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Abstract: 360-degree Virtual Reality (VR) videos have already taken up viewers’ attention by
storm. Despite the immense attractiveness and hype, VR conveys a loathsome side effect called
“cybersickness” that often creates significant discomfort to the viewers. It is of great importance to
evaluate the factors that induce cybersickness symptoms and its deterioration on the end user’s
Quality-of-Experience (QoE) when visualizing 360-degree videos in VR. This manuscript’s intent is to
subjectively investigate factors of high priority that affect a user’s QoE in terms of perceptual quality,
presence, and cybersickness. The content type (fast, medium, and slow), the effect of camera motion
(fixed, horizontal, and vertical), and the number of moving targets (none, single, and multiple) in a
video can be the factors that may affect the QoE. The significant effect of such factors on end-user
QoE under various stalling events (none, single, and multiple) is evaluated in a subjective experiment.
The results from subjective experiments show a notable impact of these factors on end-user QoE.
Finally, to label the viewing safety concern in VR, we propose a neural network-based QoE prediction
method that can predict the degree of cybersickness influenced by 360-degree videos under various
stalling events in VR. The performance accuracy of the proposed method is then compared against
well-known Machine Learning (ML) algorithms and existing QoE prediction models. The proposed
method achieved a 90% prediction accuracy rate and performed well against existing models and
other ML methods.

Keywords: quality of experience; 360-degree videos; virtual reality; cybersickness; ANN

1. Introduction

With the cost decrease of Head Mounted Displays (HMD) and the growing attention of Virtual
Reality (VR) videos, fascination in 360-degree videos has been escalating on popular streaming and
content providing platforms such as YouTube and Facebook. Such videos watched through HMD
allows users to view the vast region of 360-degree videos and to immerse oneself in a VR environment
fully. However, streaming these videos is challenging for service and content providers because
360-degree videos require full spherical coverage and should have 4K or higher resolution to offer a
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satisfactory level of Quality-of-Experience (QoE) for end-user. Therefore, streaming and processing
360-degree video in VR is ambitious.

QoE is the degree of delight or annoyance of the user of an application or service. It results from
the fulfillment of his or her expectations with respect to the utility and/or enjoyment of the application
or service in the light of the user’s personality and current state [1]. Various factors influence QoE
and it is vital to comprehend and evaluate the QoE-affecting factors of 360-degree videos. Since it
is puzzling that not all affecting factors can be identified in a single research study, an essential set
of affecting factors should be addressed and evaluated in terms of their influence on end-user QoE.
Many research studies evaluated various factors that affect the QoE of traditional 2D videos [2–4].
Key QoE aspects such as perceptual quality has been the focus of research while investigating the
QoE of traditional video. Perceptual quality indicates the viewer’s perception and satisfaction about
video quality being watched. QoE evaluation of 360-degree video is different in many aspects from
traditional videos; two key QoE-aspects such as presence and cybersickness should be investigated.
Cybersickness is the feeling of nausea or dizziness while presence indicates the “sense of being there”
in a VR environment. To evaluate QoE cybersickness is the main difference between traditional and
360-degree videos. Both cybersickness and presence are the main different QoE-aspects of the viewer’s
experience between watching traditional videos and 360-degree videos. Therefore, in this manuscript,
we also addressed the presence and cybersickness aspects of QoE along with perceptual quality.

Cybersickness happens when the viewers immerse themselves in the VR and visually perceive
that they are moving through a virtual environment, even though they are physically stationary.
Different methods have been used in the literature [5,6] to calculate cybersickness, but the most
comprehensive is the Simulator Sickness Questionnaire (SSQ) presented in [5]. Therefore, to offer
satisfactory VR services to end-users, the rendering safety of 360-degree videos in VR is a critical
concern. It is significant to develop a predictive technique that can predict the level of cybersickness
and to evaluate the problem of viewing safety in VR.

In recent years, the most promising technique for most of the video-on-demand services and video
sharing websites is HTTP-based video streaming [2]. Unlike User Datagram Protocol (UDP)-based
streaming, Transmission Control Protocol (TCP)-based streaming avoids packet loss and minimizes the
quality degradation of video while it frees the video decoder. However, due to bandwidth limitations
and network fluctuation, unexpected playback interruption occurs also called stalling [7], which can
significantly affect the end-user QoE [8–11]. Although several HTTP Adaptive Streaming (HAS)
methods have been developed to overcome the risk of stalling through bitrate adaptation, HTTP-based
streaming technology has still failed to mitigate stalling during playback [12] totally. Viewport adaptive
streaming is a prevalent technique used for 360-degree video. This technique reserves high-quality
videos for viewport while other parts are delivered in lower quality [13]. A tile-based streaming method
is a widespread technique and has been used for viewport adaptive streaming [14–17], this technique
splits the video frame into multiple tiles (blocks) in space and these tiles are then encoded into various
bitrate segments. Tile-based streaming is more flexible and still failed to deliver 360-degree videos in
high QoE. Stalling is the main issue that arises from the tile-based streaming method under a small
playback buffer due to the short-term constraint of viewport prediction. Stalling is unacceptable
compared to frame reduction [18]. In addition, viewers are more sensitive and less tolerant to stalling
while more tolerant about an increase in the rate of quantization parameters [19]. Hence, researchers
must investigate the critical QoE-affecting factors under different stalling events for 360-degree videos.
Therefore, we also address the effect of various stalling events on users QoE in terms of presence,
perceptual quality, and cybersickness.

