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Abstract: Utility harmonic impedance is an important parameter for harmonic mitigation. In this
paper, a method for utility harmonic impedance estimation method based on constrained independent
component analysis is proposed. The conventional impedance estimation method based on
ComplexICA has two major problems: the algorithm is not suitable for separating weak and strong
source mixed signals, and lots of sample data should be provided to avoid converging on a local
optimum. To solve the two problems, the prior information of the utility harmonic source is added to
the objective function of ComplexICA; in this paper, the measurement data at PCC when the load
is shutdown are chosen as the prior information. Then the utility harmonic source signal can be
recovered and the separated matrix can be obtained effectively. The connection between the utility
harmonic source, utility harmonic impedance and the data at PCC are established using Norton
equivalent circuit, and then the separation matrix is used to calculate utility harmonic impedance.
The performance and feasibility of the proposed method are verified by the computer simulation and
field test. Compared with the current ComplexICA method, the proposed method is more adaptive
to changes in the background harmonic and the calculation result is more stable.

Keywords: harmonic contribution; power quality; harmonic impedance; constrained complex
independent component analysis

1. Introduction

With the proliferation of power systems, more and more non-linear loads are connected to the grid,
which results in harmonic distortion and increases the harmonic voltage and current levels. Limiting
harmonic emissions from customer facilities has become a common industry practice. IEEE Std.519 [1]
and IEC61000-3-6 [2] have governed the harmonic voltage and current a customer facility can inject
into the supply power system. The standards are used during both the facility planning stage and the
operation stage, and the harmonic emission level of customer facility should be calculated to check
whether it is exceeding the planning level [3]. However, it is difficult because the harmonic distortion
measured at PCC (the point of common coupling, PCC) is caused by both the customer facility and the
supply system. Unfortunately, there is still no effective method to determine a customer’s contribution
to the harmonic distortions measured at PCC.

Many studies have been conducted to determine customers’ harmonic contribution; the Norton
equivalent circuit is usually adopted, and the key parameter in the equivalent circuit to estimate
harmonic contribution is the utility harmonic impedance [4]. Therefore, in recent years, many studies
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have been focused on the estimation of utility harmonic impedance, which can be divided into invasive
methods [5–10] and non-invasive methods [11–22]. Invasive methods intend to create a disturbance in
power system, and then measure the responses of harmonic voltage and current at PCC. The results
of invasive methods are often more reliable than those of non-invasive methods [17]. However,
the disturbance has a large impact on the network so that the supply side may not permit such an
experiment. Furthermore, invasive methods are often difficult to perform due to the cost of the
equipment used to make the disturbance [17,22].

The non-invasive methods, in contrast, obtain utility harmonic impedance information using
the natural variations of the harmonic current and voltage at PCC [21,22], and the proper data for
non-invasive methods are easy to obtain from the power quality monitor. Several non-invasive
methods for utility harmonic impedance estimation have been proposed. For example, in fluctuation
methods [11,12], the utility harmonic impedance is quantified using the ratio of harmonic voltage
fluctuation and harmonic current fluctuation. The selection of fluctuation data only caused by
the customer side is the key to this method, but in practice, utility side and customer side often
fluctuate simultaneously.

In the linear regressive method [13–15], the utility harmonic impedance is calculated by solving
the coefficients of the equivalent circuit equation using the regression algorithm. In [16], based on the
covariance characteristic of the random vector, i.e., when the covariance between independent vectors
is 0, a method is proposed to calculate the utility harmonic impedance. These methods are sensitive
to the background harmonic voltage fluctuation: when there is a large fluctuation in the background
harmonic voltage, neither the regressive method nor the covariance method are effective.

In the method based on data selection [12,17–19], the critical point of these methods is selecting
the harmonic voltage and current fluctuation only caused by the customer side. However, utility side
and customer side usually fluctuate at the same time, so it is difficult to select the proper data used for
utility harmonic impedance estimation when the background harmonic fluctuates wildly.

