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Abstract: Wind speed is an important factor in wind power generation. Wind speed forecasting
is complicated due to its highly nonstationary character. Therefore, this paper presents a hybrid
framework for the development of multi-step wind speed forecasting based on variational model
decomposition and convolutional neural networks. In the first step of signal pre-processing,
the variational model decomposition approach decomposes the wind speed data into several
independent modes under different center pulsation. The vibrations of decomposed modes are
useful for accurate wind speed forecasting. Then, the influence of different numbers of modes and the
input length of the convolutional neural network are discussed to select the optimal value through
calculating the errors. During the regression step, each mode is treated as a channel that constitutes
the input of the forecasting model. The convolution operations in convolutional neural networks
extract helpful local features in each mode and the relationships between modes for forecasting.
We take advantage of the convolutional neural network and directly output multi-step forecasting
results. In order to show the forecasting and generalization performance of the proposed method,
wind seed data from two wind farms in Inner Mongolia, China and Sotavento Galicia, Spain with
different statistical information were employed. Some classic statistical approaches were adopted
for comparison. The experimental results show the satisfactory performance for all of the methods
in single-step forecasting and the advantages of using decomposed modes. The root mean squared
errors range from 0.79 m/s to 1.64 m/s for all of the methods. In the case of multi-step forecasting,
our proposed method achieves an outstanding improvement compared with the other methods.
The root mean squared error of our proposed method was 1.30 m/s while the worst performance of
the other methods was 9.68 m/s. The proposed method is able to directly predict the variation trend of
wind speed based on historical data with minor errors. Hence, the proposed forecasting schemes can
be utilized for wind speed multi-step forecasting to cost-effectively manage wind power generation.

Keywords: convolutional neural network; variational model decomposition; multi-step forecasting;
wind speed forecasting

1. Introduction

In recently years, sustainability transitions, which aim to create more sustainable consumption
and production for socio-technical systems, have become a significant issue. In the energy sector,
the scarcity of fossil fuels and environmental pollution have become the important issues for the
continuous development of human society. According to the current European roadmap, the reduction
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in greenhouse gas emission is necessary for limiting the politically agreed temperature increase by
two degrees. In order to achieve this target, renewable energy as a percentage of gross final energy
consumption should reach 20% [1]. Therefore, the rapid development of renewable energy resources
such as wind, solar and wave energy has been the common choice globally. Among these new
resources, wind power has been growing fast worldwide and will continue growing to solve the
energy crisis. Similar to the parameters which have an effect on power system, such as load control
mode and power system operation, wind speed is significantly influential in wind power system.
However, natural wind speed is nonstationary and random. Therefore, accurate forecasting of wind
speed is a significant and challenging task.

Wind forecasting methods can generally be divided into the following categories: the persistence
method, physical approach, statistical approach and hybrid approach [2]. The persistence method
is suitable for very short to short term forecasting. It is supposed that wind speed at next time
will be the same as the current value. Although the performance of this method for long-term
forecasting is unsatisfactory, it can still be a benchmark for comparison. In physical methods, numerical
weather prediction (NWP) models are used to forecast wind speed and climate variables. Landberg
utilized a Wind Atlas Application and Analysis program for corrections of wind speed predictions [3].
Lazić et al. applied the regional atmospheric numerical weather prediction Eta model and effectively
predicted wind power [4]. Negnevitsky et al. introduced an adaptive neuro-fuzzy inference system
to forecast a wind speed time series and obtained accurate predictions when weather conditions
were stable [5]. However, these physical models consume a large amount of computing time and the
forecasting errors can be significant under complex conditions.

