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Abstract: Maximum likelihood sequence estimation (MLSE) and maximum a posteriori probability
(MAP) equalizers are optimum receivers for dealing with intersymbol interference (ISI) in
time-dispersive channels. However, their high complexity and latency limit their widespread
implementation; therefore, research into reducing their complexity is an open topic. This paper
proposes a novel modification to reduce the computational complexity of the aforementioned
algorithms, which exploits the representation of the communication channels in a time-delay-domain
basis expansion model (BEM). It is shown that an appropriate basis is a set of modified prolate
functions, in which the transmitter and receiver filters are considered in the kernel construction.
Simulation results show that a reduction in sums and multiplications on the order of 55% can be
obtained, maintaining the same bit error rate performance as in the traditional implementation.

Keywords: basis expansion modeling (BEM); doubly selective channels; maximum a posteriori
probability (MAP); maximum likelihood sequence estimation (MLSE); single-carrier transmission

1. Introduction

Reflection, refraction, and diffraction are propagation phenomena that cause many delayed
replicas of the transmitted signal to reach the receiver. If the maximum delay of these replicas τmax

is close to or greater than the symbol period T, then each received symbol possesses energy from its
neighbors. This impairment is known as intersymbol interference (ISI), and it greatly degrades system
performance. A common approach to counteracting ISI is the use of orthogonal frequency division
modulation (OFDM), which permits low-complexity frequency-domain equalization in low-mobility
environments. However, OFDM has two major drawbacks: high sensitivity to Doppler spread,
dependent on the system’s mobility, and a high peak-to-average power ratio (PAPR), proportional to
the length of the Fourier transform. In high carrier frequency bands (e.g., 60–70 GHz), even a small
movement in the transceivers can cause a high Doppler spread, provoking intercarrier interference
and long transmission latencies [1]. To avoid excessive PAPR while complexity equalization remains
low in the frequency domain, the discrete-Fourier-transform (DFT)-Spread OFDM has been employed.
Unfortunately, as noted in [2,3], frequency-domain equalization is not a computationally advantageous
strategy when the channel is rapidly time-varying. Hence, single carrier transmission remains as an
alternative considered in standards such as IEEE 802.11ad wireless local area networks (WLAN) [4],
IEEE 802.15.3 high data rate wireless multi-media networks [5], IEEE 802.16 air interface for broadband
wireless access systems [6], and the proposed standard IEEE 802.11ay [7].
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Focusing on single carrier transmission, a common approach for dealing with ISI is a channel
equalizer, and they can be classified according to linearity. Linear equalizers, such as the minimum
mean square error (MMSE) and zero-forcing (ZF), present low computational complexity, but they
perform poorly when the channel presents deep notches in frequency. In contrast, non-linear equalizers,
such as the decision feedback equalizer (DFE), the maximum likelihood sequence estimation (MLSE),
and the maximum a posteriori probability (MAP), are computationally intensive algorithms; however,
they significantly outperform the linear equalizers [8]. The MLSE equalizer finds the sequence of
data symbols with the highest probability of being transmitted given the received signal, usually
using the Viterbi algorithm. The MAP equalizer, meanwhile, is a symbol-by-symbol estimator, usually
based on the Bahl, Cocke, Jelinek, and Raviv algorithm (BCJR) [9]. Although MLSE and MAP are the
most effective equalizers, their implementation becomes infeasible due to excessive computational
complexity when the channel impulse response (CIR) lasts several symbol periods or the data symbol
alphabet is large. Recent works that use variations of these equalization techniques can be found
in [10–12]. In [10] the authors compared the performance of detecting quadrature phase shift keying
(QPSK) in a super-Nyquist wavelength division multiplexing system as a QPSK and quadrature
duobinary (QDB) signal using MLSE and MAP equalizers with different detection schemes, and
they concluded that QDB had the better performance. The authors in [11] reduced the complexity of
faster-than-Nyquist (FTN) system receivers designing an MMSE-based channel shortening before the
MLSE detection. Exact closed-form asymptotic expressions for symbol and bit error probability for
arbitrary constellations and input distributions are presented in [12].

