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Abstract: Properties of coal surface and pore structure are important aspects to be investigated
in coal preparation and utilization. In order to investigate the limits of different probe methods,
a comprehensive approach was comparatively used to probe surface properties and pore structure
of anthracite, bituminous coal and lignite. Surface morphology of the three coal samples was
analyzed by scanning electron microscopy (SEM). Combining mercury intrusion porosimetry (MIP),
physisorption method with carbon dioxide (CO2) at 273 K and nitrogen (N2) at 77 K was used to
quantify a broad pore size distribution of coals, while FT-IR and water vapor sorption methods were
used to study the coal surface properties. The results show that wedge-shaped pores develop with the
increase of coal rank due to compression effect. The determined specific surface area (SSA) and pore
volume of N2 decrease with the increase of coal rank, while CO2 SSA and pore volume are of a kind
of U-shaped function of coal rank. MIP results indicate that that the pore size of 10–100 nm accounted
for 70.7–97.5% of the total volume in the macropore range. Comparison of different methods indicates
that micropores cannot be fully covered by the standard probes. CO2 adsorption technique can only
probe micropores in the range of 0.5 nm to 0.9 nm. Water vapor is not an effective probe to detect
the micropores in coals, due to that the water clusters is mainly filled in mesopores and macropores.
The results also show that both water vapor adsorption and FT-IR analysis can provide qualitative
information of coal surface, rather than qualification of functional groups.
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1. Introduction

Coal is an extremely heterogeneous porous material containing both organic macerals and
inorganic mineral matter [1]. The macromolecule structure of coal macerals offers plenty of adsorption
sites for gaseous and liquid adsorbates [2–4]. In addition, the amorphous surface of coal enriches
functional groups, possessing strong adsorption capacity for polar molecule adsorbates [5–7], such as
water vapor. In coal preparation and utilization processes, including coalbed methane (CBM) recovery
and CO2 geosequestration, both surface properties and pore structure are important aspects to be
investigated [8,9].

The pores in coal and other porous materials are commonly divided into three categories based
on the pore diameter, following the International Union of Pure and Applied Chemistry (IUPAC)
classification, as micropores (≤2 nm in diameter), mesopores (2–50 nm idiameter) and macropores
(≥50 nm in diameter) [10]. For coal, the macromolecular structure of organic macerals forms an
interconnected pore network, resulting in a broad distribution of pore size [11,12]. Coal structure
varies with the degree of maturity of coal as measured by reflectance or volatile matter. Accompanying
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the coalification, micropores increase significantly at the expense of macropores and mesopores,
leading to an increase in specific surface area (SSA) and pore volume [13]. However, Gürdal and
Yalçın [14], Laxminarayana and Crosdale [15], Perera et al. [16] and Zhao et al. [17] argued that SSA and
pore volume tend to be an U-shaped function of coal rank. Therefore, the variation mechanism of the
SSA and pore volume with coalification process is not simple. Furthermore, Bustin and Clarkson [18]
and Jian et al. [19] showed that maceral composition affects SSA more significantly than coal rank.

Previous studies have confirmed that the probed pore structure of coal was impacted by the
specific measurement technique. To date, no standard method has been established to probe such a
broad pore size distribution for such a complex natural porous medium. Physisorption approach is a
method widely used to derive pore structure in coal, such as porosity and SSA [20–25], and CO2 and
nitrogen (N2) are the most commonly used adsorbates. Conventionally, the adsorption-desorption
isotherm of N2 on coal is conducted at 77 K. However, N2 molecules at 77 K cannot penetrate the fine
micropores due to the activated diffusion effect and pore shrinkage of coal [26], but these micropores
provide a dominant amount of adsorption sites. In order to eliminate activated diffusion effect and
pore shrinkage during isotherm measurement, CO2 at higher temperatures (195 K, 273 K, 298 K) has
been used in isotherm measurement [16,27–29]. As a consequence, the determined porosity and SSA
with CO2 adsorbate are usually larger than that with N2 at 77 K [8,13,30]. Gan et al. [30] found that,
with N2 adsorbate at 77 K, the SSA of coal with carbon content of 75.5–81.5% is greater than 10 m2/g,
while the SSA of coal with carbon content beyond this range is less than 1 m2/g. Comparatively, with
CO2 at 298 K, the measured SSA of coal is higher than 100 m2/g, irrespective of the carbon content.
With N2 (77 K) and CO2 (273 K) adsorbates, Okolo et al. [13] confirmed this measurement trend using
four coal samples from different deposits.