Statistical methods consider the relationship between the forecast wind speed and historical
data. These models, including time-series approaches and machine learning approaches can be
collectively called data-driven models. Time-series approaches such as autoregressive moving average
models [6], autoregressive integrated moving average models [7] and others are widely adopted in
the literature [8]. The models mentioned above are based on the premise that the wind speed or
power follows a normal distribution. Considering the randomness and non-stationarity of wind speed,
it is difficult to accurately long-term predict through these time-series approaches. Machine learning
approaches such as artificial neural networks (ANN) [7,9], recurrent neural networks (RNN) [10–12],
extreme learning machine (ELM) [13–15] and support vector regression (SVR) [15,16] exhibit great
nonlinear fitting ability through modeling from the historical data. In addition, signal process
approaches have also been applied to improve the performance of machine learning forecasting results.
Wang et al. proposed a three-phase signal decomposition technique to decompose wind speed and
predicted multi-step ahead wind speed through feature extraction and weighted regularized extreme
learning machine. Four real wind speed prediction cases verified the effectiveness of their proposed
hybrid model [17]. Liu et al. investigated hybrid methods using wavelet packet decomposition (WPD),
empirical mode decomposition (EMD) and the ELM for wind speed prediction. Wind speed series
were decomposed into low frequency and high frequency sub-layers. Different models including
data-driven models and hybrid models were compared with each other and the results indicated that
the hybrid model had the best predicting performance [18]. Barbounis et al. employed meteorological
information and different networks to deal with the problem of long-term wind speed and power
forecasting. Simulation results demonstrated that the recurrent models outperformed the static
ones [10]. Senjyu et al. also confirmed the validity of neural networks (NN) for predicting wind
speed by computer simulations and proposed an application of RNN for wind speed prediction [19].
Abdoos decomposed wind speed through variational mode decomposition (VMD) and selected
features based on Gram-Schmidt Orthogonalization. Then, ELM was trained using selected features for
efficient and fast prediction. The results justified the superiority of their proposed method in accurate
forecasting and saving computational time [20]. Naik et al. combined variational mode decomposition
with low rank multi-kernel ridge regression for short-term forecasting. They constructed prediction
intervals with different confidence levels for wind speed and wind power [21]. Although these methods



Energies 2018, 11, 2292 3 of 18

achieved some satisfactory predicting results, most of them predicted single-step points subjected to
the model structure. The accumulative errors of the aforementioned methods may be significant when
forecasting multi-step data through iterative prediction. Consequently, predictive control and the
dispatched mode for renewable power have been combined with multi-step forecasting. The precise
results obtained from multi-step forecasting can help power systems make dispatch plans ahead and
improve their competitiveness in energy markets. The ability of peak filling and valley filling of some
renewable energy also benefits from precise multi-step forecasting and creates more potential financial
benefits. Therefore, multi-step forecasting has become one of the research “hotspots” in wind speed
forecasting. Recently, convolutional neural networks (CNNs) have shown an outstanding ability to
discover useful representations for classification and regression tasks such as the generative model [22],
image classification [23], fault diagnosis [24], modelling sentences [25], and so on. The output of
the convolutional layer is multidimensional which offers the potential to address the challenges of
multi-step wind speed forecasting. In this paper, a hybrid framework is proposed to predict the wind
speed for a period of time instead of one point in time. The VMD approach is applied to decompose
the wind speed series into modes as different channels of input. The decomposition of wind speed
is helpful to enhance the performance of the forecasting. Then, the CNN is developed to address
the problem of multi-step wind speed forecasting. We investigated the single-step and multi-step
forecasting results of wind speed data from two wind farms in different areas with some other classical
benchmark methods and the results proved the progressiveness of our proposed method.

The main contributions of our work for the field of multi-step wind speed forecasting are
as follows:

(1) This work combined a signal decomposition approach with deep learning methods to improve
the multi-step predicting accuracy. Compared with the CNN method without decomposition,
our proposed VMD-CNN method performed better in multi-step forecasting and single-step
forecasting. The simpler vibration modes through VMD brought about more precise predictions.
Owing to the advantages of CNN, the output layer can be directly mapped to the data in next
period of time. Experiments showed the outstanding fitting ability for multi-step forecasting of
proposed method compared with other methods.

(2) The proposed method provided a way to consider the local features and relationships of the
decomposed modes. The common hybrid approaches train independent models for each
decomposed mode and simply aggregate the forecasting results together. The convolutional
operation in the CNN can learn the correlation relationships through integrating the decomposed
modes into the input of one model, which enhanced the performance of multi-step forecasting.

The remainder of this paper is organized as follows. In Section 2, several descriptions of the basic
methodology of VMD and CNNs are reviewed. In Section 3, we introduce the system framework and
forecasting model in detail. The wind speed forecasting procedure is also illustrated. Then, in Section 4.
the time series of wind speed from different wind farms are applied to demonstrate the validity of the
proposed method Finally, Section 5 presents our conclusions.