In [23], the author indicated that harmonic loads fluctuation can be divided into slow-varying
components and fast-varying components using a linear filter, and the fast-varying components of
loads are statistically independent and have non-Gaussian distribution. Based on these principles,
in [21,22], utility harmonic impedance estimation methods based on independent component analysis
have been proposed. These methods are more robust to the fluctuation of background harmonic
voltage. However, there are two problems with the independent component analysis. The first is
that the basic theory of the independent component analysis is Central Limit Theorem [24], when the
mean and variance of the source signals are not of the same order of magnitude; in other words,
the source signal dominates the mixed signal, so the source signals do not satisfy this theorem and the
independent component analysis is not suitable for signal separation. In a power system, this occurs
when the utility harmonic source is much smaller than the customer harmonic source; in this situation,
the ICA method will be invalid. The second problem is that the traditional independent component
analysis can easily fall into a local optimum, so that long-term data should be provided to obtain
reliable calculation results, which means the calculation amount of the algorithm is large and it is
difficult to obtain real-time harmonic impedance information.

In this paper, based on complex constrained independent component analysis (ComplexCICA),
a method is proposed to estimate the utility harmonic impedance, which can solve the two existing
problems with the ICA method. The main steps of the proposed method are as follows. First, the prior
information of the utility harmonic source is added to the objective function of classical complex
independent component analysis, and the PCC data are applied in the proposed algorithm to obtain
the separated matrix. Secondly, the relationship matrix between the PCC harmonic data and the utility
harmonic source are built based on the Norton equivalent circuit. Finally, when we compare the
relationship matrix and the separated matrix, the utility harmonic impedance is then calculated out.
This paper is organized as follows. Section 2 describes the basic principles of the utility harmonic
impedance estimation, the weakness of the ComplexICA algorithm, and the principle of the constrained



Energies 2018, 11, 2247 3 of 15

ICA algorithm. The proposed utility harmonic impedance estimation method is explained in Section 3.
The performance of the proposed method is certified with the computer simulation and the field test
in Section 4. In Section 5, some conclusions about the proposed method are summarized.

2. Basic Principles

A common case for utility harmonic impedance estimation is shown in Figure 1. The interface
point between the utility and customer facilities is called PCC. The revenue meters or power quality
monitors are usually connected at the interface, so the data for non-invasive utility harmonic impedance
estimation can be recorded in the meter.
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Figure 1. Equivalent interpretation of distribution system at the PCC.

2.1. Equivalent Model for Utility Harmonic Impedance Estimation

In this paper, the utility side and customer side are modeled using a Norton equivalent circuit as
shown in Figure 2:
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where Iu and Ic are the harmonic current sources of utility and customer, respectively; Zu and
Zc are the harmonic impedances of utility and customer, respectively; Vpcc and Ipcc are the recorded
harmonic voltage and current data at PCC, respectively. The equivalent circuit is suitable for different
frequencies, where the parameters in the circuit will be different.

According to the equivalent circuit and superposition theorem, the equation of the circuit can be
established as follows:

Vpcc =
ZsZc

Zs+Zc
Is +

ZsZc
Zs+Zc

Ic

Ipcc =
Zs

Zs+Zc
Is − Zc

Zs+Zc
Ic

. (1)

Because the variations of Iu are related to the harmonic loads connected to the utility side, and the
variations of Ic are related to the harmonic loads connected to the customer side, the features of the
harmonic source are same as the harmonic loads. The Iu and Ic can be divided into a fast-varying
component and a slow-varying component by utilizing a linear filter [23]. The fast-varying components
are considered statistically independent and have non-Gaussian distribution. The measurement
harmonic voltage Vpcc and current Ipcc data at PCC are the linear combination of the harmonic source,
which can be divided into a fast-varying component and a slow-varying component by utilizing
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a linear filter too. Therefore, the independent component analysis algorithm can be applied to the
fast-varying component of the data at the PCC. Equation (1) can be expressed as:

∆Vpcc =
ZsZc

Zs+Zc
∆Is +

ZsZc
Zs+Zc

∆Ic

∆Ipcc =
Zs

Zs+Zc
∆Is − Zc

Zs+Zc
∆Ic

, (2)

where “∆” represents the fast-varying component of the harmonic signal.