In order to reduce the computational complexity, sub-optimal algorithms [8] have been used, such
as reduced state sequence estimation (RSSE), delayed decision feedback sequence estimation (DDFSE),
the M-algorithm, Max-Log-MAP, Log-MAP, and other recent ideas including the reduced-state
soft-output Viterbi equalizer [13] and the estimation of channel sparsity to assist in the detection
of the transmitted sequence [14]. In [15], the authors presented an MLSE and a MAP equalizer using
the discrete-Fourier basis expansion model (BEM) of the channel. Despite that reduction of the effective
channel impulse response decreases the number of states in the equalizer, the accuracy of estimation is
closely affected. Hence, these solutions create an error floor because of the modeling error.

In this tenor, this paper presents a modification of MLSE and MAP algorithms using a basis
expansion model, which allows translating part of the computational complexity into memory storage.
In this way, the computational complexity is reduced without error floor, notably when the channel is
varying during the transmission of a block of N symbols using read-only memories.

There are two main contributions of this paper. Firstly, the modified versions of the prolate
functions (MPFs) have never been used to reduce the computational complexity of MLSE and MAP
algorithms, to the best of the authors’ knowledge. Thus, for a given approximation error, it can be
observed that the number of basis functions is fewer when MPFs are used compared to the suggested
basis in the state of the art implementations. Secondly, contrary to intuition, the use of MPFs in
the time-delay domain gather better performance than the Fourier base using the same number
of functions.

The paper is organized as follows: The mathematical model of the communication system and the
representation of the channel using a BEM are presented in Section 2.1. The MAP and MLSE algorithms
are outlined in Section 2.2. The modification of the MAP and MLSE algorithms using BEM and their
computational complexity are established in Section 2.3 and Section 2.4, respectively. In Section 3, the
corroboration of the proposed methods through simulation is presented. Finally, the conclusions are
presented in Section 4.

2. Materials and Methods

This work is intended to highlight the use of the modified version of the Prolate basis
expansion [16–18], in MLSE and MAP equalization processes [13,15,19,20]. The application of MPF in
the time-delay domain conveys a more accurate channel representation, which leads to a reduction in
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the error floor. Additionally, the computation complexity is lower, compared with the MLSE and MAP
algorithms found in the literature [15,19,20].

The descriptive statistics of the signals related to the system model are presented in Section 2.1.
Furthermore, the equalizer assumes to know the channel impulse response, which is decomposed in
K basis functions to compute their relative weights. Employing a limited number of basis functions
affects the variance of the modeling error. Accordingly, Monte-Carlo simulations were used in Section 3
to compare the benefits of this method, assuming perfect channel state information (CSI) and estimated
channel impulse response.

This paper does not contain studies involving human participants, data, or tissue, or animals,
performed by any of the authors.

2.1. System Model

Consider the discrete-time baseband-equivalent model of a digital single carrier (SC)
communication system, as shown in Figure 1.
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Figure 1. Baseband model of a digital communication system.

The data sequence b = [b0, b1, . . . , bL−1]
T is considered a random sequence of L symbols bl = b[l]

with zero mean and variance of σ2
b = E(|bl |2), whose elements come from an equally probable finite

alphabet X (bl ∈ X ), and E(·) denotes the expected value. Perfect synchronization between the
transmitter and receiver with T as the symbol period is assumed. The symbols are propagated through
the communication channel hl , which is the discrete representation of the continuous impulse response
of the baseband channel model hc(t) in a given moment, where t represents the time variable and l is
its equivalent discrete index. The aforementioned continuous model is composed of the convolution of
f (t), v(t), and w(t). The propagation medium f (t), hereinafter assumed to be wide-sense stationary
uncorrelated scattering (WSSUS) with a maximum time span of τmax seconds. v(t) and w(t) are the
causal impulse response of the transmitter and receiver filters with a span of τv and τw, respectively,
a bandwidth W and a roll-off factor β. Considering hc(t) to be almost invariant during the transmission
of data symbols with period T and time duration of τv + τw + τmax, it can be written as follows:

hc(t, τ) =
∫ τmax

τ1=0
f (t, τ1)vw(τ − τ1)dτ1, (1)

where vw(τ) =
∫ ∞

τ3=−∞ w(τ3)v(τ − τ3)dτ3, the convolution of the impulse responses of the transmitter
and receiver filters and hc(t, τ) results in a wide-sense stationary correlated scattering.

