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Abstract: An opened natural fracture (NF) intercepted by a pressurized hydro-fracture (HF) will be
diverted in a new direction at the tips of the original NF and subsequently form a complex fracture
network. However, a clear understanding of the diversion behavior of fracture networks in tight
reservoirs with frictional NFs is lacking. By means of the extended finite element method(XFEM),
this study investigates the diversion mechanisms of an opened NF intersected by an HF in naturally
fractured reservoirs. The factors affecting the diversion behavior are intensively analyzed, such as
the location of the NF, the horizontal principal stress difference, the intersection angle between HF
and NF, and the viscosity of the fracturing fluid. The results show that for a constant length of NF
(7 m): (1) the upper length of the diverted fracture (DF) decreases by about 2 m with a 2 m increment
of the upper length of NF (Lupper), while the length of DF increases 9.06 m with the fluid viscosity
increased by 99 mPa·s; (2) the deflection angle in the upper parts increases by 30.8◦ with the stress
difference increased by 5 MPa, while the deflection angle increases by 61.2◦ with the intersection
angle decreased by 30◦. It is easier for the opened NF in lower parts than that in upper parts to be
diverted away from its original direction. It finally diverts back to the preferred fracture plane (PFP)
direction. The diversion mechanisms of the fracture network are the results of the combined action of
all factors. This will provide new insight into the mechanisms of fracture network generation in tight
reservoirs with NFs.

Keywords: hydraulic fracturing; tight reservoirs; fracture diversion; extended finite element method;
fracture network

1. Introduction

With the technological progress in petroleum industries, petroleum engineers are increasingly
concerned with the exploration and development of tight reservoirs in recent years. Due to the
ultra-low matrix permeability, hydraulic fracturing is a key technology for enhancing the recovery of
tight hydrocarbon reservoirs [1–11]. Activation of preexisting natural fractures (NFs) during fracturing
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treatment is favorable for creating complex fracture networks. The interaction between a hydraulic
fracture (HF) and an NF is a complex coupled process, which involves rock deformation, fluid flow,
and fracture diversion [12–21].

When an HF intercepts an NF during a hydro-fracking treatment, three scenarios—arrest, offset,
and cross—are observed. Renshaw and Pollard developed a criterion to describe the mechanical
NF–HF interaction when they were perpendicular to each other [22]. Gu et al. afterwards proposed
an extended Renshaw–Pollard criterion at nonorthogonal intersection angles on the basis of the
experimental results of hydraulic fracturing for Colton sandstone [23]. This crossing criterion has been
extensively applied in the mathematical models of stimulated reservoir volume (SRV) fracturing in
shale gas wells. Various numerical techniques such as finite difference, discrete element, and finite
element methods have been presented to investigate the mechanical interaction between HF and
NF [16,24–26]. Based on the finite element software ABAQUS 6.14, Chen et al. developed a cohesive
zone finite element-based model to investigate the NF–HF interaction complexity, which took into
account the interface friction of weak planes [24]. Based on the discrete element method (DEM) model,
Zou et al. numerically investigated HF network propagation in shale formations, and the plastic
deformation in hydraulic fracturing was considered [25]. Wu and Wong used a numerical manifold
method (NMM) to capture the strong discontinuity across the crack face, and this method could
smoothly handle the problems of fracture network propagation [26]. However, the above-mentioned
numerical methods have the drawback that crack paths should be predefined a priori. Therefore,
crack cannot be freely extended on mesh grids if the direction of crack propagation is not known in
advance. By means of a diffusive phase-field modeling approach, Heider et al. introduced a numerical
framework of HF in tight rocks, but this simulation could be time-consuming because it requires a
very fine mesh [27].

The extended finite element method (XFEM), which introduces additional enrichment functions to
account for the jump across the crack surfaces and the singularity of stress in the vicinity of crack tips,
provides a powerful tool to simulate the hydraulic fracturing problem. Its great advantage is that crack
propagation is not mesh-dependent. Some scholars such as Dahi-Taleghani, Mao, and Gordeliy have
done a great deal of innovative research on hydraulic fracturing simulation [28–32] in past decades,
but some assumptions, such as a constant fluid pressure, were made to deal with the mechanical NF–HF
interaction in order to simplify the complex precess. Recently, Shi and Wang successfully modeled the
connection of two cracks by means of additional junction enrichment and by sharing pore pressure
nodes at intersection points [33,34]. Using the combined method of XFEM and DEM, Ghaderi et al.
concluded that the tensile and shear breakage of NFs were a function of angle and distance from an
induced fracture [35]. Paul et al. developed a mixed linear cohesive law, which relies on a stable mortar
formalism, and utilized the XFEM method to simulate the non-planar HF propagation [36]. Based on
the XFEM technique, Remij et al. applied the enhanced local pressure (ELP) model to investigate crack
interaction in hydraulic fracturing by assuming multiple discontinuities in the domain [37]. Vahab and
Khalili used an XFEM penalty method, which was embedded in Kuhn–Tucker inequalities, to model
multi-zone fracking treatments within saturated porous media [38].