2. Methodology

2.1. Variational Mode Decomposition

VMD was first proposed by Dragomiretskiy and Zosso in 2014 as a signal processing method [26].
It is a state-of-art adaptive and quasi-orthogonal method to decompose the signal f (t) into independent
modes uk(k = 1, 2, . . . , K). Each mode is compact around a center pulsation ωk and the H1 Gaussian
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smoothness is utilized to estimate the bandwidth. The VMD can be formulated as a constrained
variational problem as follows:

min
uk ,ωk

{
∑
k
‖∂t

[(
∂(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}
s.t.∑

k
uk = f (t)

(1)

where ∂(t) means Dirac distribution and * denotes convolution. The quadratic penalty term and
Lagrangian multipliers are introduced to translate the problem into an unconstrained one:

L(uk, ωk, λ) = α∑
k
‖∂t

[(
∂(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}+ ‖ f −∑
k

uk‖
2

2

+

〈
λ, f −∑

k
uk

〉
(2)

where α denotes the balancing parameter of the data-fidelity constrained. In order to solve this problem,
the alternate direction method of multipliers (ADMM) is adopted and the iterative process can be
written as:

(1) Minimization of uk:

ûn+1
k =

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (3)

(2) Minimization of ωk:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(4)

where ûn+1
k , ûi(ω), f̂ (ω), λ̂(ω) are the Fourier transform of un+1

k , ui(ω), f (ω), λ(ω) respectively, n is
the number of iterations. The main procedures of VMD can be summarized as follows:

Step 1: Initialize u1
k , ω1

k and maximum number of iterations N. Set n = 1;
Step 2: Obtain un+1

k and ωn+1
k by Equations (3) and (4) respectively;

Step 3: Update λ by the following equation:

λ̂n+1 = λ̂n(ω) + τ( f̂ (ω)−∑
k

ûn+1
k (ω)) (5)

where τ is the update parameter;

Step 4: If ∑
k
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε or n = N, stop iterating; otherwise n = n + 1 and return to Step 2.

Similar to many other signal process methods, there are some parameters of VMD that need
to be determined in advance, such as the mode number K, the mode frequency bandwidth control
parameter α, the noise-tolerance τ, the tolerance of convergence criterion ε and the maximum iterations
N. Many studies in the literature have proved that these parameters have significant impacts on noise
robustness and decomposition efficiency. When parameter K is set too low, under-segmentation
may appear. A few modes may be integrated into other modes or disappear in this situation.
The time-frequency distribution of modes may overlap each other when the signal is decomposed into
too many modes. In addition, the parameter α is related to the data-fidelity constrained. Therefore,
many scholars have combined intelligent algorithms to search optimal parameters for VMD [13,27–29].
In this paper, the employed deep learning method has great adaptivity and is insensitive to the different
parameters. The influence of parameters was investigated and is discussed in Section 4.2.
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2.2. Convolutional Neural Networks

CNNs have been proved to have great ability for classification and regression tasks. They can
extract helpful local features from the input through convolution operation. More details about CNNs
can be found in the literature [23]. The layers adopted in our forecasting model will be described below.

2.2.1. Convolutional Layer

The convolutional layers in the convolutional neural network can be regarded as filters through the
convolution kernels [23]. In each filter, neurons multiply the data points by their weights. The kernels
in each filter share weights to simplify computation overhead. One filter extracts one frame for the
next layer. Assume the local region of layer l is Xl(rj) and the weights of i-th filter kernel is W l

i , then the
corresponding output can be calculated as follows:

yl(i,j) = W l
i ∗ Xl(rj) (6)

where * denotes the convolutional operation.

2.2.2. Activation Layer

Nonlinear activation functions, such as hyperbolic tangent, sigmoid and rectified linear unit
(ReLU) functions, are usually adopted on the output of each layer to enhance the representation ability.
In recent years, ReLU has been widely used to make the network more trainable. The formula of ReLU
can be written as follow:

al(i,j) = f (yl(i,j)) = max(0, yl(i,j)) (7)

where al(i,j) is the activation output of yl(i,j).

2.2.3. Flatten Layer

The input and output of convolutional layers are multidimensional. For the sake of obtaining
multi-step forecasting output, the flatten layers are used to flatten the input matrixes to vectors.

Suppose the input is X =

 x11 . . . x1n
... . . .

...
xm1 . . . xmn

 ∈ Rm×n, the output of the flatten layer will be

Y =
[

x11 · · · x1n x21 · · · x2n · · · xmn

]
∈ Rmn×1.

