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Abstract: In this paper, we present an architecture of a personalized glucose monitoring system 

(PGMS). PGMS consists of both invasive and non-invasive sensors on a single device. Initially, 

blood glucose is measured invasively and non-invasively, to train the machine learning models. 

Then, paired data and corresponding errors are divided scientifically into six different clusters 

based on blood glucose ranges as per the patient’s diabetic conditions. Each cluster is trained to 

build the unique error prediction model using an adaptive boosting (AdaBoost) algorithm. Later, 

these error prediction models undergo personalized calibration based on the patient’s 

characteristics. Once, the errors in predicted non-invasive values are within the acceptable error 

range, the device gets personalized for a patient to measure the blood glucose non-invasively. We 

verify PGMS on two different datasets. Performance analysis shows that the mean absolute relative 

difference (MARD) is reduced exceptionally to 7.3% and 7.1% for predicted values as compared to 

25.4% and 18.4% for measured non-invasive glucose values. The Clarke error grid analysis (CEGA) 

plot for non-invasive predicted values shows 97% data in Zone A and 3% data in Zone B for dataset 

1. Moreover, for dataset 2 results echoed with 98% and 2% in Zones A and B, respectively. 

Keywords: diabetic care; non-invasive blood glucose monitoring; personalized calibration; 

machine learning; adaptive boosting; clustering; error prediction model 

 

1. Introduction 

As per the World Health Organization (WHO), approximately 422 million people have 

diabetes, and around 1.6 million people died from it in the year 2014 [1]. The number of diabetic 

patients is growing every year at an approximate rate of 8.5%. At this rate, it is expected that by 2030 

more than a billion people will have diabetes mellitus. WHO has declared diabetes as the number 

one disease in the world [1]. 

Diabetes is caused by insulin disorder. The causes of insulin disorder can be by birth or due to 

an unhealthy diet and low physical activity. These two causes are primarily responsible for Type 1 

and Type 2 diabetes, respectively [2]. Type 1 diabetes (also referred to Juvenile-onset) is caused due 

to ineffective production of insulin produced by beta cells of the pancreas whereas Type 2 diabetes 

(also known as adult-onset) arises due to the ineffective use of insulin inside the body. The main 

reason for Type-2 diabetes is a metabolic disorder due to high blood glucose involving insulin 

resistance. According to WHO, Type-2 diabetes is responsible for approximately 90% of all diabetes 

cases [1,2]. Both Type-1 and Type-2 diabetic patients need a diagnosis and regular monitoring to 

manage their disease by measuring blood glucose levels. Different biological mediums can be used 

to measure blood glucose levels inside the human body. These mediums are saliva, tears, sweat, 
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urine, and blood [3–7]. The highest glucose concentration is present in the blood; hence, it is the best 

biological medium for blood glucose measurement [7]. 

To date, several invasive monitors are developed, which are highly accurate and become a gold 

standard to measure blood glucose [8]. Some of these monitors are Contour Next, Accu-check Aviva 

plus, Freestyle Lite. These monitors have >95% accuracy and hence meet the requirement as defined 

by the Food and Drug Administration (FDA) [9]. However, the invasive monitor requires to prick 

the finger for every measurement. This method is a painful process and leaves several scars on the 

body of a patient. Therefore, a real need exists for an accurate non-invasive monitoring system. To 

satisfy this need, different non-invasive sensors were developed in the last few decades. Some of the 

non-invasive sensing technologies used for blood glucose measurements are infrared [10], 

impedance [11], diffuse reflectance [12], Raman spectroscopy [13], optical coherence tomography 

[14], photo-acoustic spectroscopy [15], and combination of sensors [16–18]. Using these sensors, 

different non-invasive or minimally invasive monitors are developed. At present, non-invasive or 

minimally invasive monitors are GlucoTrack [18], Combo Glucometer [19], SugerBEAT [20], 

Symphony [21], Wizmi [22], Eversense [23]. Even though tremendous development occurred in 

non-invasive sensing technology, unfortunately, these non-invasive monitors do not meet the >95% 

accuracy requirement defined by the FDA [24–28]. 

On the other hand, machine learning becomes powerful due to the presence of high 

computational capabilities. One of the goals of machine learning is to predict the data, as accurately 

as possible by creating a model based on existing data after extracting relevant features [29,30]. 

Regression is a very common and important task in machine learning to predict using the trained 

model. There are many different kinds of machine learning regression algorithms, which can be 

used for prediction. Some of these methods are linear regression, support vector machine (SVM), 

K-nearest neighbors, decision tree, random forest, and adaptive boosting [31,32]. Linear regression, 

support vector machine, k-nearest neighbors, and decision tree are widely used to solve simple 

regression problems [31,32]. However, ensemble methods like random forest and AdaBoost are used 

to combine the prediction of multiple machine learning models that are individually weak to 

produce a more accurate forecast [33–37]. 

Therefore, we develop and present the concept of the personalized glucose monitoring system 

(PGMS) using machine learning for the accurate measurement of blood glucose by the non-invasive 

method. To be more specific, the following are our contributions: 

(1) We develop an architecture, working principle, and software for PGMS. It consists of 

invasive and non-invasive sensors on a single device; 

(2) PGMS software forms different clusters consisting of invasive and non-invasive measured 

paired data. These clusters are developed scientifically based on domain-knowledge as per 

blood glucose ranges mapped with diabetes patient condition named as “hypoglycemia, 

normal, pre-diabetic, diabetic, highly diabetic, and critically diabetic”; 

(3) We develop the error prediction model for each cluster using the AdaBoost algorithm to 

predict the non-invasive blood glucose value accurately with goals to achieve the least 

overall MARD and Root Mean Square Error (RMSE). 

We make the trained and optimized AdaBoost models to undergo personalized calibration for 

any patient based on his/her characteristics. After calibration, a patient can measure his/her blood 

glucose level by the non-invasive method only. Our proposal reduces the MARD of less than 10% on 

two different datasets. We also present the results graphically by using the CEGA plot, the graphs 

delineate that our proposed PGMS has more than 95% of the data in Zone A; less than 5% in Zone B; 

and none in Zones C, D, and E for both datasets. 

The rest of the paper is organized as follows. Section 2 details the related work by describing the 

tools for blood glucose accuracy assessment, accuracy regulation around the world, existing invasive 

and non-invasive blood glucose monitoring systems, and details of the AdaBoost algorithm. Section 

3 consists of the proposed architecture, working principle, development of error prediction model 

using the AdaBoost algorithm, software implementation, and baseline simulation data details. 
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Section 4 consists of initial approaches with challenges, the final concept of the PGMS, test results, 

and discussion. Finally, Section 5 concludes the paper. 

