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Abstract: Sporting organizations such as professional clubs and national sport institutions are
constantly seeking novel training methodologies in an attempt to give their athletes a cutting edge.
The advent of microelectromechanical systems (MEMS) has facilitated the integration of small,
unobtrusive wearable inertial sensors into many coaches’ training regimes. There is an emerging
trend to use inertial sensors for performance monitoring in rowing; however, the use and selection
of the sensor used has not been appropriately reviewed. Previous literature assessed the sampling
frequency, position, and fixing of the sensor; however, properties such as the sensor operating ranges,
data processing algorithms, and validation technology are left unevaluated. To address this gap,
a systematic literature review on rowing performance monitoring using inertial-magnetic sensors was
conducted. A total of 36 records were included for review, demonstrating that inertial measurements
were predominantly used for measuring stroke quality and the sensors were used to instrument
equipment rather than the athlete. The methodology for both selecting and implementing technology
appeared ad hoc, with no guidelines for appropriate analysis of the results. This review summarizes a
framework of best practice for selecting and implementing inertial sensor technology for monitoring
rowing performance. It is envisaged that this review will act as a guide for future research into
applying technology to rowing.
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1. Introduction

Recent advances in technological developments have enabled the mass production of small,
unobtrusive wearable inertial sensors [1]. These sensors can be used to directly monitor an athlete’s
biomechanics as well as to instrument the equipment an athlete interacts with in a laboratory, training,
or competitive setting. Previous studies using wearable inertial sensors for athlete performance
analysis show the hindrance of normal movement to be minimal [2]. The miniaturisation of inertial
sensors is attributable to microelectromechanical systems (MEMS). MEMS are chip-level devices based
on movement of silicon-based arms acting as a mass and spring. The acceleration and rotation can be
logged and transmitted [3–5]. MEMS accelerometer technologies include those based on capacitive,
piezoelectric, and piezoresistive effects [3]. When inertial sensors are used in rowing, the device must
be waterproof. Moreover, if an athlete is being monitored on-water training, then other technologies
such as global positioning system (GPS) and on-board video are recommended so that the inertial
sensor data can be synchronised.
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This review outlines the published literature to assess the applications of inertial sensors in rowing.
From this, athletes and coaches have a guide for inertial sensors applications and design method
for implementations.

A systematic review evaluating the integration of wearable inertial sensors into a sporting
environment for performance monitoring was published in March 2018 [6]. The review captured
286 records and of these 10/286 (3.50%) included on-boat water sports such as rowing and kayaking.
These relatively few records either show that there is a gap in using MEMS in performance monitoring
in rowing or this is an under researched area. Due to the physically demanding and technical nature of
rowing, it is hypothesized that performance monitoring tools would be of great benefit.

Reviews of scientific literature pertinent to rowing have been published; however, to the best of
our knowledge, none have focused on the use of technology. Previous literature reviews in rowing
have focused on the biomechanical and metabolic factors imperative for a successful rower and the
likely injures to rowers. Baudouin and Hawkins [7] looked to bridge the gap between physiological,
biomechanics and physical aspects involved in rowing by understanding the interrelationship between
the biological and mechanical systems. They propose that the blade force is the only propulsive
force counter-acting the drag forces (air drag and hydrodynamic drag acting on the rowing system.
It was found that the impact of vertical oscillations of the shell are minimal. The link between
blade force and the rower is the oar and this force is transmitted via the oarlock. They suggest that
sustainable power is maximized through matching the rigging setup and blade design to the rower’s
joint torque–velocity characteristics. They concluded that a more comprehensive understanding of
force-time profiles are needed so that deficiencies in a rower’s biomechanics can be optimised to
achieve greater force generation.

Michael et al. [8] reviewed literature surrounding the metabolic demands of kayaking. The scientific
literature highlights the high levels of both aerobic power and anaerobic capacity across kayak athletes.
They suggested that velocity of the kayak as well as force, power, technique and aerobic fitness are
valuable metrics for athlete performance monitoring. Understanding the physiological demands of
kayaking is a useful tool for coaches as it helps them make informed decisions about an athlete’s
suitability for race distances. It also helps to optimise training regimes to improve the performance of
specific athletes.

Thornton et al. [9] evaluated published material focused on injuries in rowing. This review was
updated in 2016 as rowing specific injury research has increased over the last decade. Key points found
from the review were that the largest risk factor for rowing injury were rapid increases in training
frequency, intensity and/or volume, appropriate loading in the boat and on a rowing ergometer can
reduce the likeliness of overuse injuries, and, finally, there is still a significant demand for well-designed
prospective studies focused on rowing injuries. It is evident that an athlete’s rowing performance and
likelihood of injury can possibly be quantified by metrics obtained via inertial sensors.