Mercury intrusion porosimetry (MIP) is also a technique of determining the porosity of
coal [31–33], where liquid mercury is gradually injected into pores of coal with the increase of pressure
by overcoming the surface tension. The higher injection pressure, the smaller pores can be penetrated
by mercury. However, at the high pressures employed, the sample can be deformed elastically or
even damaged irreversibly. Moreover, mercury is not able to be completely extruded from the pore
system [34]. Therefore, such a technique is more competent to probe mesopores and macropores.

More recently, water vapor has been tentatively used to characterize the pore structure of porous
material due to its lower kinetic diameter (0.28 nm) when compared to N2 (0.38 nm) and CO2 (0.33 nm).
However, the application of water vapor to physically investigate the pore structure of the natural
organic material is not as simple as N2 and CO2, as the surface functional groups may provide extra
sorption sites for water molecules [35]. Previous studies showed that water molecules first interact
with functional groups by electrostatic forces at a low relative pressure; then the adsorbed water
acts as secondary sites for further adsorption, forming clusters; the clusters merge further to fill the
pore space at a high relative pressure [36–41]. Therefore, the water uptake capacity can reflect both
the overall density of surface functional groups and the porosity of coal. However, further study is
needed to reveal the detailed mechanisms of water vapor adsorption in such a pore medium of a
broad pore size distribution, including the role of different-size pores in vapor adsorption and their
modeling equations.

The objective of this study is to explore the characteristics of surface properties and pore structure
of different coal rank and address the limits of different methods for coal characterization. To attain
this goal, a comprehensive approach was comparatively used to investigate the pore structure and
surface properties of anthracite, bituminous coal and lignite. Scanning electron microscopy (SEM) was
performed for pore morphology characterization. Combining MIP, physisorption method with carbon
dioxide (CO2) at 273 K and nitrogen (N2) at 77 K were used to quantify a broad pore size distribution
of coals. Fourier Transform infrared spectroscopy (FT-IR) and water vapor adsorption methods were
used to study the coal surface properties. Finally, the measurable ranges and the limits of each method
applied in this study are analyzed.
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2. Materials and Methods

2.1. Sample Preparation

Coal blocks were collected from three mineable coalbeds in China. Since coal rank is a key factor
determining the pore structure and surface properties, different coal rank collected from three deposits
were used in this study. Anthracite from No. 6 coal seam in Datong coal mine, Sichuan coalfield,
medium-volatile bituminous coal from No. 2 coal seam in Zhaolou coal mine, Heze coalfield and lignite
from No. 1–2 coal seam in Daliuta coal mine, Shendong coal field. The locations and stratigraphic
columns of the three coal mines are shown in Figure 1. Coal blocks were firstly obtained from
freshly-exposed mining faces, then sealed immediately and transported to the laboratory. In laboratory,
coal lumps were ground and sieved to particles of 18–20 mesh (0.83–0.88 mm) in size for further
analysis and measurement.
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Figure 1. The information of coal specimens: (a) The locations, and (b–d) stratigraphic columns.

2.2. Ultimate and Proximate Analyzes

Prior to surface properties and pore structure investigation, ultimate and proximate analyzes
were carried out to characterize the coal samples. Flash EA2000 elemental analyzer (Thermo Fisher
Scientific, Waltham, MA, USA) was used for ultimate analysis. The proximate analysis on coal samples
includes fixed carbon (Cfix), volatile matters (Vdaf), ash (Aad) and moisture (M). The ultimate analysis
aims for the element analysis of carbon (C), hydrogen (H), nitrogen (N) and oxygen (O).

2.3. Scanning Electron Microscopy

SEM JSM-7800F, JEOL USA, Inc. (Peabody, MA, USA) was used to visually investigate the pore
morphology of the three coal samples. The coal samples prepared for SEM analysis were 1 × 1 × 1 cm
in size and the magnification time was set as 10,000. After surface cleaning, the coal samples were
vacuum dried at 373 K for 12 h. Before SEM scanning, the coal samples were coated with a layer
of gold.
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2.4. FT-IR Analysis

FT-IR is one of the most useful methods used in instrumental analysis for research on coals
and carbon materials. It allows non-destructive testing of the chemical structure of the objects
being characterized [41]. In this study, surface functional groups of anthracite, bituminous coal
and lignite were determined using a FT-IR Nicelet 6700 (Thermo Fisher Scientific, Waltham, MA, USA).
Using He/Ne laser source, it can provide a spectral scan from 400 to 4000 cm−1. The coal sample for
FT-IR analysis (0.5–1 mg in weight) was prepared with the potassium bromide (KBr) pellet method.
The coal powders and the dried KBr were ground at a mass ratio of 1:160. The obtained infrared
interference spectral was transformed through Fourier calculation to identify hydroxyl, aliphatic
hydrogen and carbonyl functional groups.