2. Related Work 

In this section, we present the summary of prior works done in the area of blood glucose 

measurement and the AdaBoost machine learning model, which is related to our proposed work on 

the PGMS. 

2.1. Parameters to Assess the Accuracy of Non-Invasive Blood Glucose Monitoring System 

2.1.1. Mean Absolute Relative Difference (MARD) 

The absolute percentage of errors can be calculated for all non-invasive values with respect to 

reference invasive blood glucose values. The average value of all absolute percentage errors results 

in the MARD as calculated by Equation (1). The lower the MARD, the higher the device’s accuracy. It 

is a simple method to assess the accuracy of the non-invasive blood glucose measuring device, but it 

highly depends on the number of paired data points. Some of the highly inaccurate non-invasive 

values may not be visible due to the average calculation on a large data set. Hence, MARD cannot be 

used as the sole assessment parameter to determine the accuracy of the device [38,39]. 


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Here,  

𝑦𝑛𝑖−𝑘 = Non-invasive blood glucose value at kth measurement 

𝑦𝑟𝑒𝑓−𝑘 = Reference invasive blood glucose value at kth measurement 

k = Measurement number, which is 1,2….N 

𝑁 = Total number of measurements 

𝑀𝐴𝑅𝐷 = Mean absolute relative difference 

2.1.2. Clarke Error Grid Analysis (CEGA) Plot 

In 1987, Dr. William L. Clarke established the method for the assessment of the accuracy of 

self-monitoring blood glucose devices [40]. As per his method, each of the non-invasive blood 

glucose values should be plotted to respective reference values, as shown in Figure 1. Then based on 

the clinical criticality of the hypoglycemia and hyperglycemia conditions, the plot is divided into 

five zones. These five zones are explained below: 

• Zone A: Deviation with respect to reference is <20%. Values falling within this range are 

clinically accurate with the right treatment. 

• Zone B: Deviation with respect to reference is >20% and within the range of clinically 

benign condition without risk to the patient. 

• Zone C: Deviation is within hypoglycemia and hyperglycemia ranges. However, it can lead 

to unnecessary treatment. 

• Zone D: Deviation is potentially dangerous and can fail to detect the hypoglycemic or 

hyperglycemic situation.  

• Zone E: Deviation is extremely dangerous and can confuse hypoglycemia for 

hyperglycemia or vice versa. 
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Figure 1. Clarke error grid analysis (CEGA) plot with different zones. 

2.1.3. Minimum and Maximum Percentage Error 

The minimum and maximum relative differences are the possible extreme errors by a 

non-invasive blood glucose monitor. These parameters are also important to assess the accuracy of a 

non-invasive blood glucose monitoring device. 

2.2. Regulation for Blood Glucose Measurement Accuracy 

Blood glucose measurement and accuracy regulations around the world are very stringent to 

prevent the case of hypoglycemia and hyperglycemia. Table 1 shows different regulations around 

the world and expected device accuracy to measure blood glucose. 

Table 1. Regulations for accurate blood glucose measurement. 

Regulation 
Glucose 

Level 

Acceptable 

Error Range 

Device 

Accuracy 
MARD 

US Food and Drug Administration (FDA) [24,25] Entire range 
−15%~15% > 95% < 5% 

−20%~20% > 99% < 1% 

European Medicines [26] 

Health Canada [27] 

China Food and Drug Administration (CFDA) [28] 

≥100 mg/dL −15%~15% > 95% < 5% 

<100 mg/dL −15~15 mg/dL > 95% < 5% 

These regulations apply to both invasive and non-invasive blood glucose monitoring devices. 

As per the US FDA, if the error in blood glucose measurement ranges from −15% to 15%, then overall 

device accuracy must be greater than 95%, and MARD should be less than 5% [24,25]. However, if 

the measurement error is in the range of −20% to 20%, then overall device accuracy must be more 

than 99%. Similarly, the European Medicines, Health Canada, and China FDA regulation define 

more than 95% of device accuracy and error ranges from −15% to 15% for blood glucose values ≥100 

mg/dL [26–28]. In case the blood glucose value is <100 mg/dl, then the acceptable error range is −15 

to 15 mg/dl with device accuracy greater than 95% and MARD less than 5%. 

2.3. Accuracy of Invasive Blood Glucose Monitoring devices 

In the last few decades, several invasive blood glucose self-monitoring devices were developed 

that meet FDA accuracy requirements as defined in Table 1. Table 2 lists some of FDA approved, 

highly accurate, and commercially available invasive self-blood glucose monitors. 

Contour Next from Bayer tops the list and is a highly accurate invasive blood glucose monitor 

with 100% accuracy as listed in Table 2 [9]. Accu-check Aviva plus is another popular invasive 

device from Roche with 99% accuracy [9]. These invasive devices are easy to use by a patient to 
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measure his/her blood glucose value at home. However, a patient has to prick the skin every time to 

measure the blood glucose, and the skin of a diabetic patient takes more time to heal than normal. 

Table 2. FDA approved invasive blood glucose monitors with accuracies. 

Product Name Manufacturer Accuracy 

Contour Next [9] Bayer 100% 

Accu-Check Aviva Plus [9] Roche 99% 

Walmart ReliOn Confirm [9] Arkray 97% 

CVS Advanced [9] AgaMatrix 96% 

FreeStyle Lite [9] Abbott Diabetes Care 96% 

2.4. Accuracy of Non-invasive and Minimal-Invasive Blood Glucose Monitoring devices 

In this section, we present the accuracy study of existing non-invasive sensors and monitoring 

devices. 

2.4.1. Accuracy of Non-Invasive Blood Glucose Sensor Technologies 

In the last few decades, several non-invasive sensors were developed using various 

technologies to measure blood glucose as shown in Table 3. Infrared and impedance spectroscopy 

were the first few non-invasive sensors, which were developed to measure blood glucose [10,11]. 

Accuracies of these two sensing technologies to measure the blood glucose are 84% and 56%, 

respectively, in Zone A of the CEGA plot as listed in Table 3. Zone A can have data points with error 

in non-invasive measurements up to ± 20% compared to the reference. It means, both infrared and 

impedance spectroscopy sensors have an extensive error, and hence, they cannot meet FDA 

regulation of ±15% error with 95% device accuracy. 

Table 3. Comparison of non-invasive sensor technologies with their accuracies. 