The previous literature reviews on rowing do not address the technology and methodologies
used in rowing research. Without a framework, ad hoc methodologies concerning the selection and
implementation of wearable technologies could reduce the accuracy and validity of rowing sport
performance measures [3,10].

2. Materials and Methods

A systematic review of literature was conducted (current as of 24 April 2019) using a
methodology based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
recommendations for completing and reporting the findings of systematic reviews [11]. An electronic
database search was completed in total of six relevant scholarly databases (Google Scholar, Web of
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Science (core collection), ProQuest, Scopus, Sage Journals and Science Direct) using the keywords
identified in Table 1. Exclusion criteria meant manuscripts were only included in the final review if they
satisfied the following: It must be a methods-based research article from a scholarly journal (available
in English), which contains the use of inertial sensors and have a relevance to human performance
monitoring in a rowing setting.

Table 1. Searched databases and associated search terms used, IMU (Inertial Measurement Unit).

Database Search Terms

Web of Science (core collection) TS = (Rowing AND sport AND (Inertial sensors OR Accelerometer
OR IMU))

Scopus TITLE-ABS-KEY ((“Rowing” AND sport AND (“Inertial Sensors”
OR “Accelerometer” OR “IMU))

ProQuest ALL (“Rowing” AND sport AND (“Inertial Sensors”
OR “Accelerometer” OR “IMU))

Science Direct
(“Rowing”) AND “sport” AND (“Inertial Sensors” OR

“Accelerometer” OR “IMU”)
Anywhere (“Rowing”) AND anywhere (sport) AND

Sage Journals anywhere (“Inertial Sensors” OR “Accelerometer” OR “IMU”)
Google Scholar Rowing, OR Sport, OR IMU, OR Inertial OR Sensor, OR Accelerometer

The included papers were reviewed on the following: (i) the geographical location of where the
study was conducted; (ii) properties of the inertial sensor used in the study; (iii) the placement of the
inertial sensor in the study; (iv) what algorithms were used for data processing; (v) what performance
features were analysed; (vi) study design, and (vii) whether other validated technologies/procedures
were implemented to ensure accuracy and validity of the investigation. The record screening process
is shown in Figure 1.
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3. Results

3.1. Journals and Years

The papers included in the systematic review were published in several scientific journals.
The journals could be divided into three fields of research: Engineering and Technology (78.0%), Sport
Science and Medicine (14.0%) and Biomechanics (8.0%) (Figure 2a). The number of papers published
each year since 2004 is shown in Figure 2b.
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3.2. Performance Features

An athlete’s overall performance in rowing is dependent on many factors. Rowing is an
interesting sport to analyse as it has to be considered a system controlled by athlete–equipment
interaction. The performance features that were examined in the captured articles were extracted
(Table 2). Ultimately, the most important factor for performance in rowing is boat velocity; however,
this metric is influenced by various inputs. The features were divided into four main groups: stroke
quality, instrumented material metrics, athlete physicality/physiology metrics, and general biofeedback.
The stroke quality group consists of metrics such as stroke length, stroke rate, recovery/drive phase
ratio, stroke variance, stroke force, and cadence. By instrumenting the equipment used by the athlete,
many measures of performance can be observed. Instrumented material metrics included boat position,
boat velocity, foot-rest force, boat orientation, oar orientation, and stability. Rowing is an extremely
physically demanding sport and requires high skill and therefore the physical and physiological
makeup of the athlete is also vital. In this group, measures associated with fatigue, power output,
muscle activity, energy output, and also crew synchronicity for team rowing. Finally, general feedback
consisted of split times and activity classification.

3.3. Data Processing Algorithms

Various techniques can be used for signal processing of time-series data, for example, frequency
filtering of data to remove the effect of noise or drift. Time-series data can also be transferred to the
frequency domain using Fourier transforms enabling frequency analysis. Machine learning and deep
learning techniques can also be applied for automatic classification of significant events in rowing
or human actions, summarized in Table 3. It should be noted that some of the included records
used commercialized measurement technology and so limited information about the data processing
methods is available.
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3.4. Study Design and Hardware

The included records were also reviewed with respect to their study design and the properties of
the inertial sensor hardware used. The methodology was evaluated on the number of inertial sensor
devices used, the sampling frequency and operating range of the sensors, the location of the device(s),
data transmission, the testing environment, and participant selection (Tables 4 and 5). For studies
testing the performance of novel hardware or extracting innovative metrics to assess an athlete’s
performance, then it is important to verify the measurements obtained with a measurements from a
‘golden’ standard technology. This ensures validity and reproducibility of the measurements obtained
(Table 6). In sport and biomechanics research, the golden standard is commonly a multi-camera
retro-reflective motion capture system that can track human positions in three-dimensional space.
From this data, the acceleration and rotation of the body part can be calculated and compared to
inertial sensor data [3]. The competitive setting for rowing is on-water and thus retro-reflective motion
capture is not a viable option. It is recommended that measurements are made on a rowing ergometer
in a laboratory environment initially. Despite the obvious differences in the biomechanical processes of
an athlete when transferring from an ergometer to a scull, it will provide a baseline measurement with
golden standard data to validate against.