It is well known that an HF usually has a non-planar crack growth (refereed to fracture diversion)
by a stress shadow effect [39–44]. An opened NF intercepted by an HF will be diverted in a new
direction at the tips of the original NF and subsequently form a complex fracture network [33,34,45,46].
However, a clear understanding of the diversion behavior of fracture network in tight reservoirs
with frictional NFs is lacking [47]. In particular, the effect of factors such as the location of the NF,
the horizontal stress difference, and the intersection angle between HF and NF on the mechanical
diversion behavior of HFs is not clear at present. Therefore, with the XFEM technique [48–51],
a numerical simulation on the diversion mechanisms of a fracture network in naturally fractured
reservoirs was studied. This study focuses on the diversion propagation behavior in the vicinity of the
two crack tips of the opened NF after an HF intersects with an NF. This will provide new insight on
the mechanisms of fracture network formation in tight formations with pre-existed frictional NFs.
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2. Problem Formulation

2.1. Governing Equations of Hydraulic Fracturing Problems

As shown in Figure 1, the domain Ω denotes a tight reservoir, which includes an HF and an
NF. The injection point is located on the middle left of the domain Ω, and the corresponding pump
rate is denoted by Q0. As is known, the hydraulic fracturing problem is essentially a fluid–solid
interaction process, so its governing equations consist of two parts: the stress equilibrium equation for
rock skeleton and fluid pressure equation in the hydraulically driven fracture [52–54].

 
 
 
 

 

Γ

+

-

+ -

Figure 1. Schematic diagram of a hydro-fracture (HF) intersection with a natural fracture (NF).

(1) The Stress Equilibrium Equation: According to the theory of elasticity, the stress equilibrium
equation is expressed:

∇ ·σ + b = 0 inΩ, (1)

where σ denotes the stress tensor; b denotes the body force vector in the rock skeleton. As shown in
Figure 1, the boundary conditions are composed of a displacement boundary condition (Γu) and a
force boundary condition (Γt). They are expressed as

u = ū onΓu,
σ · n = t, onΓt,
σ · nHF = pnHF, onΓHF,
σ · nNF = tNF, onΓNF,

(2)

where p denotes the fluid pressure on the artificial fracture; tNF denotes the contact traction vector on
the NF surface ΓNF; ū denotes the displacement imposed on the boundary Γu; t denotes the traction
vector imposed on the boundary Γt.

For brittle rocks, there is a linear relationship between stress tensor and strain tensor under a
small deformation assumption, so the corresponding constitutive equation is expressed as

σ = D : ε, (3)

where D denotes the fourth elasticity tensor; ε denotes the strain tensor; the symbol ":" denotes the
double dot product of the two tensors.

Under the assumption of small deformation, the relationship between displacement vector u and
strain tensor ε are as follows:

ε =
1
2
[∇u + (∇u)T ]. (4)
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(2) Fluid Pressure in an HF: Under lubrication theory assumptions, the velocity profile of the fluid
in the HF is that of a planar Poiseuille flow between two parallel plates. Therefore, the fluid pressure
in the HF can be expressed as [15,33,34,55,56]

∂w
∂t
− ∂

∂s
(k

∂p
∂s

) = 0, (5)

where w denotes the fracture opening of HF; s denotes the crack propagation direction; t denotes the
injection time; k denotes the fracture transmissivity.

According to the cubic law, the fracture transmissivity can be expressed as

k =
w3

12µ
, (6)

where µ denotes the viscosity of fracturing fluid.
The corresponding initial and boundary conditions can be expressed as

w(s, 0) = 0,
w(stip, 0) = 0,
q(0, t) = Q0,
q(stip, 0) = 0,

(7)

where stip denotes the tips of HFs; q denotes the injection rate of fracturing fluid at the crack point s
and time t.