Studies on 360-degree videos QoE-aspects and affecting factors in the existing literature [20–23]
is still minimal. The majority of the existing research focus on perceptual quality [20,24]. In addition,
some work targeted the cybersickness aspect [24–27] and presence aspect [28]. These studies evaluated
the impact of various QoE-affecting factors on perceptual quality, presence, and cybersickness.
These research mentioned above will be discussed in detail in Section 2. So far, no existing study has
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evaluated the impact of content type, camera motion, and moving targets under various stalling events.
However, the influence of various stalling events on cybersickness has not been investigated in the
literature. How much the impact of these factors affecting the users QoE while watching 360-degree
videos in VR is still unclear, but expectations are incredibly high. Therefore, it is entirely meaningful
to consider and address the impact of these factors on users QoE for 360-degree videos in VR. In this
manuscript, we aim to investigate the influence of significant QoE-affecting factors on users QoE under
various stalling events (no stalling, single long stalling, and multiple short stalling) in VR. These factors
include content type (fast, medium, and slow), camera motion (fixed, vertical, and horizontal), and the
number of moving targets (no target, single target, and multiple targets). We evaluate the impact of
these factors on three key QoE-aspects: Cybersickness, perceptual quality, and presence. Our primary
focus is to investigate various QoE-affecting factors on user’s cybersickness level under different
stalling events. We aim to propose a method that predicts the effect of these factors on QoE in terms of
cybersickness. Our main contributions are threefold.

• First, we simulate two different types of stalling events including one long stalling of 9-s and three
short stalling of 3-s each (3 × 3 s) in nine different types of 360-degree videos to cover various
influencing factors that affect the users QoE in the VR. The impact of these factors under various
stalling events on users’ QoE is investigated. To the best of our knowledge, no previous studies
have addressed the effect of stalling on the user’s cybersickness level for 360-degree videos in VR;

• Second, we conduct a subjective experiment including 40 subjects and investigate the impact
of content type (fast, medium, and slow), camera motion (fixed, vertical, and horizontal),
and the number of moving targets (no target, single target, and multiple targets) on users’
QoE. The QoE is then evaluated in terms of three significant aspects, such as perceptual quality,
presence, and cybersickness;

• Third, to evaluate the viewing safety concerns in VR, we propose a neural network-based QoE
prediction technique that predicts and examines the degree of cybersickness induced by the
360-degree videos under various stalling events in VR. The prediction accuracy of the proposed
method performs well against well-known ML methods such as Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Decision Tree (DT). Our proposed method outperforms existing
QoE methods.

The remainder of this manuscript is structured as follows: The related work significant to the
subject of this manuscript is presented in Section 2. In Section 3, we explain the experimental
setup and subjective experiment conducted in this manuscript. Section 4 provides the subjective
results and analysis in detail. The QoE prediction method is included in Section 5. The performance
comparison and accuracy of the proposed method is presented in Section 6. Finally, Section 7 concludes
the manuscript.

2. Related Work

In this section, we discuss the existing related work in the literature relevant to our work,
starting with studies on various QoE-affecting factors that affect the QoE of 360-degree videos in
different aspects. The main focus is on studies regarding the improvement of end-user QoE in a
virtual environment such as the user’s “sense of being there” in VR, the user’s perception about the
quality of the video, and the viewer’s cybersickness level in VR. Many research works addressed
the QoE-affecting factors and end-user QoE in various aspects [29–32]. A comprehensive study and
understanding of relevant QoE is an essential prerequisite for QoE improvement.

Regarding the perceptual quality of the 360-degree video, the authors in [29] subjectively
evaluate the impact of encoding parameters (quantization parameters and resolution), content type
(interesting and non-interesting videos), and device type (HTC Vive and Google cardboard) on QoE
by considering the user’s profile. The study concludes that users are less sensitive and more
tolerant about the encoding rate while watching an interesting 360-degree video in VR compared
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to the non-interesting video. Their study claims that viewers are concerned about device type
and recorded higher MOS scores while watching in HTC Vive compared to Google cardboard.
Several research studies explore the influence of encoding parameters on perceptual quality such as
resolutions [20,24,29,33,34], Quantization Parameter (QP) [29,35], bitrate [30,36], and frame rate [34]
have shown significant impact on end-user QoE. The effect of the encoding parameter on perceptual
quality is concluded in [34], the study shows that frame rate and resolution have a severe effect on
perceptual quality than that of bitrate. The considerable effect of content motion on perceptual quality
has shown in [20]. However, their study lacks the impact of camera motion and moving objects in
the video. In a recent subjective study [37], the authors investigated the impact of the Quantization
Parameter (QP), resolution, rendering device, gender, user’s interest, and user’s familiarity with VR
on perceptual quality. Their study concluded that the user’s prior experience of watching a 360-degree
video in VR has a notable impact on perceptual quality. In the context of the presence aspect of QoE,
Schatz et al. evaluated the effect of stalling on presence while watching an omnidirectional video [28].
Their study is only limited to the comparison between omnidirectional video and 2D traditional
video. Another study in [38] evaluated the impact of stalling on perceptual quality and presence for
360-degree videos in VR. Similarly, the impact of various stalling under three different bitrate levels
(1 Mbps, 5 Mbps, and 15 Mbps) on user perceptual quality has been investigated in [30]. The study
concluded that the adverse effect of multiple stalling in a single video sequence is more profound
when the presentation quality level approaches to the high and low end. However, their study is
limited to only perceptual quality. The impact of encoding parameter, device type, and rendering
mode on presence is evaluated in [39]. Their work concluded a lower presence score strongly affected
by content characteristics compared to perceptual quality. Compared to a traditional video, 360-degree
videos in VR provide an enhanced presence level and can be used effectively in training, education,
and rehabilitation [25]. In our work, we addressed the significant impact of nine different types of
360-degree videos in VR on perceptual quality and presence.