Sensing Technology 
MARD  

(%) 

CEGA Plot (%) 

Zone A Zone A and B Zone C, D, and E 

Infrared spectroscopy [10] - 84.0 - - 

Impedance spectroscopy [11] - 56.0 93.0 7.0 

Diffuse reflectance [12] - 87.5 95.8 4.2 

Raman spectroscopy [13] - 86.7 - - 

Optical coherence tomography [14] 11.5 83.0 99.0 1.0 

Photo-acoustic spectroscopy [15] 11.8 82.7 100.0 0.0 

Multi-sensor1 [16] 8.3 90.0 100.0 0.0 

Multi-sensor2 [17] 8.8 92.7 100.0 0.0 

Multi sensor3 [18] 22.4 60.0 96.0 4.0 

Multi-sensor1 consists of near-infrared and impedance spectroscopy. Multi-sensor2 consists of near-infrared and 

photo-acoustic spectroscopy. Multi sensor3 consists of thermal, electromagnetic, ultrasonic.  

Other sensing technologies like diffuse reflectance [12], Raman spectroscopy [13], optical 

coherence tomography [14], and photo-acoustic spectroscopy [15] achieved accuracies around 

87.5%, 86.7%, 83%, and 82.7% in Zone A of CEGA plot, respectively. It means none of these sensors 

alone meets the FDA requirements. Even a combination of multiple non-invasive blood glucose 

sensors, like Multi-sensor1 [16], Multi-sensor2 [17], Multi-sensor3 [18] on a single measuring device 

does not meet the accuracy requirement as defined by the FDA. Though tremendous development 

in non-invasive sensing technologies and algorithms happened, it cannot meet the FDA and other 

countries’ regulations. 

2.4.2. Accuracy of Non-Invasive Blood Glucose Monitoring devices 

We investigated some of the self-monitoring non-invasive blood glucose devices as listed in 

Table 4. Integrity application GlucoTrack design achieves the accuracy for the non-invasive blood 

glucose measurement by combining the output of three different types of sensors based on 

ultrasonic, electromagnetic, and thermal technology mounted on a single device. However, 
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GlucoTrack achieves MARD of 23.4% for non-invasive measurements [18] and hence does not meet 

FDA accuracy requirement of <5% of MARD. 

Combo Glucometer (CoG) by Cnoga Medical is one of the best performing non-invasive blood 

glucose monitors commercially available. It uses near-infrared spectroscopy technology. It consists 

of four LEDs and four sensors to analyze absorption and scattering patterns. The sensor data is 

analyzed using a neural network algorithm. Even though it is one of the best performing devices, it 

has a MARD of 17.1% [19], which is still much higher than the FDA requirement. 

SurgerBEAT, Symphony, Wizmi, and Eversense are minimally-invasive monitors. They have 

achieved MARD of 13.8%, 18.3%, 7.2%, and 14.8%, respectively [20–23]. All these monitors are under 

development for continuous blood glucose monitoring. 

Table 4. Non-invasive and minimally-invasive blood glucose monitors with their accuracies. 

Product Name Manufacturer Sensing Technology Accuracy 

GlucoTrack [18] Integrity Application 
Multi-technology 

(Ultrasound + Thermal + Electromagnetic) 

MARD: 23.4% 

Zone A: 57% 

Zone B: 39% 

Combo Glucometer 

(CoG) [19] 
CNOGA Medical 

Near-Infrared 

Spectroscopy 

MARD: 17.1% 

Zone A: 86.2% 

Zone B: 12.6% 

SugerBEAT [20] Nemaura Medical 
Reverse 

Iontophoresis 
MARD: 13.8% 

Symphony [21] Echo Therapeutics Sonophoresis 

MARD: 12.3% 

Zone A: 81.7% 

Zone B: 18.3% 

Wizmi [22] Wear2b Ltd. NIR spectroscopy 

MARD: 7.2% 

Zone A: 93% 

Zone B: 7% 

Eversense [23] Senseonics Fluorescence MARD: 14.8% 

Hence, all of the above-mentioned devices do not meet the 95% accuracy or 5% MARD 

requirement as defined by the FDA as well as the regulatory organization of other countries. 

2.5. Machine Learning based AdaBoost Algorithm for Prediction 

In 1990, Yoav Freund and Robert Schapire proposed and proved that the boosting algorithm is 

a method that uses pre-generated weak predictors for continuous learning, gradually boosting them 

as “strong predictors” [33]. They introduced the regression algorithm named as AdaBoost.R. Later, 

Harris Drucker modified AdaBoost.R regression technique and introduced a new technique named 

as AdaBoost.R2 to achieve higher prediction efficiency [34]. Hence, we use AdaBoost.R2 algorithm 

in our approach. The following steps are involved in AdaBoost.R2 algorithm: 

a. Input: The AdaBoost regressor starts with a weak predictor, such as a decision tree, based on 

an input dataset (ui, vi). 

Sequence of m examples (u1,v1),..., (um,vm) where labels vi ∈ R 

Weak learning algorithm Weak Learner 

b. Initialize: Next, the initialization in AdaBoost starts with equal weights for all datasets. We 

consider average loss function as zero during the first iteration. 

  Iteration t = 1 

  Distribution Dt(i) = 1/m for all i 

  Average loss function Ltavg = 0 

c. Iterate: Then, the weak predictor is called repeatedly, making the predictor more concerned 

with samples that are difficult to predict by giving greater weight to incorrectly predicted 

samples in each round. During this process, the average loss function is calculated by linear or 

square, or exponential law depends on data as shown in Equations (3), (4), and (5). 
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Average loss function Ltavg < 0.5 

Call ft(ui), providing it with distribution Dt 

Build the regression model: ft(ui)⟶ vi  

Calculate the loss for each training example as, 

iitt vufil −= )()(  (2) 

Calculate the loss function Lt(i) for each training example using any of 3 functional forms as, 

Linear: 
t

t
t

Den

il
iL

)(
)( =  (3) 

Square: 

2

)(
)( 










=

t

t
t

Den

il
iL  (4) 

Exponential:
 











 −

−= t

t

Den

il

t eiL

)(

1)(  
(5) 

 

Where, iitt vufiDen −= )(sup)(  (6) 

  Calculate an average loss from Equation (7), 


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Calculate the measure of confidence in predictor as per Equation (8), 
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Update distribution Dt by using Equation (9), 
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Set t = t + 1 to perform next iteration. 

d. Output: For a particular input ui, each of the T machines makes a prediction ft. The final 

hypothesis is formed using T predictors as shown in Equation (10). 
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Here,  

𝑢𝑖 = Independent variables for ith data; 𝑣𝑖 = Dependent variables for ith data; 
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i = Number of data, which varies from is 1,2….m; m = Total number of data; 

t = Iteration number, which varies from 1,2….T; T = Total number of iterations; 

Dt(i) = Probability distribution for ith data at tth iteration; ft(ui) = Weak predictor of variable ui at tth iteration; 

𝑙𝑡(𝑖) = Loss of each training data at tth iteration; Ltavg = Average loss function at tth iteration; 

Lt(i) = Loss function of each training data at tth iteration; βt = Measure of confidence in predictor at tth iteration; 

𝑓𝑓𝑖𝑛𝑎𝑙  = Strong or final predictor;  

Motivated by the prediction accuracy of the AdaBoost algorithm on similar kinds of input data 

[33–37], we proceed to use the AdaBoost to build an error prediction model between non-invasive 

blood glucose values with respect to reference invasive values in our application.  