2.2.4. Upsampling Layer

The convolution operation in CNN will lead to dimension reduction compared to the
input data. Similar to some interpolation methods, the upsampling layer repeats the input
matrixes in a different axis to get an output in the expectant dimension. For example, we can
upsample the input X on the first dimension by step s, and the corresponding output is

Y =



s︷ ︸︸ ︷
x11 . . . x11 . . .

s︷ ︸︸ ︷
xm1 . . . xm1

... . . .
...

x1n . . . x1n︸ ︷︷ ︸
s

. . . xmn . . . xmn︸ ︷︷ ︸
s



T

∈ Rsm×n.

3. The Novel Hybrid Variational Mode Decomposition (VMD)-Convolutional Neural Network
(CNN) Data-Driven Model

The specific flowchart of the proposed method is illustrated in Figure 1, in which the signal process
and the artificial intelligence approach are systematically integrated to predict wind speed. The original
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data are decomposed into different modes which constitute the input data and determine the
architecture of the CNN forecasting model. Then, the input data set is divided into training and testing
data sets to train the CNN forecasting model and evaluate the forecasting performance, respectively.
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Figure 1. The architecture of the proposed variational mode decomposition (VMD)-convolutional
neural network (CNN) hybrid data-driven forecasting model.

3.1. Data Decomposition

Wind speed time-series often contain different frequency components, including the trend term,
cycle term and stochastic term, which hinders accurate modeling and forecasting. Through VMD,
the historical speed wind data from a wind farm in Inner Mongolia, China together with four
decomposed modes are shown in Figure 2. The original wind speed is extremely random and
complex. Each decomposed mode is compacted around a center pulsation, and the higher order mode
contains higher frequency components. The features of the trend components can be extracted from
low frequency modes. The cycle term and stochastic term of wind speed can be predicted through
modeling of the higher order modes.

3.2. Constitution of Input and Output Matrices

After decomposition of the wind speed data, modes in different frequency scales are obtained.
As introduced in Section 2, the convolutional layers in CNN can be regarded as filters to extract local
features from the input data. Therefore, the input and output matrices are constituted intuitively
as illustrated in Figure 3. Let Mk = [mk1, mk2, . . . , mkL] ∈ R1×L, k = 1, 2, . . . , K denote the k-th
decomposed mode and S = [s1, s2, . . . , sL] ∈ R1×L denote the original wind speed signal, where L
means the total number of observed points. Then, the input matrix Input and output matrix Output
can be formulated as follows:

Input =

 m1i , m1(i+1), . . . , m1(i+li−1)
· · ·

mKi, mK(i+1), . . . , mK(i+li−1)


T

∈ Rli×K (8)

Output =
[
si+li , si+li+1, . . . , si+li+lo−1

]T ∈ Rlo×1 (9)
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where li and lo denote the input length and output length, respectively, i means the index of
sampling point.Energies 2018, 11, x FOR PEER REVIEW  7 of 18 
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3.3. Forecasting Model Structure

In this paper, 1-D CNN is adopted for wind speed forecasting. Common CNNs process images
and accept input tensors in three dimensions, which are the width, height and number of color channels
in images. Similarly, the 1-D CNN accepts time-series input in two dimensions: the time steps and
number of channels. In fact, when the height of images is 1, the common CNN can be simplified
to 1-D CNN. The CNN structure adopted in this paper is shown in Figure 4. The four channels in
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input data match the four decomposed modes from wind speed signal. Then, multiple filters extract
features in different scale to capture the mapping relationship between input data and output data.
The convolution of stride is employed instead of pooling (e.g., max pooling) because stride convolution
is fully differentiable and allows the network to learn its own special down-sampling [17].
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4. Applications to Wind Speed Forecasting

4.1. Data Description

In this paper, wind speed observation data gathered from a wind farm in Inner Mongolia,
China were employed to demonstrate the efficiency of the proposed model. There was a total of 5760
points with a sampling interval of half an hour. We chose the first 4600 observations as the training set
and the remaining points are used to test the model performance. The statistical information foreach
data set is illustrated in Table 1. Before the training, the training set is normalized to enhance the CNN
training performance. Besides, several classical statistical and their hybrid methods are constructed for
comparison with our proposed model to evaluate the performance.

Table 1. Statistical information for each data set.