Extensive research studies have been conducted to evaluate and predict the user’s cybersickness
level for VR content. Kennedy et al. proposed an instrument to measure the cybersickness
level called the Simulator Sickness Questionnaire (SSQ) [5] which is then improved by [40,41].
Cybersickness symptoms can appear when viewers experience the difference between his/her
movement and content motion [42]. The user’s cybersickness level is investigated in [20]. The study
is limited to the impact of different HMD devices on users. Fremerey et al. evaluate simulator
sickness, the overall annoyance level was not excessive and female subjects recorded greater sickness
than males [43]. The authors in [27] evaluate the impact of content characteristics and device type
on the user’s cybersickness level in a subjective experiment. The study concluded that the effect
of device type on cybersickness is insignificant, while the impact of content motion is a serious
problem. Similarly, many existing studies addressed the impact of resolution, gender [20], and content
motion [24] on cybersickness. Several existing research evaluated the cause of cybersickness in VR,
focusing on the relationship between subjective assessment (SSQ) and objective method (physiological
signal such as heart rate, EEG, and EGG). To that end, the authors deduced that latency of display [44],
frame rate [45], and Field of View (FoV) [46] are the key factors that affect user experience while
watching VR contents. Similarly, cybersickness level could be decreased to reduce the FoV [46]. In a
recent subjective study [37], the authors subjectively evaluate the impact of gender, user’s interest,
and user’s familiarity with VR on cybersickness. Their study concluded that the users’ sickness
level is higher while watching a non-interesting 360-degree video and female subjects recorded more
severe sickness than males. In [47], the authors compared the Depth of Field (DoF) with the SSQ
score blur enabled and disabled. Their study concludes that DoF is one of the main factors that affect
cybersickness. For immersive VR content delivered to HMD, an objective and subjective QoE was
evaluated in [48]. However, most of the existing studies on cybersickness are dedicated to evaluating
and analyzing the relationship between subjective (SSQ) and objective physiological signals assessment.
Meanwhile, no previous study has addressed the significant impact of different duration stallings on
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the viewer’s cybersickness level in the field of 360-degree video. Therefore, in this manuscript,
we also evaluate the impact of various significant factors under different stalling events on the user’s
cybersickness level. This work is a variant of our prior work [37] in the sense of cybersickness levels
prediction. Compared to the previous model, in this manuscript, we have nine different factors as an
input variable and four output cybersickness levels. First, the cybersickness is calculated on a standard
16-items SSQ questionnaire (latest version). Then the total score of cybersickness is divided into four
levels according to their significance on end-users based on the state-of-the-art methods. Here we have
also applied the three supervised machine-learning algorithms (KNN, SVM, and DT) to our dataset
in comparison to the ANN model. The ANN model performs well in terms of prediction accuracy,
which shows the validity and significance of this model. In this work, we will explain the ANN model
in more detail in Section 5.

3. Experimental Setup and Description

This section explains in detail our experimental setup, subjective results evaluations, and analysis.
The complete methodology we followed in this work is shown in Figure 1, where the effect of three
factors with nine different features under two stalling events is evaluated. The impact of these
QoE-affecting factors on three significant QoE-aspects (perceptual quality, presence, and cybersickness)
are investigated during a subjective experiment. The datasets obtained for all three QoE-aspects are
then analyzed and discussed. The cybersickness dataset is collected, arranged, and then fed into the
ANN-based QoE prediction model for different levels predictions. Finally, the prediction performance
of the proposed model is compared against well-known machine learning techniques and state of the
art QoE prediction models.

Figure 1. Complete framework of our study.

3.1. Subjective Users Study and Technical Setup

A total of 40 subjects contributed to the subjective experiment, including 25 male and 15 female
subjects, aged between 25 and 38. We used HTC Vive as an HMD device, with resolutions 2160 ×
1200 with a FoV of 110 degree. HTC Vive is directly connected with a desktop PC that has Virtual
Desktop (VD) software installed and was used as a 360-degree video player. A total of 9 different
types of 360-degree videos are downloaded from YouTube based on different content types (fast,
medium, and slow), camera motion (fixed, horizontal, and vertical), and the number of moving targets
(none, single, and multiple). Figure 2 shows the example frames of the source video sequence covering
various scenes. These videos contain diverse content that cover a wide range of SI (spatial) and TI
(temporal) indexes. The SI and TI of source videos are shown in Figure 3.
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Figure 2. An example of source videos frames.