During the transmission of the sequence b, the CIR hl could be visualized as a variant
finite impulse response (FIR) filter, with P coefficients; i.e., hl = [hl,0, hl,1, . . . , hl,P−1]

T , where
P =

⌈ τv+τw+τmax
T

⌉
and d·e denotes the ceiling operation.

The propagated signal is contaminated with a zero mean additive white Gaussian noise (AWGN)
nl with a variance of σ2

n . Thus, the received signal is expressed as yl = ỹl + nl , where

ỹl =
P−1

∑
p=0

hl,pbl−p (2)

is the noiseless output of the channel.
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If the channel is approximated using BEM, then the number of required coefficients for
representing the channel could be less than P and consequently easier to implement. However,
this reduction in complexity is firmly attached to the selection of the base, the optimal base being
the Karnuhen–Loève expansion (KLE). Nevertheless, to compute the KLE, it is necessary to know
the autocorrelation of the channel, which is difficult, as it changes from one scenario to another.
For overcoming these impairments, it is proposed in [17,18] to take the impulse response of the
transmitter and the receiver filters into account together with the maximum path delay for obtaining
the MPFs. The channel BEM can be represented as

hl,p =
K−1

∑
k=0

[(
h(k)

)H
hl

]
h(k)p + el,p =

K−1

∑
k=0

wl,kh(k)p + el,p, (3)

where K < P is the number of required functions, wl,k =
(

h(k)
)H

hl is the corresponding weight of

each invariant orthogonal sequence h(k) =
[

h(k)0 , h(k)1 , . . . , h(k)P−1

]T
and el,p is the modeling error in the

p-th tap index, in the l-th time index. The number of MPF basis functions which grant a negligible
variance of the modeling error is close to the KLE case. The orthogonal sequences h(k) are obtained by
solving the equation

Chh(k) = λkh(k), (4)

where λk is the eigenvalue associated with the eigenvector h(k). Ch is the kernel matrix of the basis,
constructed as described in [17,18]:

Ch(m, n) = Rvw [(m− n)T + τ0], (5)

and τ0 = ε0 is some starting value. If it is assumed rvw(τ, τ1, τ2) = ∏
(

τ2
τmax
− 1

2

)
vw(τ1− τ2)vw(τ− τ1),

where ∏(·) is the rectangular function, then:

Rvw(τ) =

τmax+τv+τw∫
τ1=0

τmax∫
τ2=0

rvw(τ, τ1, τ2)dτ1dτ2. (6)

With these definitions, it can be shown that:

E
(∥∥∥el,p

∥∥∥2
)
= lim

L0→∞

L0−1

∑
l=0

e∗l,pel,p

L0
=

P−1

∑
k=K

λ2
k

∥∥∥h(k)p

∥∥∥2
. (7)

The use of MPF offers the advantage of expanding the filtered stochastic process [17,18] with fewer
basis functions. Thus, instead of requiring KP = d(τv + τw + τmax)(W + β)e+ 1 prolate functions, it is
necessary only to consider K = (d(W + β)τmaxe+ 1) < P MPFs.

2.2. MLSE and MAP Equalizers

In this section, the traditional maximum a posteriori probability (MAP) and the maximum
likelihood sequence estimator (MLSE) are introduced.