2.2. The Weakness of the ComplexICA Algorithm for Separating Weak Signal

According to the Lindeberg–Feller Central Limit Theorem [25], suppose that xi are the random
series that the mean is E(xi) = ξi and the variance is Var(xi) = δ2

i , and the partial sum of the series is
defined as:

Sn =
n

∑
i=1

(xi − ξi), v2
n = Var(Sn) =

n

∑
i=1

δ2
i . (3)

For each λ > 0, if the sequence satisfies Equation (4), and lim
n→∞

max
i≤n

δi
vn

= 0, based on the

Lindeberg–Feller condition, the sequences that accord with the condition have normal distribution,
expressed as Sn/vn → (0, 1) . In fact, the Lindeberg–Feller condition is the necessary and sufficient
condition for sequences that have normal distribution.

lim
n→∞

1
v2

n

n

∑
i=1

E
[
(xi − ξi)

2
i ; {|xi − ξi| > λvn}

]
= 0 (4)

The essence of the theorem is that the mean and the variance of the source signal that compose the
mixed signal should be on the same order of magnitude, which requires that every source signal
should not dominate the mixed signal. In other words, mixed signals, which are composed of weak
and strong source signals, will not accord with the Central Limit Theorem. However, the ComplexICA
algorithm is based on the Central Limit Theorem [24], which indicates that the algorithm is not suitable
for extracting the weak signal from a mixed signal that is composed of a weak and strong source signal.

To verify the viewpoint, a simple experiment is carried out using Matlab. Three source signals
with different magnitude are generated in Matlab. As shown in Figure 3(a1,b1,c1), the first source
signal is a Laplace distribution random variable, Lap (0, 50). The second source signal is an equal
amplitude triangle signal. The third source signal is a sinusoidal signal. As shown in Figure 3(a1,b1, c1),
the magnitude of the three source signals is different. In this experiment, the first signal is generated
as the strong signal, and the second and third signals represent weak signals. Then the three source
signals are mixed using a random matrix; the mixed signals are shown in Figure 3(a2, b2,c2). Finally,
the separated signals or recovered signals are obtained by applying the ComplexICA algorithm to the
mixed signals; the separated signals are shown in Figure 3(a3,b3,c3).

Comparing Figure 3(a1) and Figure 3(a2,b2,c2), the waveforms of the mixed signals are similar to
the first source signal, which means that the strong signal is dominant to the mixed signal. From the
waveforms of the source signals and the separated signals in Figure 3(a1,a3), it can be seen that the first
separated signal is the same as the first source signal except for the shrinking of the scale. However,
comparing Figure 3(b1) with Figure 3(b3), the magnitudes of the second separated signal are not equal
to each other and there are some waveform distortions in the second separated signal, which are
different to the second source signal. The results of the experiment indicate that the ComplexICA
algorithm is not suitable for separating mixed signals whose magnitudes are not of the same order.
In this condition, the statistical characteristics of the weak signal are masked by the strong signal,
so the strong signal plays a dominant role in the mixed signals, which is not in accordance with the
Lindeberg–Feller Central Limit Theorem. Therefore, the ComplexICA algorithm based on the Central
Limit Theorem is not suitable for separating the weak signal from a mixed signal.
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2.3. The Constrained Complex Independent Component Analysis

First, the basic principle of independent component analysis is presented. ICA is a main algorithm
in the blind separation problem. The source signal can be recovered from the mixed signal or observed
signal by applying the ICA without the information of the mixed matrix [22]. The ICA model is
expressed as follows:

X = AS, (5)

where X is the observed signal, in this paper, which represents the measurement data at PCC; A is
the mixed matrix; and S is the source signal, which represents the utility and utility harmonic source.
In the ICA model, X and A are unknown; the goal of the algorithm is obtained from the separated
matrix and then we estimate the source signal by Equation (6):

∧
S = WX, (6)

where
∧
S is the estimated source signal and W is the separated matrix. The model of the constrained

independent component analysis is the same as for the ICA.
The constrained independent component analysis was first proposed in [26], in this paper,

the author solved the indeterminacy problems in traditional ICA algorithm. The principle of CICA
(constrained independent component analysis) is adding the additional requirement or the available
prior information of the target signal into the classical ICA contrast function in the form of equality
or inequality constraints, so the target signal is separated firstly. In this paper, the CICA algorithm is
realized by Non-Gaussian Maximization; the entropy is usually used to measure the non-Gaussian
according to the information theory. The approach of the CICA algorithm in this paper can be expressed
as follows:

First, define the negative entropy approximation function:

J(y) = ρ[E{G(y)} − E{G(v)}]2, (7)
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where y is the subject separated signal; ρ is a constant value, which is used to adjust the step
of the algorithm, in this paper, the value is 1; E(•) represents the mean of ‘•’, v is a Gaussian
variable whose mean is 0 and variance is 1; and G(•) is a non-quadratic function, e.g., G(y) = tany,

G(y) = − exp
(
− y2

2

)
, in this paper, the second function is chosen.