Figure 3. Spatial and temporal indexes of source videos.

The detailed specifications of the source video, including resolutions, frame rate, video link,
and content features are presented in Table 1. Each source video is cut into a 1-min duration using
the FFMPEG software tool without changing the video quality. Using Avisynth tool, single long
stalling of 9-s and three short stalling of 3-s each at different intervals are simulated in all nine-source
videos. We also considered the original source videos in a subjective test as a no stalling event
(video without stalling) to compare the impact of single long stalling, multiple short stalling,
and no stalling on users QoE. Therefore, we obtained a total of 27 test videos including 9 with
single long stalling (9 s), 9 with multiple short stalling (3 × 3 s), and 9 videos without stalling
events (no stalling). The duration of stalling is chosen longer compared to traditional 2D video [49],
by keeping in mind the 360-degree view of the video in HMD. Thus, the subjects can notice the
stalling disturbance easily. Moreover, using the Avisynth tool, we simulate a YouTube-style indicator
(spinner) that spins when stalling occurs during watching in VR to experience the real-world
scenario. Furthermore, we discarded the audio track from the videos to bypass the impact of acoustic
information. The effect of content type, camera motion, and moving targets under various stalling
events on end-user QoE in terms of presence, perceptual quality, and cybersickness are investigated.
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Table 1. Detailed specifications of source video.

Factors Features Name Video ID (YouTube) Resolutions Frame Rate

Content Type
Fast V1 8lsB-P8nGSM 3840 × 1920 30 fps

Medium V2 D9-i_F3XYhI 3840 × 1920 30 fps
Slow V3 mlOiXMvMaZo 3840 × 2160 30 fps

Camera Motion
Fixed V4 ESRz3-btZIA 3840 × 1920 25 fps

Horizontal V5 9 XR2CZi3V5k 3840 × 1920 25 fps
Vertical V6 elhdcvKhgbA 3840 × 1920 25 fps

Moving Target
No Target V7 L_tqK4eqelA 3840 × 2160 29 fps

Single target V8 ULiXPLH-WA4 3840 × 2048 29 fps
Multiple Targets V9 p9h3ZqJa1iA 3840 × 2160 25 fps

3.2. Subjective Experiment

Before the actual test, all subjects were screened out for visual acuity and color vision using
Snellen (20/20) and Ishiara charts, respectively. The subjects were exposed to a training session before
the actual experiment to train and help them adjust the HMD device according to the head size [20].
The subjects were instructed to sit on a rotating chair and permitted to move their head generously
around to cover the broader region of the 360-degree video.

During the subjective experiment, we randomly divided the total users into two groups,
each group consisting of 20 users. Each user from group one watched 9 videos with single long
stalling, and each user from another group watched 9 videos with multiple short stalling. For no
stalling, we randomly picked 5 users from each group. Therefore, in total, 20 subjects watched 9 videos
with single long stalling, and 20 subjects watched 9 videos with multiple short stalling while 10 subjects
watched 9 videos without stalling (no stalling). The example frames of the spinning indicator during
stalling is shown in Figure 4. The impact of these factors on users QoE were investigated in term of
perceptual quality, presence, and cybersickness. After watching each video in VR, the participants
were asked to give their scores according to the questions asked. The questions asked during our
subjective test are listed below.

Figure 4. An example of a stalling frames with spinning indicator.

• Q1: How do you perceive the quality of video on a 5-point scale? (MOS), (1 = bad, 5 = excellent);
• Q2: How do you rate the level of cybersickness (dizziness or nausea) whilst watching in VR on a

4-point scale? (SSQ), (0; no sickness, 1; mild sickness, 2; considerable sickness, 3; severe sickness);
• Q3: I had a sense of being there in a virtual environment (IPQ-G1), (5 = fully agree,

1 = fully disagree).

The total duration time of the subjective test was almost 10 h. The videos were played randomly
during the subjective test to avoid any memory effect. The subjects were asked three questions after
being shown each video. The perceptual quality is investigated on a 5-point Absolute Category Rating
(ACR) scale according to ITU-T Rec. P.910 called the Mean Opinion Score (MOS). The impact of these
factors on the user’s presence was evaluated by asking a question (G1) adopted from the Igroup
Presence Questionnaire (IPQ) [50]. At the same time, the level of cybersickness was calculated with
the help of a traditional 16-item SSQ method (latest version) as shown in Table 2 [40,41]. A total of
16 symptoms of cybersickness are categorized into nausea (N), oculomotor (O), and disorientation
(D), a 4-point scale (0; no sickness, 1; mild sickness, 2; considerable sickness, 3; severe sickness) are
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used, and weighted values are calculated to obtain the score of each category. N, O, D, and the total
score (TS) are then measured by combining every single score for each symptom with the weight. The
nausea for SSQ score can be calculated as,