3. Machine Learning based PGMS with Improved Accuracy 

We present a concept of the machine learning based PGMS system that allows a patient to 

measure his blood glucose level non-invasively with more accuracy. 

3.1. PGMS Architecture 

We propose the architecture of PGMS, as shown in Figure 2. Our proposal has both invasive 

and non-invasive sensors on a single device to calculate the initial errors (E1) in non-invasive 

measured values (X) with respect to reference invasive values (Y) as shown in Figure 2. The 

processor unit divides the measured paired data into different clusters. Our approach then uses a 

Machine learning based AdaBoost algorithm to train the models based on non-invasive measured 

values (X) and reference values (Y) to predict non-invasive values (Z) for each cluster. The final error 

(E2) is calculated based on non-invasive predicted (Z) with respect to a reference value (Y), as shown 

in Figure 2. All these invasive, non-invasive measured, non-invasive predicted, initial error, and 

final error are shown on a display. A mode select button helps the user to choose invasive or 

non-invasive measurement methods.  
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Figure 2. Personalized glucose monitoring system (PGMS) structural diagram. 

3.2. Working Principle of the PGMS 

The working principle of the PGMS is explained in four stages, as shown in Figure 3. Let us 

discuss each stage in detail below. 

3.2.1. Building Machine Learning Models 

Initially, PGMS builds different machine learning models. For each patient, we measure blood 

glucose, both non-invasively (X) and invasive (Y), as shown in S101 and S102 of Figure 3. In step 

S103, the processor collects and saves the paired data (X, Y) in different clusters. Initial error (E1) is 

calculated for each pair of data (X, Y), as shown in step S104. Several paired data are collected. We 

developed the machine learning software to build an error prediction model using initial errors in 
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non-invasive measured values. The purpose of the software is to train the AdaBoost consisting of 

error prediction models for each cluster as described in step S105. 
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Figure 3. Software flowchart of the PGMS. 

The output of the AdaBoost models is to predict accurate non-invasive blood glucose value (Z), 

as demonstrated in step S106 of Figure 3. In step S107, the final error (E2) is calculated in the 

non-invasive predicted value (Z) with respect to a reference value (Y). The goal is to train AdaBoost 

models for each cluster based on the least MARD and RMSE considering in-between patient 

variations. Multiple hyperparameters are changed to optimize each AdaBoost model to achieve 

these goals as shown in steps S108 and S109. This optimization process continues by going back to 

step 101 and S105 until the desired goal is achieved. Once the desired goals are achieved, we save the 

optimized hyperparameters of each model as shown in step S110. Step S111 is the end of building 

the AdaBoost models. 

3.2.2. Personalizing the Device for a Patient 

Once AdaBoost models are successfully trained, then personalized calibration starts for a 

patient based on the individual patients’ characteristics such as food intake, physical activity, stress 

level, and skin temperature as shown in step 2 of Figure 3. Both non-invasive (X) and invasive (Y) 

values are measured for a patient, and paired data are collected, as shown in steps S201 and S202. 

The collected paired data is saved and initial error (E1) is calculated as shown in steps S203 and S204. 

Each AdaBoost model is recalled from step S110 and retrained for a specific patient in step S205. The 

retraining of the models is done based on the patient’s characteristics. Retrained models predict the 

non-invasive blood glucose values in step S206 and calculate the final error (E2) in step S207. Once 

again, hyperparameters are updated until the desired accuracy goals are achieved for a patient, as 

shown in steps S208 and S209. The software saves the models hyperparameters for a patient based 

on the least MARD and RMSE in step S210. Once the software starts predicting non-invasive value 

(Z) based on the updated models within the pre-defined accuracy limit, the calibration stage is 

completed, as shown in step S211. 

3.2.3. Patient Measure Blood Glucose Non-Invasively 

Once the error in “non-invasive predicted (Z)” is within acceptable limit for the next several 

subsequent readings, the patient is notified to use the device non-invasively only to measure the 
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blood glucose level, as shown in step S301 of Figure 3. At this point, blood glucose is measured 

non-invasively, and the device becomes personalized for a user. 

3.2.4. Periodic Re-Calibration of the Device (If Needed) 

As part of the device periodic re-calibration, the patient measures both non-invasive (X) and 

invasive (Y) blood glucose for the next few cases, as shown in step S401 of Figure 3. The error (E2) in 

predicted non-invasive value (Z) is calculated in step S402. If error (E2) is within the acceptable limit, 

then the patient continues to use the device non-invasively, as shown in steps S403 and S404. If 

predicted non-invasive glucose value is outside the acceptable limit, then the device undergoes 

personalized calibration again, as demonstrated in step 2 of Figure 3. 

3.3. PGMS Algorithm Development 

The non-invasive glucose (𝑥𝑖) is measured with respective invasive reference values (𝑦𝑖). The 

relative difference (di) in non-invasive measured value is calculated by Equation (11). For the 

AdaBoost model, 𝑥𝑖 is the independent variable, and 𝑑𝑖 is the dependent variable. Initially, data 

(𝑥𝑖 , 𝑑𝑖) develops weak predictors (ℎ𝑡) as shown in Equation (12). 

iit xyd −=  (11) 

iit dxh →)(  (12) 

The error between predicted and the actual relative difference is calculated in terms of loss for 

each training data by Equation (13).  

iitt dxhil −= )()(  (13) 

The average loss is calculated from Equation (7) based on linear, square, or exponential loss 

functions. The confidence in predictor is calculated in the same way as shown in Equation (8). The 

weight is updated by Equation (14). By using Equation (14), the probability is updated for each weak 

predictor. 
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In the end, strong predictor in terms of the error prediction model is derived by Equation (15) 

until it reaches the optimized result. For every non-invasive measured value (𝑥𝑖), predicted relative 

difference (𝑑𝑖𝑝𝑟𝑒𝑑) is calculated during the model training and optimization. Once predicted relative 

difference (𝑑𝑖𝑝𝑟𝑒𝑑) is estimated, we calculate non-invasive predicted blood glucose value 𝑧𝑖 from 

Equation (16).  
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ipredii dxz +=  (16) 

The iteration continues until RMSE as calculated in Equation (17) is within an acceptable range 

and reached optimality to predict the relative difference in blood glucose values accurately. 