Table 2. Rowing performance features.

Citation Sport Stroke
Quality

Instrumented
Material
Metrics

Athlete
Physicality/Physiology

Metrics

General
Biofeedback

[12] Rowing 4 × 4 ×

[13] Rowing 4 × × ×

[14] Rowing 4 × 4 ×

[15] Rowing × × × ×

[16] Rowing 4 × × 4

[17] Rowing × × 4 4

[18] Rowing × 4 × ×

[19] Rowing 4 × × ×

[20] Rowing × × 4 ×

[21] Rowing 4 × × ×

[22] Rowing 4 × × ×

[23] Rowing × × × ×

[24] Rowing × × × ×

[25] Rowing 4 4 × ×

[26] Kayaking 4 4 × ×

[27] Rowing 4 × × ×

[28] Rowing × × 4 ×

[29] Rowing 4 × × ×

[30] Rowing 4 × × ×

[31] Rowing 4 4 × ×

[32] Rowing 4 × 4 ×

[33] Rowing 4 × × 4

[34] Rowing 4 4 × ×

[35] Kayaking 4 4 × ×

[36] Canoeing 4 4 × ×

[37] Kayaking/Canoeing 4 4 × ×

[38] Rowing 4 × × ×

[39] Rowing × 4 × ×

[40] Rowing × × × ×

[41] Rowing × × × ×

[42] Canoeing 4 × × ×

[43] Rowing × × 4 ×

[44] Rowing 4 4 × ×

[45] Rowing × 4 × ×

[46] Rowing 4 4 × ×

[47] Rowing 4 4 × ×
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Table 3. Signal processing algorithms used on data, KNN (K-nearest Neighbours); DTW (Dynamic
Time Warping); SVM (Support Vector Machine).

Citation Sport Filtering/Windowing Data Fourier Transform (Frequency Analysis) Machine/Deep Learning Techniques

[12] Rowing × × ×

[13] Rowing × × ×

[14] Rowing 4 × ×

[15] Rowing × × ×

[16] Rowing × × ×

[17] Rowing × 4 KNN
[18] Rowing 4 4 ×

[19] Rowing × × ×

[20] Rowing × × ×

[21] Rowing × × ×

[22] Rowing 4 × KNN
[23] Rowing × × ×

[24] Rowing × × ×

[25] Rowing × × DTW
[26] Kayaking 4 × ×

[27] Rowing 4 × ×

[28] Rowing × × ×

[29] Rowing × × ×

[30] Rowing 4 × ×

[31] Rowing × × ×

[32] Rowing × × ×

[33] Rowing × × ×

[34] Rowing 4 × ×

[35] Kayaking × × ×

[36] Canoeing × × ×

[37] Kayaking/Canoeing × × ×

[38] Rowing 4 × ×

[39] Rowing 4 × ×

[40] Rowing 4 × ×

[41] Rowing 4 × ×

[42] Canoeing 4 × SVM
[43] Rowing 4 × ×

[44] Rowing 4 × ×

[45] Rowing × × ×

[46] Rowing × × ×

[47] Rowing 4 × ×

Table 4. Properties of inertial sensor instrumentation, Number (#) of devices; OR (Operating Range);
RF (Radio Frequency); BT (Bluetooth); ANT (Adaptive network technology); NS (Not Stated); NA
(Not Applicable).

Citation Sport # of Devices Accelerometer OR Gyroscope OR Magnetometer OR Sampling
Frequency Transmission

[12] Rowing 3 NS NS NS NS RF
[13] Rowing 2 NS NS NS NS RF
[14] Rowing 1x each athlete ±16 g ±2000◦/s ±49 Gauss 100 Hz BT/local
[15] Rowing 1 NS NA NA 100 Hz NS
[16] Rowing 3 ±6 g NA NA 120 Hz BT
[17] Rowing 1 ±3 g NA NA 50 Hz RF
[18] Rowing 3 ±6 g NA NA 83 Hz RF
[19] Rowing 1 ±10 g NA NA 250 Hz NS