SSQNausea = 9.54 × 1
N

N

∑
n=1

(
sgd

n + ss
n + sis

n + sdc
n + sn

n + sb
n + ssa

n

)
(1)

where, N is the number of subjects, sgd
n , ss

n, and sis
n are the subjective score of n-th subject for general

discomfort, sweating, and increased salivation, respectively. The subjective score for the n-th subject
for difficulty concentrating, nausea, burping, and stomach awareness is indicated by sdc

n , sn
n, snb and

ssa
n , respectively. The oculomotor score can be calculated as,

SSQoculomotor = 7.58 × 1
N

N

∑
n=1

(
sgd

n + sh
n + s f

n + ses
n + sdc

n + sd f
n + sbv

n

)
(2)

where, sh
n, s f

n, and ses
n indicated the subjective score of n-th subject for headache, fatigue, and eyestrain,

respectively. While sd f
n and sbv

n represents the subjective score for difficulty focusing and blurred vision,
respectively. The disorientation score of SSQ can be calculated as,

SSQDisorientation = 13.92 × 1
N

N

∑
n=1

(
sd f

n + sn
n + s f h

n + sbv
n + sdzc

n + sv
n + sdzo

n

)
(3)

where, s f h
n , sdzc

n , sv
n, and sdzo

n are the subjective score of n-th subject for fullness of head, dizzy (eye
close), vertigo, and dizzy (eye open), respectively. The total SSQ score can be obtained by adding the
partial SSQ score of all three symptoms (Nausea, Oculomotor, and Disorientation) with the weight,
3.74, which can be written as,

SSQtotal = 3.74 ×
(

1
9.54

SSQNausea +
1

7.58
× SSQoculomotor +

1
13.92

SSQDisorientation

)
(4)

Table 2. Computation of the Simulator Sickness Questionnaire (SSQ) score. Total obtained by adding
the symptom score, N = [a] ×9.54, O = [b] ×7.58, D = [c]×13.92, Total Score (TS) = [a] + [b] + [c] × 3.74.

SSQ Symptoms (0,1,2,3) N O D

General discomfort 1 1
Fatigue 1

Headache 1
Eye strain 1

Difficulty focusing 1 1
Increased salivation 1

Sweating 1
Nausea 1 1

Difficulty concentrating 1 1
Fullness of head 1
Blurred vision 1 1

Dizzy (Eye open) 1
Dizzy (Eye closed) 1

Vertigo 1
Stomach awareness 1

Burping 1
Total [a] [b] [c]
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4. Subjective Results Analysis and Discussions

In this section, we discuss the results obtained from the subjective experiment. The significant
impact of QoE-affecting factors on users QoE is evaluated in a subjective test. The impact of these
factors on three key QoE aspects will be discussed in detail in this section. To check the reliability of
the participant score, we apply the outliers’ detection method according to the ITU-R Rec. BT.500-13
guideline. None of the subjects were noticed as an outlier during our subjective experiment.

4.1. Impact on Perceptual Quality

The impact of QoE-affecting factors under various stalling events on QoE in terms of perceptual
quality is depicted in Figure 5. Where Figure 5a presents the effect of these factors in the absence
of stalling (no stalling), Figure 5b presents in the presence of single long stalling, and Figure 5c
presents multiple short stalling on perceptual quality. In the case of no stalling, most of the MOS
values are between 4 and 5, which shows satisfactory QoE. Still, each affecting factor deteriorates
the QoE in its capacity, while in the presence of a single long stalling of 9 s, the MOS values of the
end-user drop slightly which further degrades QoE as shown in Figure 5b. Furthermore, Figure 5c
reveals a significant drop in QoE when three short stalling of 3 s each occurs at a different interval
in a single video clip. It means that stalling creates a sturdier effect on users QoE and the negative
impact of stalling further increases when multiple short stalling occurs in a single 360-degree video
clip. The average perceptual quality score against all factors under various stalling events is shown
in Figure 6 with a 95% confidence interval (CI). For statistical analysis, we perform a t-test to find
whether there is a statistical difference among different stalling events for perceptual quality aspect.
No statistical differences was found and the p-value recorded is p < 0.05. From Figure 6, we obtained
some agreeable results and observations. Firstly, stalling always impacts the QoE and results in a
significant MOS drop that should be notable. Second, the QoE drop in terms of perceptual quality is
higher in the case of a fast video, vertical camera motion, and multiple moving targets compared to
other affecting factors. Third, the adverse effects of multiple short stalling (3 × 3 s) in a single video on
users’ perceptual quality is higher compared to single long stalling (9 s). From the above results and
observations, we conclude that views are less sensitive and more tolerant when a single long stalling
of 9 s occurs while watching a 360-degree video in VR. On the other hand, these viewers are more
sensitive about multiple short stalling of 3 s each, when it happens in a single video clip. Multiple
stalling leads to frustration and viewers’ annoyance, resulting in poor QoE.

Figure 5. Impact of stalling on perceptual quality: (a) No stalling, (b) single long stalling of 9 s, and
(c) multiple short stallings (3 × 3 s), (1 = bad, 5 = excellent).
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Figure 6. Average perceptual quality score.