Next, define the similarity measure ε(y, r): when the separated signal approximates the target
signal, the measure has the minimum value. The measure is usually represented by mean square error
norm, as follows:

ε(y, r) = E
{
(y− r)2

}
, (8)

where r is the reference vector of the target signal, which includes the prior information of the
source signal.

Then, the CICA algorithm can be expressed as:

maxJ(y) = ρ[E{G(y)} − E{G(v)}]2

s.t. g(w) = ε(y, r)− ξ ≤ 0
, (9)

where w is the row of the separated matrix W and ξ is the threshold used to distinguish the specific
source signal; in this paper, the value is 0.5.

By applying the Lagrange multiplier method, the objective function can be solved. First, convert
the inequality constraints into equality constraints by employing the relaxation factor “Z”,
then Equation (7) can be expressed as:

g(w) + Z2 = 0
L(w, µ) = J(y)− 1

2γ

[
max2{µ + γg(w), 0} − µ2], (10)

where µ is the Lagrangian multiplier; γ is the scalar processing function—in this paper, the value is 1;
and Z is the relaxation factor.

Then, w is calculated by applying the quasi-Newton iteration method:

wk+1, = wk − ηL′wk
/δ(wk)

L′wk
= ρE

{
XG′y(y)

}
− 0.5µE

{
Xg′y(wk)

}
δ(w) = ρE

{
XG′′yy(y)

}
− 0.5µE

{
g′′yy(wk)

}
µk+1 = max{0, µk + γg(wk)}

wk+1 = wk+1/‖wk+1‖

, (11)

where k is iteration; η is the learning efficiency; L′wk
is the first derivation of the Lagrange function Lwk

versus the w; G′y and G′′yy are the first derivation and second derivation of G(y) versus y, respectively;
and g′y and g′′yy are the first derivation and second derivation of g(w) versus y, respectively.

The principle diagram of the CICA is shown in Figure 4. In the CICA algorithm, the independence
of the separated signals is measured by the negative entropy, which is similar to the classical
ComplexICA algorithm. However, there are still some differences between the two algorithms;
for example, in the ComplexICA algorithm, the signal that has the largest entropy is extracted first.
However, in the CICA algorithm, the target separated signal will have the largest negative entropy due
to introducing the reference vector that includes the information of the target signal, so that the target
signal can be separated first. At the same time, compared with the classical algorithm, the algorithm
can obtain the global optimum, rather than the local optimum, so a more stable calculation result
can be obtained. However, the proposed algorithm can reduce the iteration times by introducing the
reference vector, so the calculation speed and performance of the algorithm can be improved.
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3. Proposed Method

In a power system, the utility harmonic source fluctuation is usually smaller than the customer
side. In Section 2.2, the classical ComplexICA algorithm indicated is not suitable for extracting the weak
signal in the measurement data; therefore, the utility harmonic impedance estimation method based
on ComplexICA is not correct in some cases. What is more, because there is no prior information used
in the traditional algorithm, there is some indeterminacy in the separation results. Finally, with the
classical algorithm it is easy to final the local optimum, but a large amount of measurement data is
required to get a more reliable result, which means the real-time harmonic impedance data cannot be
obtained effectively.

In this paper, a utility harmonic impedance estimation method based on the ComplexCICA is
proposed. The measurement harmonic voltage and current data when the load is shutdown are
selected as the prior information of the utility harmonic source, which is the reference vector of the
ComplexCICA. Then the ComplexCICA algorithm is applied to the measurement harmonic voltage and
current data, and the utility harmonic source and the separated matrix are separated. The relationship
between the utility harmonic source and harmonic voltage and current at PCC is deduced through
the Norton equivalent circuit in Figure 2. Finally, the utility harmonic impedance is calculated by
comparing the separated matrix and the relationship matrix.