2.2.1. MAP Equalization

The MAP equalizer obtains an estimate of the transmitted symbol bl , by maximizing the a
posteriori probability given the received signal sequence y = [y0, y1, . . . , yL−1]

T [20–22]. The latter is
expressed as follows:

b̂l = argmax
b∈X

Pr(bl = b|y), (8)
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where b is chosen from the finite input alphabet X with cardinality |X | = M. The MAP equalizer can
be implemented using the Bahl, Cocke, Jelinek, and Raviv algorithm (BCJR) [20] as:

Pr(bl = b|y) = ∑
∀sl → sl+1,

bl = b

γ(sl → sl+1)α(sl)β(sl+1), (9)

where sl ∈ S is the channel state in the instant l, with S = {am|m = 0, . . . , MP−1 − 1} being the set
of all possible combinations of the previous P− 1 symbols am = [bl−1, . . . , bl−P+1], γ(sl → sl+1) is
the error probability in the transition from the state sl to sl+1, and α(sl) and β(sl) are the forward and
backward coefficients in the state sl , respectively, which are obtained through the following recursions:

α(sl+1) =
MP−1−1

∑
m=0

γ(sl = am → sl+1)α(sl = am), (10)

β(sl) =
MP−1−1

∑
m=0

γ(sl → sl+1 = am)β(sl+1 = am), (11)

with α(s−1 = am) = 1 and β(sL = am) = 1, ∀am ∈ S .
Note that γ(sl → sl+1) depends on the sequence bl = [bl , sl ], composed of the l-th transmitted

symbol and the previous P− 1; thus,

γ(sl → sl+1) = Pr(sl+1|sl)Pr(yl |bl). (12)

Assuming an AWGN with a zero mean value and a variance of σ2
n , then

Pr(yl |bl) =
1√

2πσ2
n

e
−‖yl−(ỹl |bl )‖

2

2σ2
n . (13)

To reduce the complexity of the BCJR, two algorithms were derived in the log-domain:
the Max-Log-MAP [21] and the Log-MAP [22].

2.2.2. MLSE Equalization

The goal of an MLSE equalizer is to determine the sequence that will maximize the
likelihood function

b̂ = argmax
b

Pr (y|b) , (14)

which is equivalent to
b̂ = argmin

b
V(b), (15)

where

V(b) =
L

∑
l=0
‖yl − (ỹl |bl)‖2 (16)

is the path metric of sequence b.
The most common and efficient way of obtaining V(b) is utilizing of the Viterbi algorithm

(VA) [19], where the metric is computed a branch by a by branch in the trellis representation of the
received symbols.

2.3. Proposed MLSE and MAP Equalizers

From the description presented of the MLSE and MAP algorithms, it can be seen that both require
calculating the parameter ỹl |bl in order to obtain the estimated data. Such a parameter corresponds to
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the noiseless received signal when a specific bl is transmitted through the channel h. Note that ỹl |bl is
highly dependent on the current communication channel. Moreover, the iterative computation of the
objective functions Equations (13) and (16) leads to a highly demanding computational problem, which
increases with the cardinality M of the transmitted alphabet and the length of the CIR. In order
to deal with the latter, the use of BEM is proposed for representing h employing MPFs. Thus,
using Equations (2) and (3), ỹ|bl is approximated by

ỹl |bl ≈
K−1

∑
k=0

wl,k

[
P−1

∑
p=0

h(k)p bl−p

]
=

K−1

∑
k=0

wl,k

[
g(k)l |bl

]
, (17)

where g(k)l |bl = ∑P−1
p=0 h(k)p bl−p is the response of the k-th sub-channel h(k) when the sequence bl is

transmitted.
Equation (17) shows that ỹl |bl is the weighted sum of the data signal bl filtered by each function

of the basis {h(k)}. It is important to note that such a basis can expand any channel realization that
satisfies the conditions of maximum spread delay and the particular shape of the filters, while the
weights wl,k are the dependent values of each CIR. Therefore, it is possible to precompute and store

g(k)l |bl for each function and each combination of data symbols. The desired ỹl can be obtained by

weighting g(k)l |bl with the wl,k that corresponds to the current channel realization. For that reason,
all the MP possible outputs must be saved in a read-only memory for each of the K functions in the
basis, resulting in KMP memory locations.

The equalizers based on orthogonal functions, hereafter referred to as orthogonal MLSE and
orthogonal MAP, can be implemented using a methodology split into two stages. The first stage consists
of computing a priori information, which will be calculated only once, throughout the following steps:

• Obtain the kernel of the required expansion Ch according to [17,18].
• Solve Equation (4) to find the eigenfunctions h(k) and eigenvalues λk associated with the kernel.
• Sort the eigenvalues in descending order.
• Select the K eigenfunctions corresponding to the eigenvalues with higher energy while

maintaining a determined modeling error energy, Equation (7).
• Compute g(k)l |bl for all possible transmitted sequences and store the results in memory.