4.2. Impact on Presence

Regarding the presence aspect of QoE, stalling has a similar effect on the user’s presence such as
on perceptual quality. The impact of QoE-affecting factors under various stalling on user presence is
shown in Figure 7. From Figure 7, it is clear that the significant effect of multiple short stalling on users’
presence shown in Figure 7c is higher, compared to single long stalling depicted in Figure 7b, and no
stalling event shown in Figure 7a. We have some exciting outcomes from the average presence score
with 95% CI depicted in Figure 8, viewers’ presence level is higher while watching a medium video,
video with horizontal camera motion, and video with multiple moving target objects. It shows that
users feel more presence in a virtual environment when there are more moving objects in a 360-degree
video compared to a video containing no moving object. Besides, a medium video and video recorded
with a horizontal camera motion offers higher presence to viewers. Again, fast video content poorly
affects the user’s presence level in VR, which deteriorates the end-user QoE. We performed a t-test
to compare the statistical difference for the presence aspect between no stalling, single stalling, and
multiple stalling. There are no statistical differences found and the p-value recorded is p < 0.05.

Figure 7. Impact of stalling on users presence (IPQ-G1): (a) No stalling, (b) single long stalling of 9 s,
(c) multiple short stallings (3 × 3 s), (5 = fully agree, 1 = fully disagree).
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Figure 8. Average presence score.

4.3. Impact on Cybersickness

One of the essential goals of the subjective test was to evaluate the impact of these QoE-affecting
factors under various stalling events on the user’s cybersickness level while watching a 360-degree
video in VR. We aimed to analyze which factor had a higher score of N, O, D, and TS under different
stalling events. It can be noticed from the Figure 9a–c that fast video, video with vertical camera
motion, and video containing multiple moving targets result into high N, O, D, and TS score with
95% CI. While slow video, video recorded with a fixed camera, and video having no moving targets
recorded a lower N, O, D, and TS score. In all three cases, the higher cybersickness level is recorded
when multiple stalling occurs (Figure 9c) in a video compared to single long stalling (Figure 9b)
and no stalling (Figure 9a). Another reasonable observation inferred from all three cases is that
the disorientation score is always the highest in all affecting factors. Therefore, it is concluded
that viewers feel higher cybersickness while watching fast videos than a moderate and slow video.
In the case of camera motion, the viewers were uncomfortable, having higher cybersickness levels,
while watching a video recorded with vertical camera motion than that of a fixed camera and horizontal
camera motion. Similarly, another notable reaction from subjects in the case of moving targets in the
video is that viewers prefer less moving targets and are more sensitive to multiple targets and feel
higher cybersickness than a single and no moving target in a video. More importantly, the effect
of stalling on these factors is significant. Multiple short stalling have a more considerable influence
and deteriorates the QoE than single long stalling. Figure 10 shows the sickness level in terms of
TS across different factors and stallings. Their statistical distribution are indicated by error bars as
a 95% CI. We also performed a t-test to compare the statistical difference between N, O, D, and TS.
There are no statistical differences found (p < 0.05) and the p-value < 0.05 recorded among no stalling,
single stalling, and multiple stalling. These findings show that various stalling has a significant impact
on cybersickness. The performance of the subject’s score for all three questions is evaluated in terms of
the Pearson Linear Correlation Coefficient (PLCC) and Spearman’s Rank-order Correlation Coefficient
(SRCC) shown in Table 3. Both PLCC and SRCC ranges between 0 and 1, the higher value indicates
better performance.
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Figure 9. Impact of stalling on users cybersickness level: (a) No stalling, (b) single long stalling of 9 s,
and (c) multiple short stallings (3 × 3 s).

Figure 10. User’s sickness level (total score) shown per affecting factor under various stalling events.

Table 3. Performance evaluation of subjects score for all three questions. Pearson Linear Correlation
Coefficient (PLCC). Spearman’s Rank-order Correlation Coefficient (SRCC).

Questions PLCC SRCC

Q1 0.8834 0.8735
Q2 0.9005 0.8961
Q3 0.9015 0.8912

To summarize the above results and observations, the impact of all nine factors under different
stalling events on QoE in terms of perceptual quality, presence, and cybersickness is significant.
In the case of perceptual quality, viewers are more sensitive about the fast video, vertical camera
motion, and video having multiple moving targets than other factors. Regarding the presence aspect,
these observations are different and the subject’s presence level is higher while watching a medium
video than a slow and fast video. Similarly, the viewers feel an extra presence in the VR environment
when watching a 360-degree video recorded with a horizontal camera motion than a fixed and vertical
camera motion. Furthermore, a video having multiple moving objects gives a higher presence level
to the viewers compared to single and no moving target videos. On the other hand, the impacts of
these factors on user’s cybersickness level is also critical. Viewers feel annoyed and uncomfortable,
which results in higher cybersickness while watching the fast video, videos with vertical camera
motion, and videos with multiple moving targets than other factors. More significantly, stalling always
affects the users QoE in all three aspects. Viewers feel a satisfactory level of QoE when there is no
stalling in a video. At the same time, the end-user QoE drops when they experience a single long
stalling of 9 s. The QoE degrades further when multiple short stalling (3 × 3 s) occurs in a single video
clip at a different interval. Therefore, it suggests that content and service providers should take into
account the stalling events because viewers are more sensitive about multiple stalling and tolerant to
single long stalling when it occurs in 360-degree video.
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5. QoE Prediction in Terms of Cybersickness