[20] Rowing 18 ±16 g ±2000◦/s ±1.9 Gauss 240 Hz wired/
60 Hz wireless Real Time

[21] Rowing 3 NS ±900◦/s NS NS Wired
[22] Rowing 3 ±6 g ±2000◦/s NS 200 Hz RF
[23] Rowing 2 >±4.2 g NA NA NS Wireless 802.15.4
[24] Rowing 1 NS NA NA NS RF
[25] Rowing 1 ±3 g NA NA 50 Hz NS
[26] Kayaking 2x each athlete NS NA NA NS RF
[27] Rowing 1 ±16 g (scalable) ±2000◦/s NA 200Hz Local (SD card)
[28] Rowing 1 ±2 g NA NA NS RF
[29] Rowing 2 ±5 g NA NA NS NS
[30] Rowing 1 NS NS NS NS Wireless
[31] Rowing 1 NS NA NA 25 Hz RF
[32] Rowing 1 ±8 g (scalable) NA NA ≥125 Hz NS
[33] Rowing 5 ±16 g (scalable) ±2000◦/s (scalable) ±12 Gauss 100 Hz BT
[34] Rowing 1 ±2 g NA NA 50 Hz Wi-Fi
[35] Kayaking 2 ±16 g ±2000◦/s NA 50 Hz BT
[36] Canoeing 1 NS NS NS NS NS
[37] Kayaking/Canoeing 3 NS NS NS NS NS
[38] Rowing 1 ±2 g NA NA 50 Hz Wi-Fi
[39] Rowing 1 NS NA NA 100 Hz Real Time
[40] Rowing 3 ±16 g ±2000◦/s ±8 Gauss 100 Hz RF
[41] Rowing 3 ±3 g ±500◦/s NA 50 Hz RF
[42] Canoeing 9 ±6 g ±500◦/s NA 100 Hz RF
[43] Rowing 14 ±16 g ±2000◦/s ±1.9 Gauss 60 Hz Real Time
[44] Rowing 1 ±6 g ±300◦/s NS 50 Hz NS
[45] Rowing 2 ±6 g ±2000◦/s ±4 Gauss 128 Hz ANT+
[46] Rowing 1 NS NS NS 100 Hz USB
[47] Rowing 1 ±16 g ±2000◦/s ±8 Gauss 100 Hz BT/local/cloud
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Table 5. Sensor placement, Erg (Ergometer); B (Boat).

Citation Sport Full Body
Model Forearm/Wrist/Hand Instrumented

Equipment
Back

(Upper)
Back

(Lower) Torso/Trunk Arm(Proximal/Distal) Leg
(Proximal/Distal) Ear

[12] Rowing 4 × × × × × × × ×

[13] Rowing × × × 4 × × × 4 ×

[14] Rowing × × Oar × × × × × ×

[15] Rowing × × Erg × × × × × ×

[16] Rowing × × B × × × × × ×

[17] Rowing × × × × × × × × 4

[18] Rowing × × Oar/B × × × × × ×

[19] Rowing × × B × × × × × ×

[20] Rowing 4 × × × × × × × ×

[21] Rowing × × Oar/B × × × × × ×

[22] Rowing × × × 4 4 × × 4 ×

[23] Rowing × × Erg/Oar × × × × × ×

[24] Rowing × 4 × × × × × × ×

[25] Rowing × × B × × × × × ×

[26] Kayaking × × Oar/B × × × × × ×

[27] Rowing × × B × × × × × ×

[28] Rowing × × Oar × × × × × ×

[29] Rowing × × Oar/B × × × × × ×

[30] Rowing × × B × × × × × ×

[31] Rowing × × B × × × × × ×

[32] Rowing × × B × × × × × ×

[33] Rowing × × × × 4 × 4 × ×

[34] Rowing × × B × × × × × ×

[35] Kayaking × × B × × × × × ×

[36] Canoeing × × Oar × × × × × ×

[37] Kayaking/Canoeing × × Oar/B × × × × × ×

[38] Rowing × × B × × × × × ×

[39] Rowing × × B × × × × × ×

[40] Rowing × × × × × 4 4 × ×

[41] Rowing × × × × 4 4 × 4 ×

[42] Canoeing × 4 Oar/B × × 4 4 4 ×

[43] Rowing 4 × B × × × × × ×

[44] Rowing × × B × × × × × ×

[45] Rowing × × B × × × × × ×

[46] Rowing × × Oar × × × × × ×

[47] Rowing × × Oar × × × × × ×
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Table 6. Table of inertial sensor validation methods used in the included records.