It is can be seen that Equation (7) satisfies mathematically the Neumann boundary condition.
In order to get a unique solution for the fluid pressure equation, the constraint condition should be
additionally imposed. The necessary condition, i.e., the conservation of global mass in the HF can be
written as ∫ stip

0
wds−

∫ t

0
Q0dt = 0. (8)

2.2. Crack Propagation Criterion

According to the theory of fracture mechanics, the maximum circumferential stress criterion is
adopted to determine the propagation direction of a hydraulically driven fracture at every time t.
The artificial fracture will propagate along a direction perpendicular to the maximum circumferential
stress. If the stress intensify factor K is no less than the fracture toughness of rock skeleton KIC, the
crack will propagate along a certain direction. The interaction integral method in domain form is
utilized to calculate the stress intensity factors KI and KII. The following equation of the interaction
integral can be written as [57]

I(1,2) =
∫

A
[σ

(1)
ij

∂u2
i

∂x1
+ σ

(2)
ij

∂u1
i

∂x1
−W(1,2)δ1j]

∂qw

∂xj
dA, (9)

where I(1,2) denotes the interaction integral; W(1,2) denotes the interaction strain energy as follows;
qw(x) denotes the smooth weighting function, which takes a value from 0 to 1; δ denotes the Kronecker
symbol; the superscripts (1) and (2), respectively, denote the current state and the auxiliary state for the
stress and strain field. The corresponding calculation procedures can be described in detail in [40,57,58]

W(1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij . (10)

The direction of crack propagation θ can be computed in a local tip coordinate system:

θ = 2arctan[
1
4
(KI/KII +

√
KI/KII)2 + 8)], (11)
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where the symbol “arctan” denotes the arc-tangent function.

2.3. The Cross Criterion between HF and Frictional NF

As is known, when an HF encounters a frictional NF, there are three possible scenarios: arrested,
direction-crossing, or a crossing with an offset [16,23,41]. Here, the extended Renshaw and Pollard
rule is adopted to determine the interaction behavior between HF and NF. As shown in Figure 2, if a
new fracture initiates on the opposite side of the NF, the maximum principle stress σ1 will reach the
rock tensile stress. Meanwhile, a no-slip condition should be satisfied along the NF surface. Otherwise,
the HF will cross directly or branch into NF with an offset. The expressions of the combined shear stress
and normal stress are shown in Equation (12), which is described in detail in other references [15,23].{

σ1 = T0,
τβ < S0 − µ f σβy,

(12)

where β denotes the intersection angle between HF and NF; τβ denotes the combined shear stress on
the NF surface under the action of remote stress and the local crack tip stress; σβy denotes the combined
normal stress; T0 denotes the rock tensile strength; S0 denotes the cohesion force of the frictional NF;
µ f denotes the frictional coefficient of the NF surface.

 
 
 
 

 
Figure 2. An HF approaching the NF.

2.4. XFEM and Discretization of the Governing Equations of the Hydraulic Fracturing Problem

The XFEM (extended finite element method) is utilized to approximate the displacement
discontinuity on both sides of the HF. In order to represent the multiple cracks, a Junction enrichment
function is introduced, as shown in Figure 3. The enriched displacement field can be written as [59].

u(x) = ∑
I∈N

NI(x)uI +
Mdis

∑
j=1

∑
J∈Ndis

NJ(x)[H(x)− H(xJ)]aI

+
Mtip

∑
k=1

∑
K∈Ntip

NK(x)
4

∑
α=1

[Ψα
tip(x)−Ψα

tip(xK)]bα
K

+
Mjun

∑
l=1

∑
L∈N jun

NL(x)[JH(x)− JH(xL)]cL,

(13)

where N, Ndis, Ntip and N jun, respectively, denote the set of standard nodes, Heaviside enrichment
nodes, crack-tip nodes, and junction enrichment nodes; u denotes the standard nodal d.o.f. (degrees
of freedom); aI , bα

K(α = 1, 4), and cL, respectively, denote the corresponding enriched nodal d.o.f.;
Mdis denotes the number of cracks including the main cracks and the secondary cracks; Mtip denotes
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the number of crack tips; Mjun denotes the number of junctions with Mjun = Mdis − 1; H(x) denotes
the Heaviside enrichment function; JH(x) denotes the junction enrichment function; Ψ(x) denotes the
crack-tip enrichment function; NI , NJ ,NK, and NL denote the standard shape function of node I, J, K,
and L, respectively.

 

main crack

secondary crack

Standard node
Heaviside enrichment (main crack)
Crack-tip enrichment (main crack)
Heaviside enrichment (secondary crack)

Crack-tip enrichment (secondary crack)

Junction enrichment

Figure 3. The discontinuous junction function for multiple cracks.

The Heaviside enrichment function is expressed as [59]

H(x) =

{
0, i f x < 0,
1, i f x ≥ 0.