Diagnostics 2020, 10, 285 11 of 22 

 

( )
=

−=
m

i

ipredi dd
m

RMSE
1

21
 (17) 

To ensure prediction is accurate, we calculate the initial MARD (E1) in the non-invasive 

measurement by Equation (18) and compare it with final MARD (E2) in the non-invasive predicted 

as calculated by Equation (19). We expect a reduction in the final MARD to prove our approach. 
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Here, 

𝑥𝑖 = Measured non-invasive blood glucose value; X = Dataset of 𝑥𝑖; 

𝑦𝑖 = Reference invasive blood glucose value; Y = Dataset of 𝑦𝑖; 

𝑧𝑖 = Non-invasive predicted blood glucose value; Z = Dataset of 𝑧𝑖; 

𝑑𝑖 = Relative different in measured non-invasive; ℎ𝑡 = Weak predictor at tth iteration; 

𝑑𝑖𝑝𝑟𝑒𝑑 = Predicted relative different; 𝑙𝑡(𝑖) = Loss of each training data at tth iteration; 

i = ith paired data, which varies from 1,2,….m; βt = Measure of confidence at tth iteration; 

m = Number of paired data; t = tth iteration, which is varies from 1,2,….T; 

α = Learning rate RMSE = Root mean square error 

E1 = MARD before applying AdaBoost; E2 = MARD after applying AdaBoost; 

3.4. Software Implementation for PGMS 

We develop our code in python language version 3.7 to implement the AdaBoost algorithm 

represented from Equation (11) to Equation (19). We have used the Scikit-learn library, which has a 

wide variety of machine learning algorithms [41]. The Scikit-learn AdaBoost regressor has multiple 

hyperparameters that need to be optimized. These hyperparameters are regressor type, maximum 

depth, number of estimators, learning rate, loss function, and number of random states [41]. The 

training to test ratio is set at 70:30. We used a bagging regressor to randomize the data for training 

and testing to remove the biasing (if any). We also used the Pandas library to develop the CEGA plot 

for the non-invasive measured values and predicted values with respect to reference invasive 

values. 

The inputs in our software implementation are non-invasive blood glucose values (X) as an 

independent variable and invasive blood glucose values (Y) as a dependent variable. The outputs of 

our implementation are non-invasive predicted blood glucose values (Z), which are expected to be 

the same as reference invasive blood glucose values (Y). AdaBoost model is trained on 70% of data to 

predict non-invasive blood glucose values (Z) as a function of non-invasive values (X). Once the 

model is built, the test is conducted on the remaining 30% data to check the prediction efficacy. After 

each test run, code is written to compare the initial and final accuracies in terms of MARD to check 

the prediction accuracy using Equations (18) and (19). The RMSE is calculated by Equation (17) to 

test the robustness of prediction. Every run is followed by the CEGA plot with the calculation of the 

number of paired data in Zones A, B, C, D, and E. We compared the improvement in the CEGA plot 

Zone by Zone based on the initial paired data (X, Y) to final paired data (Z, Y).  
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We changed various regressors named as decision tree, gradient boosting, and support vector 

machine during each run to optimize the test result. The maximum depth was changed from 1 to 100 

and estimators were varied from 10 to 500. The learning rate was set with different values ranging 

from 0.0001 to 1 and random state was changed from 1 to 5. We chose different loss functions like 

linear, square, and exponential during the optimization run. We performed the grid search for 

model tuning and hyperparameter optimization until the desired MARD and CEGA plot in 

non-invasive predicted values was achieved. 

3.5. Baseline Simulation Datasets 

For the GlucoTrack non-invasive blood glucose monitor, a clinical study was conducted on 91 

subjects consisting of type 1 and type 2 diabetes patients [18]. It had 1772 paired data varying from 

65~492 mg/dl and 80~352 mg/dl from the HemoCue reference invasive and GlucoTrack non-invasive 

devices, respectively [18]. We produced the “dataset 1” statically, which consists of 918 paired 

invasive and non-invasive values similar to that of GlucoTrack and HemoCue [18]. The dataset 1 has 

the same invasive range (65~492 mg/dl), non-invasive range (80~352 mg/dl), and variation 

(−221%~61%) as listed in Table 5. The most important parameter MARD of dataset 1 is 23.9% 

compared to 23.4% of CoG data as shown in Table 5, which is within ±1% accuracy. 

Table 5. Baseline dataset 1. 

Parameters Unit GlucoTrack [18] Dataset 1 

Invasive Range mg/dl 65~492 65~492 

Non-invasive range mg/dl 80~352 80~352 

Number of paired data - 1772 918 

MARD % 23.4 23.9 

Minimum Error % −221 −221 

Maximum Error % 61 61 

For the CoG non-invasive blood glucose monitor, a clinical study was conducted on 19 subjects 

consisting of type 1 and type 2 diabetes patients [19]. It had 730 paired data varying from 37~458 

mg/dl and 40~428 mg/dl from the Okmeter Match reference invasive and CoG non-invasive devices, 

respectively [19]. We produced “dataset 2”, consisting of 470 paired reading similar to CoG and 

Okmeter. The simulated dataset 2 has the same invasive range (37~458 mg/dl), non-invasive range 

(40~428 mg/dl), and variation (−131%~65%) as listed in Table 6. The MARD for dataset 2 is 17.4% 

compared to 17.1% of CoG data as shown in Table 6, which is within ±1% accuracy.  

Table 6. Baseline dataset 2. 

Parameters Unit CoG [19] Dataset 2 

Invasive Range mg/dl 37~458 37~458 

Non-invasive range mg/dl 40~428 40~428 

Number of paired data - 730 470 

Minimum Error % −131 −131 

Maximum Error % 65 65 

MARD % 17.1 17.4 

4. Results and Discussion 

In this section, we present the result of the different approaches applied in the PGMS. This 

section also elaborates on the initial challenges faced and the resolution of those challenges. 

4.1. Initial Approaches and Challenges for PGMS 

4.1.1. PGMS Using the AdaBoost without Clustering 

Initially, we apply the AdaBoost algorithm without clustering using our PGMS software to the 

dataset 1. The model is trained using the 642 paired data (~70% of 918 paired data of the dataset 1). 
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We tuned the AdaBoost model after several rounds of hyperparameters optimization using the grid 

search technique. During each run, the test is performed on the remaining 276 paired data (~30% of 

918), randomly. The best value of the final MARD (E2) is achieved as 26.3% on the non-invasive 

predicted values compared to 27.4% as the initial MARD (E1) on non-invasive measured values as 

summarized in third and fourth columns of Table 7. A very slight improvement in the MARD is 

observed. In order to further improve the MARD, we apply the Clustering technique as discussed in 

the next section. 