2.5. Low-Pressure N2 and CO2 Isotherm Measurements

The low-pressure isotherms of N2 and CO2 were measured using Accelerated Surface Area and
Porosimetry System ASAP 2020M, Micrometrics Instruments Corporation USA, Inc (Norcross, GA,
USA). Before each test, the coal sample (1–2 g in weight) was degassed for 12 h at 383 K to remove air,
water and other volatile matters. At each pressure set-point, the sorption equilibrium was established
automatically when the pressure stabilized for 30 s. The absolute pressure tolerance was set as 5 mmHg
(6.66 mbar). The warm free space and cold free space were determined by helium expansion after
isotherm measurement. The SSA, pore volume and pore size distribution (PSD) of the coal samples
were calculated based on multiple theories [42].

The CO2 adsorption isotherms were measured in an ice bath (273 K) under the relative pressure
ranging from 0.005 to 0.032. Lower limit of the relative pressure is used for the evaluation of CO2

adsorption as micropores are filled at lower relative pressure than mesopores [13]. The SSA and
micropore volume determined by CO2 adsorption were evaluated by Dubinin-Radushkevich (D-R)
and Dubinin-Astakhov (D-A) methods. The PSD were calculated by Density Functional Theory
(DFT). The N2 adsorption-desorption isotherms were measured at 77 K under the relative pressure
from 0.01 to 0.99. The SSA of the coal samples with N2 adsorbate were evaluated by Langmuir,
Barrett-Joyner-Halenda (BET) and Barrett-Joyner-Halenda (BJH) methods for comparison purpose.
The pore volume and average pore diameter from N2 isotherm were determined using BET and BJH
models. The mesopore size distribution of the samples determined from N2 adsorption were based
on BJH method. In comparison, the calculation models for different adsorbates are summarized in
Table 1.

Table 1. Structural properties of the coal samples.

Properties Anthracite Bituminous Coal Lignite

BET N2-SSA (m2/g) 0.187 0.744 1.498
BJH N2-SSA (m2/g) 0.178 1.065 1.985

D-R CO2-SSA (m2/g) 120.38 54.54 98.71
D-A CO2-SSA (m2/g) 74.34 45.77 61.05

MIP SSA 7.422 16.82 10.69
BJH N2-pore volume (×10–3 cm3/g) 0.543 1.275 4.021

MIP-pore volume (×10–3 cm3/g) 5.5 20.3 8.2
D-A CO2-micropore volume (×10–3 cm3/g) 26.35 11.94 21.61

BET N2-average pore width (Å) 122.7 151.7 78.03
BJH N2-adsorption pore width (Å) 132.4 47.89 45.92

2.6. Mercury Porosimetry Measurement

A Mercury Porosimetry Analyzer from Quantachrome Instruments was used to comparatively
show its probe difference to different coal rank, using anthracite, bituminous coal and lignite. At the
start of the measurement, the coal sample was firstly immersed in mercury container and then degassed
to achieve the vacuum state. Subsequently, the pressure was gradually applied to drive the mercury



Energies 2018, 11, 1502 5 of 14

into the pores. The applied mercury pressure and the intruded volume were recorded to derive the
pore structure of coal.

The applied mercury intrusion pressure was started from 21 psi (0.15 MPa) to a maximum pressure
of about 15,000 psi (100 MPa). The contact angle and surface tension for injection were assumed to be
130◦ and 0.485 N/m to determine pore size distribution [13,18].

2.7. Water Vapor Isotherm Measurements

The gravimetric method was used to measure water vapor adsorption-desorption isotherms using
the IGA gravimetric analyzer, Hiden Isochema Limited UK, Inc. (Warrington, UK), as schematically
shown in Figure 2. The IGA system is an intelligent gravimetric analyzer by integrating
computer-controlled precise measurement units for weight change, pressure and temperature.
The pressure supply system can regulate the gas pressure from 0 to 2.0 MPa, and the weighing resolution
of the microbalance is 0.2 µg ± 0.1 µg. In the isotherm measurement process, the microbalance and the
pressure control units are under the thermostat control with an accuracy of ±0.1 K.
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5, sample basket; 6, pressure transducer; 7, temperature transducer; 8, thermostat; 9, data system).