In this section, we built a model based on ANN that can predict QoE in terms of cybersickness.
To address the viewing safety issues in a VR environment, we construct a neural network that predicts
the viewer’s cybersickness level induced by the VR content under stalling events. The cybersickness
dataset obtained from subjective experiments through SSQ is used as training data for the QoE
prediction. ANN is one of the most promising methods for acceptable computational complexity and
uses a chain rule based on the gradient descent method to iteratively compute the gradient for each
layer. The basic ANN algorithm equation is:

W(n) = W(n − 1)− ∆W(n) (5)

∆W(n) = η

(
∂E
∂W

)
(n − 1)− α∆W(n − 1) (6)

where ∆W indicates gradient used for the adjustment of weighting, η denotes learning rate
(hyperparameter) that controls how much to change the model in response to the estimated error
each time the model weights W are updated. W denotes weight and E indicates the gradient of
the error function. ANN updates the learning rate η based on each sample instead all the samples
shown in Equation (5) and accelerates the speed of finding the optimal solution. Therefore, we may
achieve the best model by varying the learning rate η. The error function we used is indicated by the
following Equation.

c =
1

2n ∑
X

∥∥∥y(x)− aL(x)
∥∥∥2

(7)

To predict the effect of nine features of three QoE-affecting factors such as content type, camera
motion, and the number of moving targets under various stalling events on VR sickness level,
we trained a four-layer ANN model based on Stochastic Gradient Descent (SGD). We used four
layered ANN model including one input layer, one output layer, and two hidden layers shown in
Figure 11. In this typical ANN model, we used nine input neurons indicated by X1, . . . , X9. Two
hidden layers, h1

1, h1
2, . . . , h1

n indicate neurons in first hidden layer while h2
1, h2

2, . . . , h2
n represents the

neurons in the second hidden layer. The output neurons Y1, . . . , Y4 represent the four cybersickness
levels 0, 1, 2, and 3. The four output values are based on the TS (Total Score) of SSQ. The TS of SSQ
below 10 is traditionally considered to be normal [51], while the TS between 32 and 40 could be enough
to cause cybersickness [40,52]. Therefore, for ANN-based prediction, we categorize the TS of SSQ into
four output values shown in Table 4.

Figure 11. The structure of the proposed Artificial Neural Network (ANN).
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Table 4. Categorization of the total SSQ Score and Sickness Level.

Total Score (TS) Sickness Level Output Variable

0 to 10 Normal Sickness 0
11 to 31 Slight Sickness 1
32 to 40 Enough Sickness 2
40 above Severe Sickness 3

The intent of using ANN for cybersickness levels prediction is to map these nine input features
of three QoE-affecting factors under stalling into four output values ranging from 0 to 3. We use a
high-level ANN Keras library that runs on the top of TensorFlow. Keras provides the SGD optimizer
with an adapting learning rate. The number of neurons in hidden layers is adapted by fixing the
learning rate at 0.2 at the first stage during the optimization process. We then achieved 64 neurons in
the first hidden layer and 32 neurons in the second hidden layer with a prediction accuracy of 90%.
We used 1000 iterations (epochs) to train the model. We also noted that the final prediction accuracy
of the network varied with the adaptation of different learning rates. Therefore, we tried and tested
different learning rates to check the prediction accuracy of the proposed model. Figure 12 depicts the
variation in prediction accuracy with adapting learning rates. The main steps of our proposed neural
network QoE prediction model are shown in Algorithm 1.

Figure 12. Quality-of-Experience (QoE) prediction with different learning rates.

Algorithm 1 Learning neural network-based QoE prediction model with cybersickness data.

Initialize: Set the neural network learning rate as 0.2 and the iteration number (epochs) to
train the network as 1000. Select the hidden neuron in first and second hidden layer
as 64 and 32, respectively.

1: Collect the cybersickness dataset obtained via subjective experiment.
2: Divide the dataset in training and testing samples.
3: while the epochs of the training dataset ≤ 1000, do
4: Select the output label values ranging from 0 to 3 representing normal sickness (0), slight sickness

(1), enough sickness (2), and severe sickness (3).
5: Apply the SGD optimizer to update the parameters of the network.
6: end while
7: Save the parameters of the training network.
8: Input the testing samples to the saved parameter to obtain the score.
9: Predict the final QoE
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6. Accuracy and Performance Comparison

We used 70% of the cybersickness dataset for training and 30% for testing to check the
prediction performance of the model. We compared the prediction accuracy of our model
against SVM, KNN, and DT with respect to the confusion matrix, accuracy rate, precision, recall,
f1-score, and Mean Absolute Error (MAE).