Citation Sport Validation Technology

[12] Rowing Optical motion capture
[14] Rowing Coach qualitative assessment
[17] Rowing Manual feature labelling
[18] Rowing Controlled laboratory validation test
[20] Rowing Force plates
[25] Rowing GPS
[27] Rowing GPS
[30] Rowing GPS
[32] Rowing Navilock-550 ERS
[33] Rowing Optical motion capture
[38] Rowing GPS
[39] Rowing GPS
[40] Rowing Optical motion capture
[41] Rowing Optical motion capture
[42] Canoeing Video Camera
[43] Rowing GPS and stroke coach monitor
[44] Rowing GPS
[46] Rowing Reference measures from rowing simulator
[47] Rowing Peach innovations measurement oarlock

4. Discussion

4.1. General Trends

Recent technological developments have made wearable inertial sensors readily available. This has
led to sport coaches integrating these devices into their training routines to obtain more measures of an
athlete’s sport performance in real time [48]. This review highlighted three major research disciplines
that are implementing inertial sensors into a rowing setting. These are Biomechanics (n = 3), Sport
Science and Medicine (n = 5), and Engineering and Technology (n = 28). The increased availability
of inertial sensors is reflected by the rapid increase in the volume of research investigating the use
of inertial sensors in rowing since 2004 (Figure 2b). There is a diverse geographic spread of rowing
technology research. Countries such as Algeria, Australia, Canada, China, France, Germany, Greece,
Italy, Malaysia, Netherlands, New Zealand, Portugal, Slovenia, Spain, Sweden, Switzerland, the
United Kingdom, and the United States of America all reported the use of inertial sensors in rowing.
The majority of research published originated from Italy (16.7%). Italy won six gold medals at the
U23 world championships that may demonstrate the value of integrating sport technology into athlete
training programs [49].

4.2. Performance Features

Over half of the included records (24/36—66.7%) used inertial sensors to monitor stroke quality.
In rowing, the stroke is the most vital performance indicator and overall performance can be increased
by either increasing the propulsive impulse or decreasing the drag impulse within a stroke cycle [7].
The ability to measure the quality of the stroke cycle with an abundance of metrics is thus of high
interest to coaches and athletes alike. Stroke rate (cadence) was the most frequently extracted metric
surrounding stroke quality (12/24—50.0%) [14,16,21,25,26,33–37]. Athletes can have an optimal stroke
rate based on their physicality and thus it is an important metric to monitor. It can also be measured
easily with correctly placed inertial sensors. Stroke variability was investigated by seven of the stroke
quality concerned records (7/24—29.2%). Stroke by stroke variation in the inertial signals can indicate
when athletes are performing well or have faults in their biomechanical processes, stroke variance is
also highly investigated in swimming [5]. Three records (3/24—12.5%) addressed the different phases
of a stroke, such as the recovery and drive and the ratio of these phases [21,31,32]. The drive/recovery
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phase ratio is generally used to describe an athlete’s rhythm with beginners being advised to aim for
2:1 (drive: recovery). The rhythm of a rower can be directly impacted by increases and decreases in
stroke rate; both of these parameters were measured simultaneously by Tessendorf et al. [21]. Stroke
length was monitored in three of the included records (4/24—16.7%) [21,26,46,47]. Stroke length is
measured in terms of the angle the oar sweeps from catch to finish position. By obtaining measures
of stroke length, a coach can tailor training schedules to ensure athletes are entering catch and finish
phase of their strokes optimally.

Over a third of the included records (13/36—36.1%) analysed metrics surrounding instrumented
rowing materials. Six of the thirteen records investigating instrumented rowing materials (6/13—46.2%)
measured boat velocity [25,26,34,35,39,43]. Boat velocity is the most important performance indicator
in rowing. GPS is widely accepted as an accurate method to measure boat velocity in rowing; however,
the signal is prone to drop outs. Thus, inertial sensors are an appealing method to obtain boat velocity
or to work in conjunction with GPS to provide data during periods of drop out. Using inertial sensors
to measure velocity can prove to be challenging due to gravitational offsets and sensor drift. Rowing,
like swimming, consists of repetitive movements, relatively constant orientation and linear directional
movement, providing advantages to the signal processing steps needed to measure velocity [5,50,51].

Five of the instrumented material records (5/13—38.5%) used inertial sensors to measure movement
of the oar through the water [18,36,37,46,47]. This can provide coaches and athletes with a visual
representation of oar’s position through the stroke cycle. This gives potential for a golden standard
template of a stroke which enters the different stroke phases at the optimal times to be used as a
standard that athletes with certain deficiencies try to replicate. Four of the records (4/13—30.1%) used
inertial sensors to monitor the boats position [25,39,44,45], with one of these records investigating the
seat position within the boat. Similar to velocity, position is often measured by GPS; nonetheless during
drop outs, inertial sensors can assist in interpolation/extrapolation of the GPS data to continuously
monitor boat position even when GPS signal drops out. It can also be used to measure stroke efficiency
in terms of the distance the boat travels per each stroke. This investigation used an inertial sensor to
measure the position of a sliding rowing boat seat. This movement is a direct result of the rower’s leg
movement and thus is key for optimizing performance. Deficiencies in leg movement of a rower can
significantly decrease the velocity of the boat.