Water vapor isotherms on the coal samples were measured at 298 K. Prior to isotherm
measurement, the coal sample was degassed at 383 K for 12 h under vacuum (10−6 Pa) in order
to remove the water content. In isotherm measurement, the adsorption/desorption equilibrium was
established at a pressure point once the change in sample weight was less than 1% of equilibrium or a
time-limit was reached. Then, the water vapor pressure was regulated to the next test. In preliminary
tests, it was found that the weight of the coal sample was stable after 120 min adsorption and did not
change further even for experiments lasting up to 20 h. Thus, the sorption equilibration time is set as
120 min, which is sufficient for gas sorption equilibrium at each pressure point. Buoyancy effect was
corrected automatically in the measurement.

3. Results and Discussion

3.1. Ultimate and Proximate Results

The results of ultimate and proximate analyzes are presented in Table 2. In comparison,
anthracite contains the highest carbon content, but the lowest volatile matters and ash content,
corresponding to 73.85%, 12.81% and 13.34%, respectively, while lignite contains the lowest carbon
content, but the highest volatile matters and ash content. However, the moisture content does not
show such a monotonic trend. In the ultimate analysis, carbon element shows the same trend as
that of carbon content in the proximate analysis. Regarding the hydrogen, nitrogen and oxygen
elements, lignite is the highest, followed by bituminous coal and anthracite in sequence. Therefore,
the carbon content increased with coal rank, while the volatile, ash and moisture decreased with coal
rank. This is consistent with the previous studies [16,43]. The content of hydrogen, nitrogen and
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oxygen elements monotonically decreased with the coal rank. This is due to the polycondensation
effect and the elimination of –OH bounds during coalification process.

Table 2. Proximate and ultimate analyzes of the coal samples.

Proximate Analysis (wt %) Ultimate Analysis (wt % daf)

Coal Mine Coal Rank Cfix Vdaf Aad M C H N O

Datong Anthracite 73.85 12.81 13.34 1.96 90.11 3.79 0.96 2.05
Zhaolou Bituminous coal 65.1 28.71 16.24 1.50 82.54 4.57 1.08 11.03
Daliuta Lignite 53.55 36.96 19.42 2.46 72.71 4.95 1.19 20.50

Notes: Cfix, fixed carbon; Vdaf, volatile matters; Aad, ash; M, moisture.

3.2. SEM Results

Figure 3 shows SEM images of the coal samples at the magnification time of 10,000. It can be
seen that the pore distribution of the coal samples is inhomogeneous. Furthermore, either pore size
or pore shape is different among the three coal samples. The anthracite has a major distribution of
wedge-shaped pores, which is probably due to the compaction effect during coalification process.
The bituminous coal is highly porous with cylindrical pores, wedge-shaped pores and bottle-shaped
pores. Pores in lignite can hardly be observed at the magnification time of 10,000, which is possibly
due to the less maturity of the lignite compared to anthracite and bituminous coal.

Energies 2018, 11, x FOR PEER REVIEW  6 of 14 

 

is consistent with the previous studies [16,43]. The content of hydrogen, nitrogen and oxygen 
elements monotonically decreased with the coal rank. This is due to the polycondensation effect and 
the elimination of –OH bounds during coalification process. 

Table 2. Proximate and ultimate analyzes of the coal samples. 

 Proximate Analysis (wt %) Ultimate Analysis (wt % daf) 
Coal Mine Coal Rank Cfix Vdaf Aad M C H N O 

Datong Anthracite 73.85 12.81 13.34 1.96 90.11 3.79 0.96 2.05 
Zhaolou Bituminous coal 65.1 28.71 16.24 1.50 82.54 4.57 1.08 11.03 
Daliuta Lignite 53.55 36.96 19.42 2.46 72.71 4.95 1.19 20.50 

Notes: Cfix, fixed carbon; Vdaf, volatile matters; Aad, ash; M, moisture. 