Confusion Matrix: Is a performance measurement of the machine learning prediction method
that offers the classification of the correct match rates for predicted values against actual class.
The confusion matrix gives four different arrangements of predicted and actual values. True Positive
(TP) interprets correctly predicted cybersickness level, False Positive (FP) denotes the incorrectly
predicted cybersickness levels, True Negative (TN) reflects the accurately miss percentage, and False
Negative (FN) indicates incorrectly miss percentage. ANN recorded the highest accuracy rate with 90%
while SVM, KNN, and DT achieved 83%, 80%, and 83% respectively shown in Table 5. The performance
accuracy of the proposed ANN-based QoE prediction model is calculated with the help of the following
five Equations:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2 × Precision × Recall
Precision + Recall

(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

MAE =
1
n

n

∑
i=1

∣∣Yactuali − Ycalculated i

∣∣ (12)

Table 5. Performance comparison of the proposed QoE prediction model.

Method Precision Recall f1-Score MAE Accuracy

KNN 0.84 0.82 0.83 0.19 80%
ANN 0.91 0.91 0.90 0.9 90%
SVM 0.85 0.83 0.82 0.18 83%
DT 0.87 0.83 0.82 0.17 83%

For a further comparison and validation of the proposed model, we compared the prediction
accuracy performance of the proposed QoE prediction model against the VR Sickness Predictor
(VRSP) [53], linear regression-based model [21], VR Sickness Assessment (VRSA) network [54],
and deep learning Visual Comfort Assessment (VCA) method [55]. PLCC and SRCC is calculated to
estimate the performance comparison of the proposed models. Figure 13 shows the PLCC and SRCC to
compare the prediction performance of the proposed model with 95% CI. It shows that our proposed
ANN-based model provides the best prediction performance of the subject’s QoE.
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Figure 13. PLCC and SRCC performance evaluation of the proposed model.

7. Conclusions

This manuscript has addressed the different key factors that affect the QoE of 360-degree video
in VR. The impact of three critical factors including nine various affecting features such as content
type (fast, medium, and slow), camera motion (fixed, horizontal, and vertical), and the number of
moving targets (none, single, and multiple) were investigated on viewers QoE. The impact of these
factors were evaluated under various stalling events (no stalling, single long stalling, and multiple
short stalling) on QoE in term of three crucial aspects perceptual quality, presence, and cybersickness.
Experimental results showed that all three QoE aspects were significantly affected by these affecting
factors under various stalling events. Regarding perceptual quality, users were less tolerant about
the fast video, vertical camera motion, and video having multiple moving targets than other factors.
From t-test, the p value was less than 0.05 between the slow video and fast video, fixed camera and
vertical camera, and no target and multiple targets. The statistical analysis shows that these factors
significantly influenced the perceptual quality. In the case of presence aspect, these observations were
different and the viewer’s presence level was higher while watching a medium video than slow and fast
video. Similarly, the viewers felt more presence in the VR while watching a 360-degree video recorded
with horizontal camera motion than with a fixed and vertical camera motion. In addition, a video that
had multiple moving objects offered a higher presence level to the viewers compared to single and
no moving target videos. In terms of cybersickness aspect, viewers felt annoyed and uncomfortable,
which resulted in higher cybersickness while watching the fast video, videos recorded with vertical
camera motion, and videos with multiple moving targets than other factors. It is also observed that
stalling always affected the viewers QoE and the adverse effect of multiple short stalling on end-user
QoE was more profound than single long stalling. Furthermore, we proposed the ANN-based QoE
prediction method to predict the impact of QoE-affecting factors under various stalling events on the
user’s cybersickness level. It is shown that no previous study has addressed the effect of stalling on
cybersickness for 360-degree video in VR, which motivated us to carry out this study. We compared
the prediction accuracy of the proposed model against other machine learning techniques such as SVM,
KNN, and DT with respect to the accuracy rate, recall, f1-score, precision, and MAE. Our proposed
ANN model performed well with 90% prediction accuracy against other machine learning techniques
and existing QoE prediction models.

There are also a few limitations to our work. We classified the videos according to the three
features in a manner that each of the videos represents one single feature. We tried our best to
choose the video that had a single feature. We tried to select that a video which had a single
moving target did not have another feature of moving targets (i.e., single target or multiple targets).
Similarly, this was applied to any video recorded with both fixed, vertical, or horizontal camera
motion and the same in the case of video speed. The limitation of our work is that in reality, videos
with a moving target could also be a fast or medium and vertical camera motion video and could also
have another feature. At the same time, a video could have both a vertical motion and be slow. Still,
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the purpose of our work is to bring this serious issue to the eyes of researchers. In addition, the content
providers should take into account these factors while providing any content to meet the end-users
satisfaction and to offer better QoE.

In our future work, we aim to overcome these limitations and evaluate factors that contained
multiple feature. We will also cover more QoE affecting factors such as different projection schemes,
EEGs, and user gaze focus. In addition, we intend to evaluate the effect of these factors on QoE
aspects such as usability, acceptability, presence, immersion, and cybersickness. The finding and QoE
prediction model in our study and future work is expected to be helpful so as to improve the QoE of
360-degree video in VR applications for entertainment and education.
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