Akin to boat position, three of the records (3/13—23.1%) used inertial sensors to monitor the
orientation of the boat [18,35,44]. By fusing the sensors within an inertial sensor, typically an
accelerometer and gyroscope sometimes accompanied by a magnetometer, an accurate estimation of
orientation can be calculated. This is an important metric, as if the boat is deviating too much from
its linear path then efficiency is decreased. Thus, athletes can focus on stabilization in their training
routines if this is an issue.

Oar stroke force was also an instrumented material metric of interest with three of the records
(3/13—23.1%) investigating it. As mentioned earlier, performance in rowing is dependent on increasing
propulsive impulse while decrease drag impulse in a stroke cycle [7]. The oar acts as the link between
the forces developed by the rower to the blade and creates the propulsive force. Enabling coaches
and athletes to measure accurately the oar stroke force is extremely advantageous as strength and
conditioning programs can be prescribed to help increase the oar stroke force and in turn overall
propulsion of the boat.

Seven of the reviewed papers (7/36—19.4%) investigated rowing athletes’ physiological and
physicality parameters using inertial sensors. Four of these records (5/7—71.4%) analysed crew
synchronicity [12,14,20,23,32]. An elite rower has high special fitness; high coordination, motor
control and functional strength [52]. As well as special fitness, team rowers also have to maintain
boat stability while staying synchronised with their crew. High synchronicity has been related to
increased performance as reflected by the average hull speed [23]. Thus, being able to use inertial
sensor data as a measure of synchronicity between rowers can aid coaches in having a more informed
understanding of their rowing crew’s interactions during training and competition. Armstrong and
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Nokes [12] investigated synchronization through acceleration signatures and electromyography signals.
This demonstrated the muscle recruitment requirements for different boat positions (stroke, bow).
It was also clear to see in the EMG signal the difference between good rowing technique and rowing
when ‘shooting the slide’, which is driving with the legs so the seat leads the back into the drive
phase rather than leg and back drive acting as one phase. Two of the records (2/7—28.6%) measured
athletes’ power output. Estimates of the angular rotation of the oar shaft were obtained using a fitted
an accelerometer; the inertial sensors were used in conjunction with force sensors and thus, with the
shaft’s radius, torque could be derived. Power is the product of torque and angular rotation and can
be calculated using an inertial sensor and force sensor. Being able to quantify power output in training
and rehabilitation means coaches can monitor their athletes more thoroughly and ensure that their
program is achieving efficient results. Atallah et al. [17] (1/7—14.3%) used an earn worn sensor to
classify activates and estimate energy output; this was a general study that incorporated rowing as one
the activities. However, it does have the possibility to be used purely for rowing.

Three of the reviewed records (3/36—8.3%) provided general biofeedback measures such as
tracking the athletes body during rowing, evaluating different methods of providing sonification
feedback to rowers and activity classification [16,17,33].

4.3. Algorithms

In order to obtain relevant and insightful metrics from inertial sensor signals, signal processing
algorithms have to be used. Presenting raw signal data to a coach or an athlete is sometimes
inappropriate as distinct biomechanical events are not distinct; noise can be eradicated from a signal
using correctly designed filters. A high volume of the reviewed papers used a windowing/filtering
technique during their data analysis (15/36—41.7%) [14,18,22,26,27,30,34,38–44,47].

Of the 15 records, nine (9/15—60.0%) reported the use of a low pass filter [14,18,26,27,30,34,38,39,43].
Seven out of nine of the low pass filters (7/9—77.8%) [14,18,26,27,30,38,43] were used for noise removal.
The majority of the noise removal low pass filters were Butterworth (4/7—57.1%) [18,26,27,43] filters
ranging from orders of 2–4. The cut off frequencies used for the accelerometer signals ranged from
4 Hz–20 Hz [14,18,26,27,30,43], one record stated the use of a low pass 2nd order Butterworth filter on
the gyroscope signal, which had a cut off frequency of 15 Hz [27]. One record used a windowed FIR
filter for noise removal but did not state the cut off frequency [38].

Four of the reviewed papers (4/15—26.7%) used sensor fusion algorithms for different
purposes [22,39,40,47]. Of these, three-quarters (3/4—75.0%) used sensor fusion computational
algorithms to obtain the rower’s orientation metrics (e.g., joint angles and oar angles) [22,40,47].
Using inertial sensors to obtain orientation data can produce insightful metrics. The golden standard
for these types of biomechanical measures is optical motion capture. By combining anthropometric
measurements with the angles obtained by inertial sensors, they can act as a cheaper alternative. Cloud
et al. [39] evaluated different sensor fusion (accelerometer and GPS) methods for estimating rowing
kinematics such as boat speed and distance travelled. Using the sensor fusion method, the accuracy
for boat speed, boat distance travelled and distance per stroke were increased by 44%, 42% and 73%,
respectively, when compared to a single channel smartphone GPS.