Table 7. Error and MARD reduction by different initial approaches. 

Parameter Unit 
AdaBoost AdaBoost + K-means Clustering 

Initial Error Final Error Initial Error Final Error 

Minimum Error % −60.1 −60.7 −61 −57 

Maximum Error % 149.3 143.5 149 139 

MARD % 27.4 26.3 26.8 25.1 

4.1.2. PGMS with the K-means Clustering and AdaBoost 

The dataset 1 had a very wide range of blood glucose values, from 65 to 492 mg/dl for the 

invasive values and 80 to 352 mg/dl for the non-invasive measured values, as shown in Table 5. 

Hence, initial error (E1) had an extensive range of variations from −221 to 61%. Therefore, we divided 

the data into different groups using the K-means clustering algorithm. Then, we applied the 

AdaBoost algorithm on each cluster separately to predict the non-invasive blood glucose values. We 

trained and tested the models for each cluster with different cluster sizes like 2, 3, 4, 5, and 6. 

Unfortunately, there is a very slight improvement in accuracy for each case. Cluster with size as 4 

has a better result and hence result is presented in fifth and sixth columns of Table 7. Overall MARD 

is calculated as the weighted average of the MARD of 4 clusters. We achieved final MARD (E2) as 

25.1% in the non-invasive predicted values compared to 26.8% of initial MARD (E1). There is a very 

minor reduction in the error and improvement in the accuracy. We can easily interpret that K-means 

clustering combined with AdaBoost was also unable to predict the non-invasive blood glucose 

values accurately. 

4.2. PGMS with Domain-Knowledge Clustering and AdaBoost 

In order to further improve the accuracy, we have divided the entire paired data into different 

clusters based on our domain-knowledge. We formed the six clusters inspired by patient conditions 

and blood glucose values, as shown in Table 8. We named these clusters as hypoglycemia (< 80 

mg/dl), non-diabetic (81–115 mg/dl), pre-diabetic (116–150 mg/dl), diabetic (151–180 mg/dl), highly 

diabetic (181–250 mg/dl), and critically diabetic (> 250 mg/dl). During the personalized calibration, 

based on the patient’s blood glucose range, some of the models among the trained AdaBoost models 

were selected for a patient. For example, if the blood glucose varies from 95~162 mg/dl for a patient 

throughout the day during the personalized calibration, the selected cluster and trained models are 

no diabetic range (81–115 mg/dl), pre-diabetic range (116–150 mg/dl), and diabetic range (151–180 

mg/dl) to predict the non-invasive blood glucose value. Furthermore, based on the non-invasive 

measured blood glucose value, the final model will be shortlisted. 

Table 8. Clusters formed based on domain-knowledge. 

Blood Glucose Range (mg/dL) Cluster Name 

50–80 Hypoglycemia 

81–115 No diabetic 

116–150 Pre-diabetic 

151–180 Diabetic 

181–250 Highly diabetic 

> 250 Critically diabetic 
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We divided the paired input data (X, Y) into six clusters as defined in Table 8. Each cluster is 

trained separately by the AdaBoost algorithm to predict accurate non-invasive blood glucose values 

(Z) using 70% paired data. Hyperparameters were optimized using the grid search for model tuning. 

Once optimization was over, the test was performed on the remaining 30% paired data to calculate 

the improvement in mean, minimum, and maximum relative difference in the non-invasive 

predicted values (Z) for each cluster. Overall initial MARD (E1) and final MARD (E2) are calculated 

as the weighted average of the mean relative difference of each cluster, as shown in Equations (20) 

and (21). The overall RMSE is calculated by Equation (22) to check the prediction robustness of the 

trained model. 
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Here, 

n = Number of clusters; j = Cluster number, which is from 1,2,….n; 

mj = Number of paired data in the jth cluster; i = ith paired data, which varies from 1,2,….m; 

𝑥𝑖𝑗  = Measured non-invasive blood glucose value for ith 

paired data in jth cluster; 

𝑦𝑖𝑗  = Reference invasive blood glucose value for ith 

paired data in jth cluster; 

𝑧𝑖𝑗  = Non-invasive predicted blood glucose value for ith 

paired data in jth cluster; 

E1 = Overall MARD in percentage before applying the 

AdaBoost; 

E2 = Overall MARD after applying the AdaBoost; RMSEj = Root mean square error of jth cluster 

4.2.1. Results of the PGMS on Dataset 1 

For dataset 1, the AdaBoost model is trained with 642 paired data (~70% of 918) consisting of 

reference invasive and non-invasive measured values. During the model tuning, the best test result 

to predict the non-invasive blood glucose values with least MARD and best CEGA plot is achieved 

for the hyperparameters set as decision tree regressor, 10 maximum depths, 200 estimators, 0.7 

learning rate, exponential loss function, and 3 random states as shown in the third column of Table 9.  

Table 9. Optimized hyperparameters values. 

Hyperparameters Ranges For Dataset 1 For Dataset 2 

Regressor type 

Decision Tree 

Gradient Boosting 

Support Vector Machine 

Decision Tree Decision Tree 

Depth 1~100 10 20 

Estimators 10~500 200 150 

Learning rate 0.0001~1 0.7 0.008 

Loss function 
Linear, Square 

Exponential 
Exponential Linear 

Random state 1~5 3 1 
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Later, the test is performed on a trained and optimized model with the remaining 276 paired 

test data (~30% of 918). The optimized test result is presented in Table 10.  

Table 10. Results of the PGMS applied to dataset 1. 

Cluster Paired Data Parameter Unit Initial Error Final Error 

< 80 4 

Minimum % −152 −23 

Maximum % −92 2 

MARD % 124.6 12.6 

81–115 32 

Minimum % −147 −30 

Maximum % 20 19 

MARD % 48.3 7.9 

116–150 51 

Minimum % −94 −16 

Maximum % 21 13 

MARD % 31.2 6.0 

151–180 42 

Minimum % −81.0 −18.3 

Maximum % 34.8 7.1 

MARD % 21.8 5.1 

181–250 93 

Minimum % −64.9 −21.5 

Maximum % 52.5 16.3 

MARD % 16.6 7.5 

> 250 54 

Minimum % −12 −32 

Maximum % 43 22 

MARD % 17.2 9.0 

Total 276 

Minimum * % −152 −32 

Maximum † % 53 22 

Overall MARD ‡ % 25.4 7.3 

* Minimum is lowest out of 6 clusters. † Maximum is the highest out of 6 clusters. ‡ Overall MARD 

is the weighted MARD of 6 clusters. 