According to the Norton equivalent circuit, Equation (2) can be expressed as a matrix:[
∆Vpcc

∆Ipcc

]
=

[ ZsZc
Zs+Zc

ZsZc
Zs+Zc

Zs
Zs+Zc

− Zc
Zs+Zc

]
·
[

∆Is

∆Ic

]
. (12)

Then extract the inverse matrix of Equation (12):[
∆Is

∆Ic

]
=

[ 1
Zs

1
1

Zc
−1

]
·
[

∆Vpcc

∆Ipcc

]
. (13)

The relationship between the utility harmonic signal and the harmonic voltage and current data
at PCC is as shown in Equation (11), and the scale indetermination problem of classical ICA can be
solved utilizing Equation (13), too. Assume that the separated signal is k times the real utility harmonic
source signal, as follows:

∗
∆Is = k∆Is, (14)

where
∗

∆Is is the separated signal by using the ComplexCICA algorithm and ∆Is is the real utility
harmonic signal.

The separated matrix of utility side is as follows:

U =
[

u11, u12

]
, (15)

where U is the separated matrix by using the ComplexCICA algorithm; u11 is k times to the 1
Zs

; u12 is
equal to k in value.
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∗
∆Is = U ·

[
∆Vpcc

∆Ipcc

]
(16)

Based on Equations (13), (14), and (16), the relationship between ∆Is, ∆Vpcc and ∆Ipcc can be expressed
as follows:

∆Is =
U
k
·
[

∆Vpcc

∆Ipcc

]
=
[

u11
k

u12
k

]
·
[

∆Vpcc

∆Ipcc

]
(17)

Comparing Equations (13) and (17), the utility harmonic impedance can be calculated by:

Zs =
u12.

u11
(18)

Then the proposed utility harmonic impedance estimation method based on the ComplexCICA
method is completed. The flow diagram of the proposed method is shown in Figure 5.

Energies 2018, 11, x FOR PEER REVIEW  8 of 15 

 

   11 12
U u u , (15) 

where U is the separated matrix by using the ComplexCICA algorithm; 
11

u  is k times to the 
s

1

Z
; 

12
u  is equal to k in value. 

*
pcc

s

pcc

U
 

    
  

V
I

I
 (16) 

Based on Equations (13), (14), and (16), the relationship between 
s

I ,  pcc
V  and  pcc

I  can be 

expressed as follows: 

    
       

        

pcc pcc11 12
s

pcc pcc

=
k k k

u uU V V
I

I I
 (17) 

Comparing Equations (13) and (17), the utility harmonic impedance can be calculated by: 

12
s

11

u
Z

u
 . (18) 

Then the proposed utility harmonic impedance estimation method based on the ComplexCICA 

method is completed. The flow diagram of the proposed method is shown in Figure 5. 

 

Figure 5. Flow diagram of the proposed method. 

With the development of the power system and power electronic technology, lots of distributed 

generators are connected to the power system, like solar and wind power; therefore, the hybrid 

AC/DC microgrids have become a trend in future power systems. These microgrids have two 

subgrids linked to each other where the AC subgrid can connect to the utility grid [27,28] and the 

loads obtain power from both utility and customer. One of the technical challenges regarding power 

Start

Input Measurement Data at PCC

Harmonic Voltage and Current Data at PCC by FFT

Obtain  Vpcc and  Ipcc of Normal Operation and 

Shutdown  by Linear Filter 

Obtain           and U by Applying ComplexCICA to  Vpcc and  Ipccs



I

Calculate the Utility Harmonic Impedance by Using Equation (18)

End

Figure 5. Flow diagram of the proposed method.

With the development of the power system and power electronic technology, lots of distributed
generators are connected to the power system, like solar and wind power; therefore, the hybrid
AC/DC microgrids have become a trend in future power systems. These microgrids have two subgrids
linked to each other where the AC subgrid can connect to the utility grid [27,28] and the loads obtain
power from both utility and customer. One of the technical challenges regarding power quality in
hybrid AC/DC microgrids is the difficulty of harmonic analysis. These grids are not the same as the
traditional power system; because of the effect of the filters that connect the distributed generators and
power system, the customer harmonic impedance will not be considerably larger than the utility side.
Therefore, the traditional harmonic impedance estimation methods based on this assumption will be
invalid. The proposed method is not based on this assumption, which may be useful for harmonic
analysis in these microgrids.
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4. Simulation

The performance of the proposed method is verified by computer simulation and field testing in
this section.