Machine learning, neural networks and artificial intelligence (AI) algorithms are now frequently
applied to sports data for usually time-consuming manual tasks such as feature labelling, classification
and future events can be predicted based on existing data. By extracting relevant features in both the
time and frequency domains, researchers can apply these algorithms to generate personalized athlete
models to further understand their performance. Four of the reviewed records reported the use of these
algorithms [17,22,25,42]. Atallah et al. [17] used a KNN model to classify different activities, whereby
rowing was one (76.39% success rate). Bosch et al. [22] also used a KNN technique, however, to use
inertial sensor signals to distinguish between novice and experienced rowers. The researchers did this
by comparing the signals obtained by both experienced and novice rowers to a template generated
by an experienced rower. For the most part, the experienced rowers had a closer similarity to the
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reference rower. The authors concluded that machine learning techniques can distinguish between
experienced and novice rowers; however, its hindrance is that it cannot tell the novice rower what their
exact deficiency in technique is. Groh et al. [25] used DTW to predict velocity when a GPS signal drops
out using inertial sensor data based on the last registered GPS velocity. Wang et al. [42] used SVM
classifiers to automatically segment different human motion phases in canoeing; the algorithm was
verified by synchronised video footage.

Only two records (2/36—5.6%) analysed data in the frequency domain. Atallah et al. [17]
extracted features from the frequency domain to enhance the accuracy of their machine learning
model. Llosa et al. [18] used the frequency domain to make more informed decisions about the cut off

frequency they used in their signal noise-filter.

4.4. Hardware

Table 4 presents the properties of the inertial sensors used in the 36 reviewed papers. Fourteen
of the 36 records (15/36—41.7%) used more than one sensor to make measurements. Seventeen of
the 36 records (17/36—47.2%) used an inertial sensor with a built-in accelerometer and gyroscope or
magnetometer. Of these seventeen, four (4/17—23.5%) only used an accelerometer and gyroscope and
the remaining 13 (13/17—76.5%) also incorporated a magnetometer. The highest reported accelerometer
range was ±16 g and the lowest was ±2 g. Compared to our laboratories, previous systematic literature
review on the use of inertial sensors in combat sport [3], which reported a maximum and minimum
operating range of ±750 g and ±8 g, respectively, these ranges are low. Nonetheless, rowing is a sport
that does not typically consist of high impact situations and thus ±16 g and even ±2 g should have a
minute risk of sensor saturation.

The measurement devices’ sampling frequencies ranged from 25 Hz to 250 Hz, again, compared
to combat sport these are low; however, the movement in rowing is far slower compared to strikes in
combat sport. Typically, stroke rates in rowing range from 20 strokes per minute (SPM) to 40 SPM
(2/3 strokes per second) and thus even a sensor only recording 25 samples per second is going to record
the motion with ease. The only concern is that a low sampling rate might only register one sample
peaks and troughs, which can lead to underestimates of the true magnitude.

4.5. Study Design

Sensor placement, testing environment and the level of participant(s) in rowing was used to
review the records in respect to their study design.

4.5.1. Sensor Placement

Table 5 describes the different sensor placements used across the 36 reviewed manuscripts.
The majority of records instrumented a piece of the rowing equipment such as the boat, oars or
ergometer with an inertial sensor (27/36—75.0%). Instrumented equipment such as the oars were used
to obtain measures such as stroke rate, boat orientation, stroke length, boat velocity, boat position and
stability. When the athlete was instrumented, records recorded sensor placements on the forearm, back
(upper/lower), torso, arm (proximal/distal), leg (proximal/distal) and ear. Two of the records also used
full body inertial sensor systems. When athletes were instrumented, it was often to obtain measures of
their body segment orientations throughout a stroke. It is clear, however, that the research community
has focused more on instrumenting the rowing equipment with inertial sensors than the athlete and
thus there are opportunities for future research investigations doing the latter.

4.5.2. Study Environment

The study environments were classified as either a laboratory/gym or on-water setting. The majority
of studies were undertaken on-water (18/36—50.0%) where-by two records had an initial controlled
test in the laboratory initially and then used the same methodology on water. Fourteen of the records
(14/36—38.9%) conducted their investigations in a controlled laboratory environment, typically on a
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rowing ergometer; again, two of the records then transitioned the study to an on-water environment.
The remaining four records did not report a study environment. It is promising to see that the majority
of the studies have already been conducted in an on-water setting. The advantage of a laboratory setting
is that a controlled study is easier to implement, and it offers availability of verification technology
such as optical motion capture. Nonetheless, studies conducted in the actual competition environment
provide more realistic data for coaching teams and athletes to base training programs around.