The first column of Table 10 is a cluster type. It consists of 6 clusters based on the different 

ranges of blood glucose values. For each cluster, we summarized the % minimum error, % 

maximum error, and % MARD calculated in the non-invasive measurements (X). Subsequently, the 

% minimum error, % maximum error, and % MARD were calculated for the non-invasive predicted 

(Z). The AdaBoost model predicts the non-invasive values accurately and hence reduces the final 

errors compared to the initial errors for each cluster as shown in Table 10.  

The last three rows of Table 10 summarize the overall result for the entire range (all clusters). 

The final MARD for the non-invasive predicted values is reduced to 7.3% compared to 25.4% of the 

initial MARD. The minimum error is reduced to −32% for the non-invasive predicted values 

compared to −152% in the non-invasive measured values. The maximum error is reduced to 22% for 

the non-invasive predicted values compared to 53% in the non-invasive measured values. The errors 

are drastically reduced by the successful prediction of non-invasive blood glucose values. The RMSE 

has reduced from 54.5 mg/dl to 20 mg/dl, which demonstrates the prediction robustness. Hence, it 

validates the concept of PGMS using domain-knowledge clustering and AdaBoost. 

We developed the plot of invasive (Y), non-invasive measured (X), and non-invasive predicted 

(Z) values for the dataset 1, shown in Figure 4a. It is very illustrative that initial values of 

non-invasive blood glucose (in green color) show extensive errors with respect to reference invasive 

blood glucose values (in blue color). However, non-invasive predicted values (in red color) curve 

follows the reference invasive blood glucose values curve (in blue color) as error reduces 

extensively. 
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(a) (b) 

Figure 4. (a) Non-invasive measured (in green color) vs. non-invasive predicted (in red color) with 

respect to reference values (in blue color). (b) Percentage error non-invasive measured (in green 

color) vs. non-invasive predicted (in red color) for dataset 1. 

Figure 4b shows a graphical representation of the initial errors (E1) in the non-invasive 

measured values (in green color) compared to the final errors (E2) in the PGMS (in red color). From 

the plot, it is very evident that initially non-invasive measured values have extensive errors ranging 

from −152%~53% (green color) compared to the errors in the non-invasive predicted values (red 

color) from −32~22% for the dataset 1. 

For dataset 1, the CEGA plot for the non-invasive measured values is shown in Figure 5a and 

summarized in the second and third columns of Table 11. Out of 276 test data, 149 and 115 test data 

fall in Zone A and B, respectively, as shown in the second column of Table 11. Zones C and D have 9 

and 3 paired data, respectively. In terms of percentage, Zone A, B, C, and D consist of 54%, 42%, 3%, 

and 1%, respectively, as summarized in the third column of Table 11. Due to substantial error in the 

non-invasive measured value, only 54% of paired data is in Zone A of CEGA plot. 

The CEGA plot for the non-invasive predicted values for dataset 1 is shown in Figure 5b. It is 

very illustrative that most of the paired data are part of Zone A; very few of Zone B; and none of 

Zones C, D, and E. The fourth and fifth columns of Table 11 summarize the CEGA plot as shown in 

Figure 5b. Zone A consists of 267 data (97%) and Zone B consists of 9 data (3%). Zones C, D, and E 

consist of none. This result is achieved due to the accurate prediction in the non-invasive blood 

glucose values by the PGMS concept based on the domain-knowledge clustering and AdaBoost 

algorithm. 

  
(a) (b) 

Figure 5. Clarke error grid analysis (CEGA) plot for the dataset 1. (a) For non-invasive measured 

values, (b) for non-invasive predicted values. 
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Table 11. CEGA plot summary for the dataset 1. 

Zones 
Non-Invasive Measured Values Non-Invasive Predicted Values 

Number % Number % 

Zone A 149 54 267 97 

Zone B 115 42 9 3 

Zone C 9 3 0 0 

Zone D 3 1 0 0 

Zone E 0 0 0 0 

4.2.2. Results of the PGMS on Dataset 2 

We also applied our approach to dataset 2. The AdaBoost model is trained with 329 paired data 

(~70% of 470) consisting of reference invasive and non-invasive measured values. The model is 

tuned with hyperparameters optimization using a grid search. The best result is achieved with the 

hyperparameters set as decision tree regressor, 20 maximum depths, 150 estimators, 0.008 learning 

rate, linear loss function, and 1 random state as shown in the fourth column of Table 9. The test is 

performed on a trained and optimized model with the remaining 143 paired test data (~30% of 470). 

The optimized test result is presented in Table 12. 

For dataset 2, the AdaBoost model also predicts the non-invasive values accurately post 

domain-knowledge based clustering. It reduces the final errors compared to the initial errors for 

each cluster as shown in Table 12. The final MARD for the non-invasive predicted values is reduced 

to 7.1% compared to 18.4% of the initial MARD. The minimum error is reduced to −50% compared to 

−131% initially. The corresponding maximum error is reduced to 34% compared to 65% initially. The 

RMSE has reduced from 38.8 mg/dl to 13.9 mg/dl to show the prediction robustness. Once again, the 

errors are drastically reduced by the successful prediction of non-invasive blood glucose values. 

Hence, it re-validates the concept of PGMS with improved accuracy. 

We developed the plot of invasive (Y), non-invasive measured (X), and non-invasive predicted 

(Z) values for the dataset 2 and shown in Figure 6a. It is very illustrative that initial values of 

non-invasive blood glucose (in green color) show extensive deviation from reference invasive blood 

glucose values (in blue color). However, non-invasive predicted values (in red color) curve follows 

the reference invasive blood glucose values curve (in blue color) very well as error reduces 

drastically. 

Table 12. Results of the PGMS applied to the dataset 2. 

Cluster Paired Data Parameter Unit Initial Error Final Error 

< 80 12 

Minimum % −43.3 −20.6 

Maximum % 27.4 33.8 

MARD % 11.3 10.9 

81–115 26 

Minimum % −130.9 −49.8 

Maximum % 16.7 16.6 

MARD % 31.7 9.8 

116–150 39 

Minimum % −64.0 −15.4 

Maximum % 65.1 26.0 

MARD % 17.0 6.5 

151–180 30 

Minimum % −56.1 −14.2 

Maximum % 40.1 8.8 

MARD % 15.6 4.5 

181–250 27 

Minimum % −50.5 −19.6 

Maximum % 38.6 17.1 

MARD % 16.5 7.3 

> 250 9 

Minimum % −10.4 −17.0 

Maximum % 33.7 7.5 

MARD % 11.1 5.6 

Total 143 

Minimum * % −131 −50 

Maximum † % 65 34 

Overall MARD ‡ % 18.4 7.1 
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* Minimum is the lowest out of 6 clusters. † Maximum is the highest out of 6 clusters. ‡ Overall 

MARD is the weighted MARD of 6 clusters. 