4.1. Computer Simulation

In this part, the circuit model presented in Figure 2 is simulated in Matlab/Simulink.
The slow-varying component of the utility and customer harmonic source are modeled with the typical
load curve in [22], and the fast-varying component of the customer harmonic source is modeled with
the Laplace distribution random variable Lap (a, b) with expectation a and variance b. The fast-varying
component of the utility side is k times that of the customer side. The customer harmonic impedance is
p times that of the utility side. The specific parameters of source and impedance are shown in Table 1.

Table 1. Parameters for simulation model.

Parameter Value

fast-varying component of harmonic source Is k× Ic, k ∈ [0.1, 1.5]
Ic Lap (0, 0.4)

impedance Zs 1 + j8
Zc p× Zs, p ∈ [1, 15]

In the simulation, k represents the fluctuation degree of Iu relative to Ic, and p represents the
different magnitude of Zc relative to Zu. In an entire day, there are 1440 samples (one point per
minute) at PCC; the sample data are separated to obtain the fast-varying component of Ipcc and Vpcc

by utilizing a linear filter. In this paper, two utility harmonic impedance estimation methods are
compared. Method 1 is the method based on ComplexICA [22] and Method 2 is the method proposed
in this paper. Figure 6 shows the magnitude of harmonic current and voltage at PCC when k = 0.2,
p = 10.
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Figure 6. (a) The waveform of the harmonic current at PCC (k = 0.2, p = 10); (b) The waveform of the
harmonic voltage at PCC (k = 0.2, p = 10).

When p = 10, for different k, which represent different fluctuations of Iu, the two different methods
are used to calculate the utility harmonic impedance. The errors of the imaginary parts and the real
parts of the calculated Zu are shown in Table 2. According to the results, with the fluctuation of the
background harmonic, the accuracy of Method 1 is changing constantly, and the estimation errors are
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changing for different k. In contrast, the estimation error of the proposed method is smaller than in
Method 1, although the error also fluctuates with k, which means that the proposed method is more
robust to the fluctuation of the background harmonic.

Table 2. Errors of two methods for different k.

k
Error/%

Method Based on ComplexICA [22] Proposed Method

Re(Zs) Im(Zs) Re(Zs) Im(Zs)

0.1 1.558 2.535 0.419 1.056
0.3 2.565 1.215 2.086 0.962
0.5 3.530 0.684 0.578 0.428
0.7 5.181 5.211 0.668 0.495
0.9 0.235 3.556 0.129 0.529
1.1 3.294 3.524 0.492 1.721
1.5 5.248 6.240 1.581 2.518

The adaptability of the proposed method for different p is illustrated in the next simulation.
When k = 0.2, and p varies from 1 to 15, the utility harmonic impedance is calculated by utilizing
the two methods. The errors of the imaginary and real parts of the impedance are shown in Table 3.
Based on Table 3, when the fluctuation of the background harmonic is constant, the estimation
errors of the two methods are nearly invariant for different p. Even though the estimation errors are
nearly constant, the errors of the proposed method are smaller than for Method 1. In other words,
the proposed method is more adaptable to changes in the magnitude ratio of Zu relative to Zc.

Table 3. Errors of two methods for different p.

p
Error/%

Method Based on ComplexICA [22] Proposed Method

Re(Zs) Im(Zs) Re(Zs) Im(Zs)

1 0.496 2.754 0.842 0.955
3 3.106 2.607 0.675 0.864
5 3.956 1.553 0.935 0.795
7 2.119 1.570 0.783 0.884
9 3.187 1.495 2.861 1.020

11 3.175 1.267 2.283 0.883
15 1.873 1.259 0.596 0.912

The estimation errors of the two methods for different k and different p are shown in Figure 7,
where the adaptability of the two methods can be observed more intuitively. Based on Figure 7, we see
that when p is constant, k varies from 0.1 to 1.5; the estimation errors of Method 1 fluctuate with the
variation of k, and the estimation errors are smaller when k is in the range of 0.5 to 1, which accords
with the conclusion that the classical ICA method is only suitable for separating mixed signals with
similar amplitude. For the proposed method, except for a few points, the estimation error is smaller in
most cases. When k is constant, p varies from 1 to 15; the estimation errors of each method are nearly
constant, which means that the estimation results are not sensitive to the different magnitude of Zu

