Snow Cover Evolution in the Gran Paradiso National Park, Italian Alps, Using Earth Observation Data Cube

Charlotte Poussin¹,²,³*, Yaniss Guigoz⁴,⁵, Elisa Palazzi⁶, Silvia Terzago⁷, Bruno Chatenoux⁸,⁹ and Gregory Giuliani¹⁰,¹¹

¹ University of Geneva, Institute for Environmental Sciences, Bd Carl-Vogt 66, CH-1205 Geneva, Switzerland; charlotte.poussin@unige.ch
² University of Geneva, Dpt. F.-A. Forel for Environment and Water Sciences, Faculty of Sciences, Bd Carl-Vogt 66, CH-1205 Geneva, Switzerland; charlotte.poussin@unige.ch
³ UNEP/GRID-Geneva, 11 ch. des Anémones, CH-1219 Châtelaine, Switzerland; charlotte.poussin@unepgrid.ch
⁴ University of Geneva, Institute for Environmental Sciences, Bd Carl-Vogt 66, CH-1205 Geneva, Switzerland; yaniss.guigoz@unige.ch
⁵ UNEP/GRID-Geneva, 11 ch. des Anémones, CH-1219 Châtelaine, Switzerland; yaniss.guigoz@unepgrid.ch
⁶ Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), corso Fiume 4, 10133 Torino, Italy; e.palazzi@isac.cnr.it
⁷ Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), corso Fiume 4, 10133 Torino, Italy; s.terzago@isac.cnr.it
⁸ University of Geneva, Institute for Environmental Sciences, Bd Carl-Vogt 66, CH-1205 Geneva, Switzerland; bruno.chatenoux@unige.ch
⁹ UNEP/GRID-Geneva, 11 ch. des Anémones, CH-1219 Châtelaine, Switzerland; bruno.chatenoux@unepgrid.ch
¹⁰ University of Geneva, Institute for Environmental Sciences, Bd Carl-Vogt 66, CH-1205 Geneva, Switzerland; gregory.giuliani@unige.ch
¹¹ UNEP/GRID-Geneva, 11 ch. des Anémones, CH-1219 Châtelaine, Switzerland; gregory.giuliani@unepgrid.ch

* Correspondence: CP: charlotte.poussin@unige.ch
Annex 1: February and April maximum snow cover extent in the Gran Paradiso National Park (1984-2018). Blue colour corresponds to the snow-covered area, red to the no-snow covered area, grey to cloud-covered area and white to the presence of water.
Annex 2: Relative percentage of snow-covered (blue), snow-free (red) and cloud-covered (dark grey) area in December, January, February and April derived from the monthly maximum snow cover area products from 1984 to 2018 in the Gran Paradiso National Park. Light grey bars indicate months where the cloud cover exceeds a relative percentage area of 30%.
Annex 3: Seasonal aggregations (of monthly time series) reporting (left) the number of cloud-free observations ranging from 0 to 3 (the abundance of the classes is shown in the pie chart), (middle) the number of snow observations and (right) the snow cover summary for each winter season (December, January and February) from 1984 to 2018.
Annex 4: Surface air temperature (top panels), total precipitation (middle panels) and solid precipitation (bottom panels) time series (1950-2014) for the Gran Paradiso National Park obtained from the HISTALP observation-based gridded dataset. The black line represents the time series averaged over the whole extension of the PGNP, while coloured lines indicate spatial averages over different 500 meters-thick altitudinal bins, as indicated in the legend. Grey vertical lines define the time period over which the snow cover analysis is performed (see main text).
Annex 5: Temporal evolution of (top) total precipitation, solid precipitation and (middle) surface air temperature for February (S4) and April (S5) obtained from the HISTALP observation-based dataset from 1984 to 2014 in the Gran Paradiso National Park; (bottom) same as Annex S2 reported here for comparison: relative percentage of snow-covered (blue), snow-free (red) and cloud-covered (dark gray) area in February (April) derived from the monthly maximum snow cover area products from 1984 to 2018 in the Gran Paradiso National Park. Light grey bars indicate months where the cloud cover exceeds a relative percentage area of 30%.

The monthly snow cover products for February and April highlighted considerable cloud cover (affecting more than 30% of the park surface) in 11 and 15 out of 34 years, respectively. The analysis of the temporal evolution of snow cover in these two months is therefore affected by large uncertainties. Similarly, February and April snow cover do not show significant trend and correlation with temperature and precipitation in the same month. However, the snow cover time series in April displays significant, positive correlation with the previous winter (DJF) SCA (R = 0.55, p_value = 0.01). As expected at high elevations, April snow cover is thus not only dependent on precipitation and temperature in the same month but also on snow cover conditions during the previous winter. Indeed, a deep snowpack can postpone spring ablation by several weeks despite precipitation and temperature conditions favourable to snowmelt. Representing the variability of winter snow cover, as well as the snow conditions and the beginning of the melting period, SCA evolution in April can provide valuable information for water resource and alpine ecosystem management.
Annex 6: Details on the implementation

The analytical framework is directly implemented on the SDC in Python 3.6 (http://docs.python.org/3/) programming language. This language had an extensive standard library and multiple add-on packages specific to remote sensing studies (e.g., the Python library Numpy to manipulate arrays). In the SDC, all the workflows are performed in Jupyter Notebook (http://jupyter.org/), an interactive platform allowing developers to work in a unique environment containing at the same time the analysis description, the results (paragraph, equations, figures, links, etc.) and the executables documents. Specific Geographic Information System (GIS) software such as QGIS (http://qgis.org/) and ArcMap (http://arcgis.com/) are also used to process and visualize the information contained in spatial layers.