Simonelli, L.; Palmisano, V.; Agrestini, S.; Filippi, M.; Saini, N.; Bianconi, A. Activation energy of the photo induced oxygen ordered phase in the La$_2$CuO$_{4.08}$ superconductor. J. Supercond. 2005, 18, 71–74. [CrossRef]

17. Soh, Y.-A.; Aeppli, G.; Zimmermann, F.M.; Isaacs, E.D.; Frenkel, A.I. X-ray induced persistent photoconductivity in Si-doped Al$_{0.35}$Ga$_{0.65}$As. J. Appl. Phys. 2001, 90, 6172–6176. [CrossRef]

34. Poiriot-Reveau, N.; Odier, P.; Simon, P.; Gervais, F. Signature of stripes in the optical conductivity of La$_2$NiO$_{4+\delta}$. Phys. Rev. B 2002, 65, 094503. [CrossRef]

36. Poiriot, N.; Phuoc, V.T.; Gruener, G.; Gervais, F. Dependence of optical conductivity with δ in La$_2$NiO$_{4+\delta}$ single crystals. Solid State Sci. 2005, 7, 1157–1162. [CrossRef]

38. Poirot, N.; Souza, R.A.; Smith, C.M. Evidences of stripe charge and spin ordering in La$_2$NiO$_{4+\delta}$ by electron spin resonance. Solid State Sci. 2011, 13, 1494–1499. [CrossRef]

44. Sayagues, M.; Vallet-Regi, M.; Hutchison, J.L.; Gonzalez-Calbet, J.M. Modulated structure of La$_2$NiO$_{4+d}$ as a mechanism of oxygen excess accommodation. J. Solid State Chem. 1996, 125, 133–139. [CrossRef]

51. Woolley, R.J.; Illy, B.N.; Ryan, M.P.; Skinner, S.J. In situ determination of the nickel oxidation state in La$_2$NiO$_{4+\delta}$ and La$_2$Ni$_3$O$_{10–\delta}$ using X-ray absorption near-edge structure. J. Mater. Chem. 2011, 21, 18592. [CrossRef]

56. Bianconi, A. Core excitons and inner well resonances in surface soft X-ray absorption (SSXA) spectra. Surf. Sci. 1979, 89, 41–50. [CrossRef]
60. Bianconi, A.; Congiu-Castellano, A.; De-Santis, M.; Rudolf, P.; Lagarde, P.; Flank, A.M.; Marcelli, A. L2,3 XANES of the high Tc superconductor YBa$_2$Cu$_3$O$_{7-\delta}$ with variable oxygen content. Solid State Commun. 1987, 63, 1009–1013. [CrossRef]
70. Jarlborg, T.; Bianconi, A. Fermi surface reconstruction of superoxygenated La$_2$CuO$_4$ superconductors with ordered oxygen interstitials. Phys. Rev. B 2013, 87, 054514. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).