Statistical Indicator Entire Data Set Training Data Set Testing Data Set

Maximum (m/s) 25.39 23.10 25.39
Minimum (m/s) 0.3 0.3 0.66

Median (m/s) 7.81 7.45 9.02
Mean (m/s) 8.28 7.916 9.732

Standard deviation (m/s) 5.262 5.074 5.726
Coefficient of variation (%) 63.55 64.10 58.84

Autocorrelation function value at lag 1 0.9886 0.9892 0.986

4.2. Model Establishment

There are two parameters that mainly influence the forecasting results of the proposed methods:
the number of decomposed modes and the input length. The training data set was adopted to verify
the structure of CNN. All the following experiments were run in Python 2.7 code. The Central
Processing Unit (CPU) of the runtime environment was Intel Xeon E5-2650 v2 and the size of Random
Access Memory (RAM) was 128 GB. The training data set was processed as described in Section 3.
The parameters of each layer in the network were initialized through sampling from a random Gaussian
distribution with zero mean and 0.1 standard deviation. In each experiment, the training iterations and
output predicting length were kept the same, which were 100 epochs and 32, respectively. Considering
the multi-step prediction output is a vector, the root mean squared error (RMSE) defined by the
following is adopted to judge the predicting performance.

RMSE =
1
M∑

m

(
∑d
∣∣ym

d − sm
d

∣∣2
lo

)1/2

(10)

where M means the number of testing samples, sm
d and sm

d are the d-th predicting and true output of
m-th sample, respectively.
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4.2.1. Number of Decomposed Modes

As mentioned above, mode mixing may appear and cause inaccurate prediction when the number
of decomposed modes is too small. On the other side, too many modes will give rise to a complicated
forecasting method and unnecessary computing overheads. To identify the channels of the input
layer, the experiment was first conducted to observe the influence of number of decomposed modes.
As illustrated in Figure 5a, the error comes to a minimum value when the number of decomposed
modes is four. With the increase in number of modes, the predicting error increases from 1.59 to
2.78. When the wind speed signal is decomposed into 3 modes, the predicting error increases to 3.13.
Therefore, the most suitable number of decomposed modes is chosen as 4 for the rest of the experiments.Energies 2018, 11, x FOR PEER REVIEW  10 of 18 
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4.2.2. Input Length

The determination of input length is another critical issue which not only decides the input layer
of adopted forecasting structure but also influences the prediction results. As stride technology is
employed in this model, the input length should be a power of 2 which is useful for construction. Hence,
we choose 256, 128, 64 and 32 as the input length for comparison. In Figure 5b, the prediction error
decreases from 3.43 to 1.81 when the input length ranges from 256 to 64. This phenomenon indicates
that the long input tensors bring about extra noise for accurate forecasting. However, when the
input length is the same as the output length, the prediction error increases to 2.11, which means that
essential information about the relationship between the current data and historical data is lacking in
this situation.

Therefore, the details of the adopted model are determined through the experiments described
above. The number of decomposed modes is 4 and the input length is set as 64. The details of the
forecasting model are shown in Table 2. As illustrated in Figure 5, although different parameters of
VMD and input length influence the forecasting results, the CNN-based forecasting model generally
achieved satisfactory results. Owing to the strong nonlinear learning and fitting ability, the proposed
CNN is significantly better than some hybrid forecasting methods which are sensitive to the change
in parameters.



Energies 2018, 11, 2292 10 of 18

Table 2. Forecasting model details.

No. Layer Type Output Dimensions Kernel Size Kernel Number Stride Activation Function

1 Input layer 64 × 4 / / / /
2 Convolutional layer 1 32 × 32 20 32 2 ReLU
3 Convolutional layer 2 16 × 64 10 64 2 ReLU
4 Convolutional layer 3 8 × 128 5 128 2 ReLU
5 Flatten 1024 / / / /
6 Full Connection 128 / / / ReLU
7 Reshape 8 × 16 / / / /
8 UpSampling 16 × 16 / / / /
9 Convolutional layer 4 16 × 8 5 8 1 ReLU
10 UpSampling 32 × 8 / / / /
11 Convolutional layer 5 32 × 1 10 1 1 linear

Adam’s [30] optimization algorithm is adopted to update the parameters in each layers. ReLU: rectified linear unit.

4.3. Forecasting Results and Analysis

To verify the effectiveness of the proposed VMD-CNN method, the following experiments were
conducted to compare it with some other existing methods that have been proved feasible for wind
speed forecasting. The SVR is an efficient machine learning method for regression. The input matrices
of SVRs were determined by partial autocorrelation function (PACF) values [13], and the parameters of
SVRs were selected through grid search (GS). The ELM is a feed-forward network with a single hidden
layer and is easy to train due to its fast convergence speed. In the case of ELM forecasting, the input
matrices were the same as SVRs. GS was also used to optimize the number of hidden nodes, ranging
from 20 to 1000. NN as a simplification of CNN, is also employed for comparison. Different from the
case of SVR and ELM, the output of NN can be in multiple dimensions. The topology of NN was
64-100-100-32, and both hidden layers were activated by the ReLU activation function. The training
epoch and optimization algorithm were the same as the proposed method. The CNN method without
VMD had one channel instead of four and accepted the original data as input. The rest of the layers of
CNN were the same as the proposed VMD-CNN model.