4.5.3. Participant Selection

Over half of the included records (19/36—52.8%) recruited participants with experience in rowing.
Notable participant recruitments included Olympic and national level rowers [14,16,21,31,46]. It is
desirable to recruit participants of a high level within the researched sport as it produces data of higher
reproducibility due to the athlete completing biomechanical processes with correct form. Nevertheless,
recruiting participants of different levels can strengthen the robustness of machine learning algorithms,
improving their accuracy for athletes and the general public. One record recruited novice rowers
in order to create a machine learning algorithm which could decipher between experienced and
unexperienced rowing techniques within the inertial sensor signals [22].

4.6. Future Recommendations

This review makes it known that stroke quality and instrumented material metrics are the most
frequently assessed performance feature in rowing using inertial sensors. This is reflected by the
sensor placements extracted from the included records; the majority of records instrumented a piece of
rowing equipment. Future research should focus on instrumenting the rowing athlete as well as the
equipment and finding an interrelationship between the two. This will help coaches identify faults
within the rowing system as a whole.

Machine learning, neural network and AI algorithms are gaining momentum in the sport data
field. This systematic review revealed that only four of the 36 records (4/36—11.1%) implemented
machine learning algorithms in rowing. Moreover, only two (2/36—5.6%) transformed their data
into the frequency domain. Further exploration of these two data processing techniques within the
rowing technology field is warranted. Numerous included manuscripts used filtering/windowing
processing techniques on their signal data. The majority of filters were used for noise removal and a
minority used advanced sensor fusion techniques to calculate values of orientation. Using advanced
sensor algorithms such as orientation filters can obtain more insightful metrics about the athlete and/or
equipment they are using in terms of Euler Angles and Quaternions, allowing improved information
quality and a more detailed assessment of performance.

The highest accelerometer operating range and sample rate reported were ± 16 g and 250 Hz,
respectively. Rowing is a low impact sport and subsequently an operating range of ±16 g is acceptable
with a low risk as of sensor clipping. MEMS technology is improving rapidly and inertial sensors with
sampling frequencies >1 kHz are now readily available with improved sensor resolution. Therefore,
it is recommended that future investigations could explore using higher sampling frequencies to
improve the quality of the captured information.

5. Operational Guidelines

In similar fashion to the systematic review analyzing the use of inertial sensors in combat sport [3],
there is currently no standardization for data collection and analysis procedures in rowing research.
Therefore, operational guidelines in the form of a flowchart (Figure 3) and a table (Table 7) are proposed.
These guidelines will assist researchers in the selection of technology (device properties, sensor position
and validation technology) and data processing algorithms in future rowing technology investigations
using inertial sensors. The guideline presented in this review is of the same nature as in the combat
sport review as it can be generalized for technology implementation across different sports.
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Table 7. Reference guide for technology selection when conducting future research.

Performance Feature Implementation
Complexity

Minimum Hardware
Requirements Minimum Algorithm Implementation

Stroke Quality:
Stroke phase ratios/Stroke

Length/Stroke Variance

Intermediate to
Advanced

Single IMU (on Oar), >6 g
Operating range, >100 Hz

Sampling Frequency

Threshold peak detection
algorithm/advanced orientation

algorithm/statistical analysis for variance.

Instrumented Material Metrics:
Paddle stroke force/Stability/Boat

Position/Boat Velocity/Boat
Rotation/Oar Movement.

Advanced

Single IMU (in different positions
depending on metric)), >6 g
Operating range, >100 Hz

Sampling Frequency

Force output estimation
equation/Advanced orientation

algorithm/Machine learning
technique–calculus (w/GPS)/Machine

learning technique–calculus
(w/GPS)/Advanced orientation

algorithm/Advanced Orientation algorithm.

Athlete Physicality/Physiology:
Power output/Crew

Synchronization//Energy output
Intermediate Single IMU >6 g Operating range,

>100 Hz Sampling Frequency

Power output estimation
equation/Correlation analysis/MET

estimation calculations

General Biofeedback:
Split times/Activity Classification.

Simple to
Advanced

Single IMU >6 g Operating range,
>100 Hz Sampling Frequency

Threshold peak detection/machine
learning technique

Note—the minimum algorithm implementation for each different performance feature is separated by a/and correlates to the
first column of the table.
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6. Conclusions

Inertial sensors can be used as a performance assessment tool in rowing. In the last decade,
research into this field has gained momentum. Inertial sensors were used to measure performance
features associated with stroke quality, metrics obtained from instrumented materials, indicators of
the athlete’s physicality and physiology and also general biofeedback. The review also assessed the
properties of hardware that has been used in previous rowing research. Operational guidelines, based
on this review, have been created and are proposed to assist future researchers with their methodology
design and development. It is suggested that future research starts to incorporate more machine
learning/neural network/AI algorithms and starts to focus on instrumenting the athlete rather than
the equipment.
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