The second stage is the runtime implementation of the algorithms, which is carried out as follows:

• Obtain the weights wl,k.
• Use the weights for calculating ỹl |bl as needed in Equation (13) for the MAP case or Equation (16)

for the MLSE case.

2.4. Complexity Analysis

The number of multiplications and sums in each state of the trellis for different estimators is
summarized in Table 1, requiring O

(
LKMP) multiplications. The capacity of MPFs for modeling a

filtered stochastic process with the minimum number of basis functions after KLE [17,18] makes this
proposal the orthogonal equalizer with optimal performance and reduced complexity. This is the main
achievement of this work.

Table 1. Number of multiplications and sums in each state of the trellis for different estimators.
Maximum likelihood sequence estimation (MLSE) and maximum a posteriori probability (MAP).

Algorithm Multiplications Sums

MLSE PM (P + 1)M
Orthogonal MLSE KM (K + 1)M

Max-Log-MAP PM (P + 3)M
Orthogonal Max-Log-MAP KM (K + 3)M

Log-MAP PM (P + 5)M
Orthogonal Log-MAP KM (K + 5)M
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Table 2 compares the number of multiply-add complex operations, the number of memory
locations, when required, and their update period in the described channel model for the classical
and orthogonal equalizers mentioned above. The number of basis functions employed in orthogonal
Fourier ([15]) and MPF equalizers are the values K1 and K2, respectively. From Table 1, given that
each node has MP−1 states inside the trellis, it is possible to observe that the number of multiply-add
operations required to compute {ỹl |bl}L−1

l=0 in Equation (13) and Equation (16) is MP−1K2M, L times.
In [15], the number of multiply-add operations is LK1MP. Following different strategies, the equation to
obtain the memory locations used by the MPF equalizers, K2MP, is similar to K1MP in [15]. The same
happens with the number of multiplications to fill the memories that store the values g(k)l |bl in
Equation (17), but the memories in the proposed equalizers do not need updates. Another marked
difference respects the work in [15] is that MPFs do not have the observation period of L1 ≥ L to
compute the channel coefficients.

Table 2. Complexity and memory-requirement comparison to obtain {ỹl |bl}L−1
l=0 . Modified versions of

the prolate functions (MPFs), basis expansion modeling (BEM).

Algorithms Classical Orthogonal Fourier
[15]

Orthogonal
MPF

Multiply-add operations LPMP LK1 MP LK2 MP

Memory locations Not required K1 MP K2 MP

Memory update period
[samples] Not required L Not required

Multiplications needed
to fill the memory Not required K1PMP K2PMP

Multiplications to obtain
the BEM coefficients Not required K1L1P K2LP

Every time K2 < P, the proposed methods lead to a simplified hardware implementation, which
can result in less power consumption and lower latency. The trade-off in the hardware implementation
is reflected in more memory locations, due to the need of storing all the MP possible noiseless channel
outputs g(k)l |bl .

3. Results and Discussion

In this section, the performance evaluation of the proposed equalizer for an SC communication
system is presented. Transmission of data blocks composed of 800 symbols at a symbol period of
T = 10−7s was assumed. These are considered QPSK and 16 quadrature amplitude modulation (QAM)
modulations. The pulse shaping and matched filter were square-root raised cosine with a roll-off factor
of 0.5 and a length of six symbol periods.