In the case of multi-step forecasting, we selected 16 h as the forecast horizon, which means all the
methods were tested through generating 32 predictions from historical data. In order to obtain multiple
step prediction results, iterative prediction was employed for the ELM and SVR methods, which means
that one forecasting point was added into the input to constitute a new testing example until the length
of the predicting output is the same as the proposed method. The output dimensions of NN were
directly set as the output length while in the case of single-step forecasting, the output dimensions of
NN was 1 and the outputs of CNN models were sent to a full connection layer with one-dimension.
For each aforementioned forecasting approach, there was a VMD-based hybrid method for comparison
and to exhibit the effectiveness of decomposition. For example, VMD-SVR means four SVR models
were trained for four decomposed modes and the prediction results were obtained by aggregating
each prediction value.

Three common evaluating indicators were adopted to estimate the performance of the forecasting
models. The RMSE is defined as Equation (10), while the mean absolute error (MAE) and mean
absolute percentage error (MAPE) are formulated as follows:

MAE =
1
M∑

m

∑l
∣∣ym

l − sm
l

∣∣
lo

(11)

MAPE =
1
M∑

m

1
lo

∑
l

100×
∣∣ym

l − sm
l

∣∣
ym

l
(12)
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In addition, the improved percentage of RMSE, MAE, MAPE are exploited to intuitively describe
the degree of enhancement from model 1 to model 2. The definitions are as the follows:

PRMSE =
RMSE1 − RMSE2

RMSE1
× 100 (13)

PMAE =
MAE1 −MAE2

MAE1
× 100 (14)

PMAPE =
MAPE1 −MAPE2

MAPE1
× 100 (15)

where RMSE1, MAE1, MAPE1, RMSE2, MAE2 and MAPE2 are the errors of model 1 and
model 2, respectively.

The final results are shown in Table 3 and illustrated in Figure 6. In the single-step forecasting
experiment, all the VMD-based hybrid methods had a better performance compared with their
statistical method. The RMSE decreases 0.61, 0.75, 0.35 and 0.18 for SVR, ELM, NN, CNN and their
hybrid method, respectively. This phenomenon proves that the decomposition of signal is helpful
for single-step forecasting because the simpler vibration mode of decomposed modes is easier to
predict. It can be seen that the VMD-SVR hybrid method performs the best in RMSE, MAE and MAPE.
Although the errors of other methods are greater, the maximum RMSE, MAE and MAPE values among
them are also satisfactory, which are 1.64, 1.36 and 22.88 respectively. The forecasting results of all
the hybrid methods are presented in Figure 7. All of them can approximately fit the test data with
very little error. Therefore, multi-step forecasting is more worthy of research and development for
short-term wind speed forecasting.

In the multi-step forecasting experiment, the SVR and ELM, which are the single-step predicting
methods, underperformed significantly. The applied iterative predicting approach accumulates
a little error in each step, and finally leads to a significant error. The NN and CNN can directly
output predictions in multiple dimensions owing to their architecture. Thus, in the case of multi-step
forecasting, the NN and CNN based methods performed much better than SVR and ELM. As illustrated
in Figure 6 and Table 3, the proposed VMD-CNN method achieved the best result among all the
methods. The RMSE, MAE and MAPE of VMD-CNN are 1.3, 1.04 and 20.31, respectively which are
roughly the same as the single-step experiment. By contrast, the RMSE, MAE and MAPE of VMD-SVR
increase to 6.36, 5.04 and 89.22, respectively.

Table 3. Multi-step and single-step forecasting results of different methods.