3.2. SEM Results 

Figure 3 shows SEM images of the coal samples at the magnification time of 10,000. It can be 
seen that the pore distribution of the coal samples is inhomogeneous. Furthermore, either pore size 
or pore shape is different among the three coal samples. The anthracite has a major distribution of 
wedge-shaped pores, which is probably due to the compaction effect during coalification process. 
The bituminous coal is highly porous with cylindrical pores, wedge-shaped pores and bottle-shaped 
pores. Pores in lignite can hardly be observed at the magnification time of 10,000, which is possibly 
due to the less maturity of the lignite compared to anthracite and bituminous coal. 

 
Figure 3. SEM images of the coal samples. 

3.3. FT-IR Results 

The FT-IR spectra of the three coal samples are shown in Figure 4, where the difference in FT-IR 
spectra represents different functional group characteristics on coal surfaces. The first band at a 
wave number of around 3500 cm−1 is attributed to –OH groups caused by surface hydroxyl of water 
molecules on coal surface. The second band at the wave number of around 1622 cm−1 indicate amide 
carbonyl (–C=O) of the coal surface. The spectral bands from 900–700 cm−1 are attributed to the 
aromatic structure. The sharp absorption peak of bituminous coal at around 1434 cm−1 is attributed 
to C–H bond, while the peaks of anthracite and lignite at 1032 cm−1 are caused by the C–O bond of 
the carboxylic acid, phenol and alcohols structure. Figure 4 shows, compared to the bituminous coal 
and the lignite, the anthracite exhibited relatively weak FT-IR absorption peaks. This indicates that 
anthracite has a low concentration of functional groups on its surface. 

Figure 3. SEM images of the coal samples.

3.3. FT-IR Results

The FT-IR spectra of the three coal samples are shown in Figure 4, where the difference in FT-IR
spectra represents different functional group characteristics on coal surfaces. The first band at a
wave number of around 3500 cm−1 is attributed to –OH groups caused by surface hydroxyl of water
molecules on coal surface. The second band at the wave number of around 1622 cm−1 indicate amide
carbonyl (–C=O) of the coal surface. The spectral bands from 900–700 cm−1 are attributed to the
aromatic structure. The sharp absorption peak of bituminous coal at around 1434 cm−1 is attributed
to C–H bond, while the peaks of anthracite and lignite at 1032 cm−1 are caused by the C–O bond of
the carboxylic acid, phenol and alcohols structure. Figure 4 shows, compared to the bituminous coal
and the lignite, the anthracite exhibited relatively weak FT-IR absorption peaks. This indicates that
anthracite has a low concentration of functional groups on its surface.
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Figure 4. FT-IR spectra of the coal samples.

3.4. Pore Structure for the Coal Samples

The N2 adsorption-desorption isotherms of the coal samples are shown in Figure 5a. The isotherms
of the three coal samples uniformly show Type IV, indicating a wide distribution of pore size [10].
In the isotherms, adsorption-desorption hysteresis appeared at the high relative pressure, suggesting
capillary condensation occurred within the mesopores [44]. The shape of the hysteresis loop of lignite
corresponds to type C, while bituminous coal and anthracite show Type B according to de Boer
classification [45]. Type C hysteresis loop illustrates slit-shaped pores in lignite, and Type B hysteresis
loop reflects that a significant amount of wedge-shaped pores exist in anthracite and bituminous coal.
This characteristic can be visually confirmed by SEM images as shown in Figure 3. It is noted that the
hysteresis loop of lignite show a lack of closure at the low relative pressure, which is attributed to the
swelling effect of coal matrix in adsorption process [46].
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(b) CO2 adsorption isotherms at 273 K.

Figure 5b shows CO2 adsorption isotherms of the coal samples at 273 K under a low relative
pressure range (≤0.032). The adsorption capacity of CO2 on the coal samples are larger than that of
N2 at a similar relative pressure range. As mentioned previously, this is because CO2 molecules can
enter narrow micropores when compared to N2 adsorbate [47]. From Figure 5, it can be observed that
anthracite has the lowest N2 adsorption capacity, but the highest CO2 adsorption capacity, indicating a
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major distribution of micropore. The N2 adsorption capacity decreases with the increase of coal rank,
while CO2 adsorption capacity shows an U-shaped function in terms of coal rank.