The orthogonal equalizers were simulated for a communication system with a power delay profile
defined by the following normalized path’s power: [0,−1.5,−1.4,−3.6,−0.6,−9.1,−7,−12,−16.9] dB,
and corresponding path delay: [0, 3, 15, 31, 37, 71, 109, 173, 251] ns, each path with Jakes Doppler profile
and with a maximum normalized Doppler spread fmaxT = 0.001. The latter corresponds to a CIR
of size P = 9. Given the former system values, the number of MPFs needed to expand the channels
results in K = 5. In Figures 2 and 3, there are depicted the bit error rate (BER) performance of the
equalizers versus the signal to noise ratio (SNR) under the assumption of perfect knowledge of the
CSI and over the pilot-assisted channel estimation as described in [23]. The simulation results confirm
that the performance of the orthogonal equalizers is quite similar to that of the MLSE. Moreover, the
prediction in the chosen number of eigenfunctions K is valid: The performance is not affected when
the number of computations is reduced.

The performance of the equalizer proposed in [15], based on the Fourier basis, is also presented
in Figures 2 and 3. In that work, the channel BEM is developed in the time domain, in contrast to
this work, which considers a BEM in the time-delay domain. The BEM in time, as developed in [15],
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causes the necessity of computing the K1 BEM coefficients and updating the memory locations every L
samples. Furthermore, it does not provide an expression to define L and L1. For the simulations in this
work, we chose the parameters K1 = 5, L = 800 and L1 = 1600, used in [15] to expand the channel for
the given normalized Doppler spread. Due to the lack of accuracy in the representation through the
Fourier basis, the simulation results for [15] in Figures 2 and 3 exhibit the presence of an error floor,
which is worst when the modulation order is increased. A better resolution in Fourier basis can reduce
the modeling error and leads to the absence of error floor, but this is achieved either by extending the
observation window and introducing lags in the estimated data and extra memory or by an iterative
process of joint channel estimation and equalization.

Figure 2. Performance of the equalizers [15] and the proposed 5-MPFs with quadrature phase shift
keying (QPSK) modulation scheme.

Table 3 shows the number of multiply-add complex operations, memory locations, and their
update period in the simulated scenario for the classical and orthogonal equalizers for QPSK and
16-QAM. It is possible to observe that Fourier and MPF algorithms have the same computational
complexity, achieving both a reduction in the number of multiplications of 55.6% concerning the
classical MLSE. The latter because we are considering the same number of functions (K1 = K2).
However, as it was shown, MPFs outperforms the Fourier implementation when the same number of
functions is used (Figures 2 and 3). Thus, it is possible to say that for an equal computational effort, our
proposal presents a better performance or conversely, for achieving a predefined BER, our proposal
requires fewer operations and memory locations than Fourier proposals. These reductions lead to a
simplified hardware implementation, which can result in less power consumption and lower latency.
The trade-off in the hardware implementation is reflected in extra memory locations, due to the need
for storing all the MP possible noiseless channel outputs g(k)l |bl .
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Figure 3. Performance of the equalizers [15] and the proposed 5-MPFs with 16-QAM
modulation scheme.

Table 3. Complexity and memory-requirement comparison to obtain {ỹl |bl}L−1
l=0 with L = 800,

L1 = 1600, P = 9, K1 = K2 = 5.

Algorithms
M = 4 M = 16

Classical Orthogonal
Fourier [15]

Orthogonal
MPFs Classical Orthogonal

Fourier [15]
Orthogonal

MPFs

Multiply-add operations 1.9× 109 109 495× 1012 275× 1012

Memory locations - 1.6× 106 - 344× 109

Multiplications needed
to fill the memory - 11.8× 106 - 3× 1012

Memory update period
[samples] - 800 - - 800 -

Multiplications to obtain
the BEM coefficients - 72× 103 36× 103 - 72× 103 36× 103

4. Conclusions

A near-optimum orthogonal MLSE and orthogonal MAP equalizers based on BEM in the
time-delay domain and using the modified version of prolate functions were first time introduced in
this work. They show the same performance as the classical algorithms, but with lower computational
effort. Whenever the length of the channel impulse response is greater than the number of basis
functions needed in the basis expansion model, the sums and multiplications of the MLSE and
MAP algorithms, as well as the execution time, are substantially reduced. The use of the MPFs as
the basis expansion model offers the benefit of being robust to the particular channel realization.
For an equal computational effort, our proposal presents better performance than state of the art
alternatives, or conversely, for achieving a predefined BER, our proposal requires fewer operations
and memory locations.
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