Method
Multi-Step Forecasting Single-Step Forecasting

RMSE (m/s) MAE (m/s) MAPE (%) RMSE (m/s) MAE (m/s) MAPE (%)

SVR 4.68 4.02 58.18 1.40 0.97 16.19
VMD-SVR 6.36 5.04 89.22 0.79 0.57 10.88

ELM 6.29 5.44 78.43 1.64 1.17 18.55
VMD-ELM 9.68 7.49 92.16 0.89 0.63 11.91

NN 4.68 4.03 81.22 1.59 1.24 22.88
VMD-NN 2.20 1.91 29.80 1.24 0.91 17.38

CNN 4.36 3.77 88.04 1.21 1.36 19.46
VMD-CNN 1.30 1.04 20.31 1.03 0.71 13.55

RMSE: root mean squared error; MAE: mean absolute error; MAPE: mean absolute percentage error.
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In addition, the improved percentages between the proposed VMD-CNN method and the other
methods are shown in Table 4. It is clearly shown that the proposed method performs 72.22%,
79.33%, 40.91% and 70.18% better for RMSE than SVR, ELM, VMD-NN and CNN, respectively.
A great improvement also exits for MAE and MAPE indexes. This result verifies the significant
superiority of the proposed method in multi-step wind speed forecasting. It is worth noting that the
SVR and ELM perform better than their hybrid VMD-based methods, which means their multi-step
forecasting performance on decomposed modes are also not good enough. By contrast, the hybrid
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VMD-based NN and CNN methods can enhance RMSE by 52.99% and 72.18%compared to NN and
CNN methods, respectively.

Table 4. Improved percentages of different methods in multi-step forecasting.

Compared Methods PRMSE PMAE PMAPE

VMD-CNN vs. SVR 72.22 74.12 65.09
VMD-CNN vs. ELM 79.33 80.88 74.10

VMD-CNN vs. VMD-NN 40.91 45.54 31.85
VMD-CNN vs. CNN 70.18 72.41 76.93
SVR vs. VMD-SVR 26.41 20.23 34.79

ELM vs. VMD-ELM 35.02 27.36 14.89
VMD-NN vs. NN 52.99 52.60 66.59

NN: neural networks; SVR: support vector regression; ELM: extreme learning machine.

Finally, some random test examples were chosen and their multi-step prediction results for
SVR, ELM, VMD-NN and the proposed VMD-CNN methods are shown in Figure 8. In Figure 8,
the cumulative processes of errors of SVR and ELM are clearly exhibited. At the beginning of the
iterations, the SVR and ELM methods can accurately predict the future value. With the increases in
iteration, the prediction results of SVR and ELM methods are uncontrollable and far from the true
value. The VMD-NN and VMD-CNN methods can basically forecast the change of wind speed and
VMD-CNN performs better in the majority of examples. In fact, the proposed VMD-CNN method can
accurately predict the variation trends in wind speed ignoring the slight randomness. Therefore, these
multi-step forecasting results strongly suggest the significance of the proposed method for multi-step
wind speed forecasting.
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In order to specifically describe the prediction results of different models, a Taylor diagram is
employed as illustrated in Figure 9. The standard deviations, centered root-mean-square and pattern
correlations with observation of each prediction in testing example 1 are clearly exhibited. In Figure 9,
it can be seen that the VMD-NN and VMD-CNN model have roughly the same correlation coefficient
as the observation. However, the VMD-CNN model has the smallest RMSE and the same standard
deviation as the observation, whereas the VMD-NN model has little spatial variability, considering its
smaller standard deviations. Of the poorer performing models, the ELM model is most correlative
with observation, while the standard deviation of the SVR model is close to zero, which means the
prediction of the SVR model stays the same without variation. In general, our proposed VMD-CNN
model outperforms the compared models on all of the statistical characteristics.
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4.4. Additional Forecasting Case

In order to further verify the efficiency of the proposed method, the 10-min wind speed data
of the widely-studied wind farm in Sotavento Galicia, Spain [31] collected from 1 March 2018 to
31 March 2018 were used as an additional multi-step forecasting case. The number of observations
for wind speed included in this study amounts to 4280. The first 3200 points were chosen for training
and the remaining data are used to verify the performance of the models. The original observations
are shown in Figure 10 and the statistical information is listed in Table 5. We chose SVR and ELM
models for comparison in this study because their performances are better than their hybrid model in
the multi-step forecasting experiment. Like the experiment for wind speed data in Inner Mongolia,
China, the output length of all models was 32, which meant the forecast horizon was 5.3 h. The RMSE,
MAE and MAPE of the different methods are listed in Table 6. As illustrated in Table 6, the rankings
of the forecasting results are similar to the one in Section 4.3. The proposed method still has the best
performance among all of the tested models. These results have demonstrated that the proposed
method has immense potential for multi-step wind speed forecasting.
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Table 5. Statistical information of wind speed from Sotavento Galicia wind farm.