  
(a) (b) 

Figure 6. (a) Non-invasive measured (in green color) vs. non-invasive predicted (in red color) with 

respect to reference values (in blue color). (b) Percentage error non-invasive measured (in green 

color) vs. non-invasive predicted (in red color) for dataset 2. 

Figure 6b shows a graphical representation of the initial errors (in green color) compared to the 

final errors (in red color). From the plot, it is very evident that initially non-invasive measured 

values have very wide errors ranging from −131~65% (green color) compared to the errors in the 

non-invasive predicted values (red color) from −50~34% for the dataset 2. 

For dataset 2, the CEGA plot for the non-invasive measured values is shown in Figure 7a and 

summarized in the second and third columns of Table 13. Out of 143 test data, 99 and 41 test data fall 

in Zones A and B, respectively, as shown in the second column of Table 13. Zones C and D have 2 

and 1 paired data, respectively. In terms of percentage, Zones A, B, C, and D consist of 69%, 29%, 1%, 

and 1%, respectively, as summarized in the third column of Table 13. Due to substantial error in the 

non-invasive measured value, only 69% of paired data is in the Zone A of CEGA plot. 

  
(a) (b) 

Figure 7. Clarke error grid analysis (CEGA) plot for the dataset 2. (a) For non-invasive measured 

values, (b) for non-invasive predicted values. 

The CEGA plot for the non-invasive predicted values for the dataset 2 is shown in Figure 7b. It 

is very illustrative that most of the paired data are part of Zone A; very few of Zone B; and none of 

Zones C, D, and E. The fourth and fifth columns of Table 13 summarize the CEGA plot as shown in 

Figure 7b. Zone A consists of 140 data (98%); Zone B consists of 3 data (2%); and there are none in 
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Zones C, D, and E. Once again, this result is achieved due to the accurate prediction in the 

non-invasive blood glucose values by the PGMS. 

Table 13. CEGA plot summary for dataset 2. 

Zones 
Non-Invasive Measured Values Non-Invasive Predicted Values 

Number % Number % 

Zone A 99 69 140 98 

Zone B 41 29 3 2 

Zone C 2 1 0 0 

Zone D 1 1 0 0 

Zone E 0 0 0 0 

We started with the AdaBoost alone to apply in the PGMS. However, the MARD was reduced 

from 27.4% to 26.3% for dataset 1 as summarized in Table 14. It improves accuracy very little due to 

large initial errors (−221% to 61%) in the non-invasive measured values. To resolve the large initial 

error issue, we divided the entire data into different groups using the K-means clustering technique 

and then applied AdaBoost for each cluster. However, the MARD was reduced from 26.8% to 25.1% 

for dataset 1 as listed in Table 14. It also did not produce a good result as K-means clustering forms 

the groups based on random centroid and density. Hence, we changed our clustering approach from 

the K-means algorithm to domain-knowledge. 

We formed six different clusters based on the blood glucose range and patient diabetes 

condition. The AdaBoost algorithm started predicting the non-invasive blood glucose values 

accurately in each cluster. PGMS approach is applied to two different datasets and exceptional 

results are achieved. MARD was reduced from 25.4% to 7.3% for dataset 1 as shown in Table 14. The 

CEGA plots showed that 97% and 3% of data fall in Zones A and B after applying our approach 

compared to 54%, 42%, 3%, and 1% of data in Zones A, B, C, and D initially for the dataset 1. The 

minimum error was reduced from −152% to −32% and maximum error was reduced from 53% to 

22%. To validate further, we applied our approach to dataset 2. The result echoed for dataset 2 and 

MARD was reduced from 18.4% to 7.1% as tabulated in Table 14. The CEGA plots showed that 98% 

and 2% of data falls in Zones A and B after applying our approach compared to 69%, 29%, 1%, 1% of 

data in Zones A, B, C, and D initially for the dataset 2. The minimum error was reduced from −131% 

to −50% and maximum error was reduced from 65% to 34%. 

Table 14. Performance comparison of PGMS with other non-invasive or minimal-invasive monitors. 

Non-Invasive Measurement System MARD 
CEGA Plot 

Zone A Zone B 

PGMS 

AdaBoost 26.3% - - 

K-Means Clustering + AdaBoost 25.1% - - 

Domain-knowledge Clustering + AdaBoost 7.1% 98% 2% 

GlucoTrack 23.4% 57% 39% 

CoG 17.1% 86.2% 12.6% 

SugarBEAT 13.8% - - 

Symphony 12.3% 81.7% 18.3% 

Wizmi 7.2% 93% 7% 

Eversense 14.8% - - 

PGMS produces the industry’s best result for non-invasive blood glucose measurement 

compared to existing monitors as presented in Table 14. PGMS achieved the MARD as 7.1% 

compared to 23.4% of GlucoTrack, 17.1% of CoG, 13.8% of SugarBEAT, 12.3% of Symphony, and 

14.8% of Eversense. Wizmi achieved the MARD at 7.2%, which is very close to PGMS MARD. 

However, on the CEGA plot, PGMS has achieved 98% of paired data in Zone A and 2% in Zone B 

compared to 93% and 7%, respectively, for Wizmi. 
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5. Conclusions and Future Work 

In this study, we presented a novel data-driven machine learning based personalized glucose 

monitoring system (PGMS) for non-invasive blood glucose measurement. PGMS approach used the 

domain-knowledge clustering technique and AdaBoost algorithm to train the error prediction 

models and predicted the non-invasive blood glucose values accurately. We validated the PGMS 

concept by applying it to two different datasets. The PGMS achieved the final MARD as 7.3% on 

dataset 1 and 7.1% on dataset 2 for non-invasive predicted values. Moreover, the CEGA plots on 

dataset 1 showed that 97% of predicted non-invasive values fall in Zone A and 3% lie in Zone B after 

applying the PGMS concept. Similarly, the CEGA plots on dataset 2 showed that 98% of 

non-invasive predicted values lie in Zone A and 2% in Zone B. For both datasets, there are no 

non-invasive predicted values under the Zones C, D, and E. The extraordinary result of PGMS is a 

crucial step towards an accurate non-invasive blood glucose measurement for diabetes 

management. In a future study, we also aim to perform clinical trials to improve the result by 

collecting personalized data such as food intake, physical activity, stress level, and skin temperature 

to enhance the accuracy of PGMS.  
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