The estimated pore properties from N2 and CO2 isotherms are summarized in Table 1.
The Langmuir SSA, BET SSA and BJH SSA determined by N2 are around as low as 1 m2/g. Regarding
the coal rank, the SSA and pore volumes determined by N2 adsorption show a tendency to decrease
with the increase of coal rank. The determined average pore diameter with BET and BJH methods
shows that the pores probed by N2 adsorbate fell in the mesopore range. Table 1 also shows that the
CO2 SSA, based on either D-R or D-A models, of the coal samples are larger than N2 SSA. With CO2

adsorbate, the determined SSA for anthracite is the largest, followed by lignite and bituminous
coal. However, with N2 adsorbate, the determined SSA decreases with the increase of coal rank.
Mahajan et al. [8] argued that CO2 is capable of measuring the total surface area of coal. Bituminous
coal is found to exhibit the lowest SSA and pore volume of micropores among the three samples.
This is consistent with the published results [13].

The PSD for the coal samples determined by N2 and CO2 adsorption are shown in Figure 6.
The results indicate that the coals contain a broad PSD in the micro- and mesopore range. The calculated
pore volume distribution of lignite is higher than anthracite and bituminous coal in mesopore range,
with major peaks at around 9 nm and 25 nm. The bituminous coal has a major peak at around 45 nm,
while anthracite has minor volume distribution in mesopore range (Figure 6a). In micropore range,
anthracite has major peaks at around 0.56 nm, 0.77 nm and 0.9 nm, while bituminous coal and lignite
have major peak at around 0.84 nm (Figure 6b).
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The PSD and SSA of the coals determined by MIP method are given in Table 1 and Figure 7. It can
be observed that pores in the range from 10–100 nm accounted for 70.7–97.5% of the total volume for
all the coal samples. The volume of large macropore (100–1000 nm) decreases with the increase of
coal rank. The SSA and total pore volume of bituminous coal are the largest, followed by lignite and
anthracite in sequence. This order is different from the results of N2 and CO2, demonstrating a major
distribution of macropores in bituminous coal.
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3.5. Properties Determined by Water Adsorption

3.5.1. Water Vapor Adsorption-Desorption Isotherms

Water vapor adsorption-desorption isotherms for the coal samples were measured at the relative
pressure up to 0.9 as shown in Figure 8. The isotherms are type III corresponding to IUPAC
classification [10]. This implies that the coal samples are of weak adsorption affinity with water.
The isotherms can be divided into several sections. At low relative pressures, the amount of adsorbed
water tends to be a linear increase trend with pressure, which is due to the interaction between water
molecules and functional groups on coal surface. With the increase of relative pressure, the water
molecules adsorb on top of the pre-adsorbed water molecules and clusters are formed. As the relative
pressure increase further, the clusters merge to fill the pore space in the coals. This is shown as an
rapid increase in water adsorption.

Regarding the coal rank, lignite has the largest water adsorption capacity at the whole pressure
range, followed by bituminous coal, while anthracite has the smallest adsorption capacity. Combining
this result with the FT-IR spectra, such adsorption capacity variation at the low pressure range
is ascribed to surface properties difference. With coalification, functional group elimination and
hetero-aromatic bond breaking result in a substantial change of coal surface properties, leading to
density decrease of the surface functional groups, especially the oxygen-containing groups [41]. At high
relative pressures, the increase rate of water adsorption on lignite and bituminous coal is larger than
on anthracite. From this perspective, despite the lower kinetic diameter of water molecules, it is mainly
filled in mesopores and macropores of coals.
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For the water isotherms of the three coal ranks, the adsorption-desorption hysteresis can be
observed, stating the adsorption of water vapor on the coals is incompletely reversible. The hysteresis
is probably due to the cohesiveness characteristic of water clusters by the strong hydrogen bonding
between water molecules and this interaction maintains the clusters in a relatively stable state with the
progress of desorption [48–50].

3.5.2. Modeling of Water Vapor Adsorption

In order to better describe water vapor adsorption on the coal samples, the description capability
of D'Arcy and Watt (D-W) equation and Dent equation are checked here. The two models distinguish
the contribution of primary and secondary sites to adsorption. The primary sites, represented by
oxygen-containing groups, have high binding energies. Secondary sites can occur either between the
first water-occupied primary sites or on previously-formed secondary sites [51–53]. The D-W equation
was given as:

a =
s0K1h

1 + K1h
+

sK2h
1 − K2h

(1)

where h is the relative pressure, a represents the amount of adsorbed water for a specific h, s0 and s
are the density of the primary and secondary adsorption sites, K1 and K2 are the attraction between
adsorbate and the primary and secondary sorption site, respectively.