Statistical Indicator Entire Data Set Training Data Set Testing Data Set

Maximum (m/s) 18.46 18.46 14.40
Minimum (m/s) 0.35 0.35 0.35

Median (m/s) 6.75 7.01 5.9
Mean (m/s) 7.16 7.42 6.06

Standard deviation (m/s) 2.913 2.637 3.610
Coefficient of variation (%) 40.70 35.54 59.57
Autocorrelation function

value at lag 1 0.9397 0.9354 0.9372

Table 6. Multi-step forecasting results of models in Sotavento Galicia wind farm.

Method
Multi-Step Forecasting

RMSE (m/s) MAE (m/s) MAPE (%)

SVR 3.57 3.35 50.56
ELM 4.55 4.21 65.93

VMD-NN 1.77 1.41 45.31
VMD-CNN 1.21 0.95 23.14

5. Conclusions

This paper proposes a hybrid method for multi-step wind speed forecasting. The proposed
VMD-CNN method employs VMD to decompose the wind speed signal into different modes under
different center pulsation. By taking advantage of the structure of CNN, each mode is regarded as
one channel to constitute the input. Then, the filters in each layer of CNN are trained to extract
the local features and relationships between modes. Finally, the output layer of CNN is set in
multiple dimensions to directly forecast the future wind speed. Several experiments were conducted
to prove the effectiveness of the proposed method. By comparing the statistical approaches and
their hybrid VMD-based methods, it has been proved that the decomposed modes are helpful for
accurate predicting. Although the ELM and SVR methods performed better in single-step forecasting,
the proposed method also exactly predicted the next wind speed value. In the case of multi-step
forecasting, the proposed method achieved significant results while the SVR-based and ELM-based
methods performed poorly. The VMD-CNN method predicted the variation trend of wind speed in
general. For every evaluating indicator, our proposed VMD-CNN achieved the lowest value. However,
the number and size of the filters of the proposed method should be optimized to adapt to more
complicated wind speed. The influence of other signal process approaches should be discussed
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specifically in the future. For further studies, the impact of other climate parameters, such as wind
direction could also be considered as an input or output to enhance the forecasting performance.
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Nomenclature

al(i,j) the corresponding activation output of convolutional layer
f (t) the original signal
Input the input matrix of the proposed model
K the number of decomposed modes
L the total number of observed points
li the length of input data in our proposed model
lo the length of forecasting data in our proposed model
M the number of testing samples
MAE the mean absolute error
MAPE the mean absolute percentage error
Output the output matrix of the proposed model
PRMSE the improved percentage of RMSE
PMAE the improved percentage of MAE
PMAPE the improved percentage of MAPE
RMSE the root mean squared error
sm

d the d-th predicting value of m-th sample
uk the k-th decomposed modes
W l

i the parameters of i-th filter kernel in l-th layer
X the input of a layer in network
Xl(rj) the input in local region j of layer l
Y the output of a layer in network
ym

d the d-th true value of m-th sample

yl(i,j) the corresponding output of local region j of layer l
through convolutional layer

α the balancing parameter
∂(t) the Dirac distribution
ωk center pulsation of uk
τ the noise-tolerance
ε the tolerance of convergence criterion
* convolution operation
‖ · · · ‖2 Euclidean distance
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4. Lazić, L.; Pejanović, G.; Živković, M. Wind forecasts for wind power generation using the Eta model.
Renew. Energy 2010, 35, 1236–1243. [CrossRef]

5. Potter, C.W.; Negnevitsky, M. Very short-term wind forecasting for Tasmanian power generation. IEEE Trans.
Power Syst. 2006, 21, 965–972. [CrossRef]

6. Torres, J.L.; García, A.; Blas, M.D.; Francisco, A.D. Forecast of hourly average wind speed with ARMA
models in Navarre (Spain). Sol. Energy 2005, 79, 65–77. [CrossRef]

7. Cadenas, E.; Rivera, W. Wind speed forecasting in the South Coast of Oaxaca, México. Renew. Energy 2007,
32, 2116–2128. [CrossRef]

8. Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future.
Int. J. Forecast. 2014, 30, 1030–1081. [CrossRef]

9. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science
2006, 313, 504–507. [CrossRef] [PubMed]

10. Barbounis, T.G.; Theocharis, J.B.; Alexiadis, M.C.; Dokopoulos, P.S. Long-term wind speed and power
forecasting using local recurrent neural network models. IEEE Trans. Energy Convers. 2006, 21, 273–284.
[CrossRef]
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