relative to Zc, and the errors of the proposed method are smaller than in Method 1. In conclusion,
the proposed method is more robust to the fluctuation of the background and the different magnitude
ratio of impedance.
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The simulation results indicate that the calculation stability of the method based on ComplexICA
is not better than that of the proposed method; the results will fluctuate with the background harmonic
and impedance, but the proposed method performs well in different cases. Because there is no prior
information added into the classical ICA algorithm, it is easy to come across the local optimum, and the
calculation results always fluctuate with each operation. The method proposed in this paper adds
the prior information of the background harmonic into the objective function, which can reduce the
amount of calculation and increase the stability of calculation. The simulation results prove it.

4.2. Field Test

In this part, the practical engineering feasibility of the proposed method is verified by using the
field data. The field data are recorded on the 150 kV busbar feeder of a 100 MVA DC arc furnace in a
steel plant in North China, and the sampling frequency is 6.4 kHz. The harmonic voltage and current
data are obtained by utilizing fast Fourier transform on the sample data per minute. The measurement
arc furnace was shut down around 1 h after 10 h of continuous work. In this paper, the 11th harmonic
data are used to test the performance of the proposed method. In Figure 8, the magnitude and phase
of 11th harmonic voltage and current data at PCC are shown. There are 660 sample points at the PCC
included: sliding analysis is performed at 600 subintervals, with 60 sample points for each subinterval
(i.e., 1–60, 2–61, . . . , 601–660).

According to the field data shown in Figure 8, the utility 3rd and 11th harmonic impedances are
calculated using Method 1 and the proposed method. The calculation results of the magnitude and the
angle of the utility harmonic impedance are shown in Figure 9.
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Figure 8. Waveforms harmonic current and voltage amplitude at PCC: (a) Magnitude of 3rd harmonic
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of 11th harmonic current.

During the stable operation period of the power system, the operation mode does not change
in most cases, and the fluctuation in the impedance of the utility side is small, which means that
the magnitude and angle of the impedance are nearly constant. As can be seen from Figure 9,
the calculation results of the two methods fluctuated. Moreover, even though there is some fluctuation
in the results of the two methods, the fluctuation of calculation results obtained by utilizing the
proposed method is smaller than with Method 1. This is because there are only 60 sample points
involved in each computation, which is insufficient for the classical ICA algorithm. For the classical
ICA algorithm, a reliable and stable result can be obtained only when there are lots of sample data
involved in the computation; therefore, the calculation results of Method 1 show a large fluctuation.
The proposed method can avoid the local optimum by adding the prior information of the utility side,
which can reduce the amount of recorded data involved in each calculation. From Figure 9, it is clear
that the calculation results of the proposed method are more stable than those of Method 1.
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Figure 9. The magnitude and phase of utility harmonic impedance: (a) Magnitude of 3rd harmonic
impedance; (b) phase of 3rd harmonic impedance; (c) magnitude of 11th harmonic impedance; (d) phase
of 11th harmonic impedance.

5. Conclusions

(1) Utility harmonic impedance is an important parameter for harmonic contribution estimation
and harmonic mitigation. In this paper, a utility harmonic impedance estimation method based on the
constrained independent component analysis is proposed to solve the problems in the classical ICA
method by adding the prior information of the utility harmonic source into the objective function of
the ICA algorithm. Compared with the classical method, the proposed method can obtain the global
optimum and reduce the iteration times; therefore, the performance of the proposed method is better
than that of the classical method. The performance of the proposed method is verified by simulations
and field testing.

(2) The computer simulation and field test results showed that the proposed method is more
robust to the fluctuation of background harmonic compared with the method based on ComplexICA.
Also, the estimation error is smaller than with the classical ICA method and a more stable estimation
result can be obtained even when there are fewer recorded data. Therefore, the proposed method is
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more effective when real-time impedance data are needed and can reduce the amount of the calculation
because of fewer recorded data, so the proposed method is more suitable for engineering applications.

(3) Prior information of the utility side is a critical parameter in the proposed method. In this
paper, the data recorded when the loads are shut down are chosen as the prior information. In order to
extend the use of the proposed method, more suitable prior information of the utility side harmonic
source should be selected. With more and more distributed generation and energy storage devices
connected into the power system, a more effective utility harmonic impedance estimation method
should be proposed in further research.
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