The Dent model has a similar form with the BET theory [53], and was given as:

a =
m0K1h

(1 − K2h)(1 − K2h + K1h)
(2)

where K1 and K2 are the constants related to the adsorption energies of the primary and secondary
sites, respectively, m0 represents the monolayer adsorption capacity.

Equations (1) and (2) were applied to best-fit the water vapor isotherm and the results are shown
in Figure 9. The fitting parameters are calculated and summarize in Table 3. Obviously, the adsorption
isotherms are well fitted by D-W and Dent plots with R-square greater than 0.98 for all cases. The s0 and
m0 of water adsorption varied with regards to different coal samples, indicating different density of the
primary sites on coal surface. Table 3 shows that the density of both primary site and secondary site of
lignite is the largest, followed by bituminous coal and anthracite in sequence. Also, the parameter s of
water adsorption also decreased with the coal rank, indicating loss of surface functional groups during
coalification process.
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Table 3. Fitting parameters by the models.

Sample Dent Model D-W Model

m0 K1 K2 R-Square s0 s R-Square

Anthracite 0.12 2.32 0.85 0.9991 0.85 0.023 0.9812
Bituminous coal 0.42 4.78 0.70 0.9825 3.35 0.026 0.9935

Lignite 0.90 2.11 0.63 0.9962 5.30 0.043 0.9989

3.6. Comparison of Different Methods in Coal Pore Characterization

According to the analysis mentioned above, the comparison of the measurable ranges of different
methods to characterizing the coal pore structure is shown in Figure 10. SEM can cover almost the
whole range of pore diameter using different magnification times. However, the main problem of this
technique is that it can only provide the qualitative information of the pores. Meanwhile, it is difficult
to position the same adsorption sites for comparison analysis, even for advanced operators. Standard
CO2 adsorption technique can obtain a certain quantitative information of micropore in coals, as it
can only probe pores in the range of 0.5 nm to 0.9 nm. For micropores falling in the range of 0.9 nm
and 2 nm and smaller than 0.5 nm, CO2 adsorption technique is unfavorable. Physisorption method
with N2 adsorbate can probe mesopores in coal, while MIP can penetrate both the mesopores and
macropores. The mesopore volume determined by N2 adsorption and MIP have similar values in this
study. Regarding physisorption with water vapor, it is not an effective method to probe micropores in
coals as the water clusters mainly fill mesopores and macropores, instead of micropores, even though
water vapor has a lower kinetic diameter. However, in CBM exploitation and CO2 geosequestration,
proper characterization of micropore in coal is important. Therefore, development of new methods is
essential to explore and characterize a wider range of micropores in coals.
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This study also show that both water vapor adsorption and FT-IR analysis can provide qualitative
information of coal surface properties, but ineffective in quantification of functional groups on
coal surface.

4. Conclusions

In order to explore the surface properties and pore structure of different coal rank, and hence
comparatively address the limits of different probe methods, a comprehensive approach was used
to probe the surface properties and pore structure of anthracite, bituminous coal and lignite,
including SEM, N2, CO2 and water vapor adsorption, MIP and FT-IR.

The results show that wedge-shaped pores develop with the increase of coal rank due to
compression effect. The determined SSA and pore volume of N2 adsorbate decrease with the increase
of coal rank, while CO2 SSA and pore volume show an U-shaped function of coal rank. This is
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corresponding to the different measurable ranges of the two probes. MIP results indicate that the pore
size of 10–100 nm accounted for 70.7–97.5% of the total volume in the macropore range. The water
vapor adsorption and FT-IR results show that the density of surface functional groups decreased with
the coal rank, resulting in a smaller water uptake capacity of the higher rank coal. The water vapor
adsorption isotherms in coals can generally be described by both D-W and Dent equations.

By comparing different methods in probing pore structure and surface properties of coal, it is
found that physisorption method with CO2 adsorbate is incompetent to probe the micropores in the
range of 0.9 nm and 2 nm or smaller than 0.5 nm. N2 adsorbate can probe mesopores in coal, while MIP
can penetrate both the mesopores and macropores. Also, the mesopore volume determined with two
methods above is similar. Even though water vapor has a lower kinetic diameter, it is unfavorable in
probing micropores in coals, as the water clusters mainly fill mesopores and macropores, instead of
micropores. For the surface properties of coal, either water vapor adsorption technique or FT-IR
analysis can provide qualitative information of coal surface, but incompetent to provide quantitative
information for functional groups.
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