(14)

The crack-tip enrichment function is defined as

{Ψα
tip(r, θ)}4

α=1
= {
√

rsin
θ

2
,
√

rcos
θ

2
,
√

rsinθsin
θ

2
,
√

rsinθcos
θ

2
}, (15)

where (r, θ) denotes the local crack-tip coordinate in the polar coordinate system.
The junction enrichment function JH(x) is defined as

JH(x) =

{
H(ϕs(x)), i f ϕm(x) < 0,
0, i f ϕm(x) > 0,

(16)

where ϕm(x) and ϕs(x), respectively, denote the signed distance function of the main crack and the
secondary crack. It can be seen that JH(x) is equal to 1, −1, or 0 on different sub-domains divided by
the secondary cracks.

According to the finite element method, the pressure field p and the fracturing opening
displacement vector w can be respectively approximated as

w = ∑
I∈Sw

Nw
I uI = Nw(s)U, (17)

p(s) = ∑
I∈SHF

Np
I pI = N p(s)P, (18)

where U and P, respectively, denote the global nodal displacement vector and the nodal pressure
vector; N p(s) and Nw(s), respectively, denote the matrix of the shape function of the fracture opening
and pressure.
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By substituting the above XFEM formulation, displacement and pressure approximations into the
weak form of stress equilibrium equation and lubrication equation, the corresponding discretization
forms are written as

KU −QP− Fext = 0, (19)

QT∆U + ∆tHP + ∆tS = 0, (20)

where K denotes the global stiffness matrix; Q denotes the coupling matrix; Fext denotes the external
loading vector; H denotes the flow matrix; ∆t denotes the time step; and S denotes the source term.
They are, respectively, defined as follows [33,34]:

K =

[∫
Ω(Bstd)T D(Bstd)dΩ

∫
Ω(Bstd)T D(Benr)dΩ∫

Ω(Benr)T D(Bstd)dΩ
∫

Ω(Benr)T D(Benr)dΩ +
∫

ΓNF
(Nw)T Dcont(Nw)dΓ

]

=

[
Kss Kse

Kes Kee + Kcont
ee

]
.

(21)

In the above Equation (21), Dcont denotes the contact stiffness matrix of fracture interfaces:

Q =
∫

Ω
(Nw)TnΓNF (N p)dΩ, (22)

Fext =
∫

Γt
(Nu)TtdΓ, (23)

H =
∫

ΓHF

∂Np

∂s

T

k
∂Np

∂s
ds, (24)

S = Np(s)T |s=0 Q0. (25)

As shown in Figure 4, the flow rate in the main crack and secondary crack satisfies the law of
conservation, i.e., Q0 = Q1 + Q2, where Q1 and Q2 denote the flow rate in Branches 1 and 2 of the
secondary crack, respectively. The nonlinear fluid–solid coupling system of equations of hydraulic
fracturing problems can be numerically solved by the Newton–Raphson method. More details are
described in [33,34].

 

Hydraulic fracture

Natural fracture

Branch 1

Branch 2

JunctionQ0

Q2

Q1

Figure 4. Schematic diagram of a T-shaped fluid-driven fracture.

3. Results and Discussion

3.1. Verification of the XFEM Model

For the model verification, the results from our models is summarized in Appendix A [33,34].
The verification model of this XFEM code is described in detail in [33,34], so the related process is
not repeated in this article. It is shown that the numerical results have good agreement with the
experimental results of true tri-axial hydraulic fracturing by TerraTek, Inc. (Salt Lake City, UT, USA).
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For further details of numerical and experimental procedures and the corresponding results, we refer
the reader to References [33,34,60,61].

3.2. Effect of the Location of Natural Fractures on the Diversion of Fracture Network Propagation

In this section, the effect of the location position of an NF on HF propagation paths is determined
by numerical simulation using XFEM. The input parameter values of this model are as shown in
Table 1. Under isotropic stress state conditions, the intersection angle between HF and NF is equal to
90◦. As shown in Figure 1, the domain is a 25 m × 25 m square, where the injection point is located
at the midpoint of the left edge. In this domain, the HF is 2.6 m in length, and the length of NF is
equal to 7 m. Based on the above input parameters, the mechanical NF–HF interaction processes in
hydraulic fracturing are numerically simulated at different lengths of NF in lower and upper parts,
i.e., corresponding to Llower and Lupper in Figure 1, respectively.

Table 1. Input parameter values of the hydro-fracking model.

Input Parameter Value

Young’s Modulus, E 20 GPa
Poisson’s ratio, ν 0.2
Rock density, ρ 2460 kg/m3

Friction coefficient of NF, µf 0.3
Cohesion of the NF, S0 0 MPa
Fracture toughness, KIC 1.0 MPa ·m 1

2

Tensile strength, T0 1.5 MPa
Unconfined compression strength, UCS 100 MPa
Apparent viscosity of fracturing fluid, µ 0.1 Pa · s
The consistency index of fracturing fluid, K 0.84 Pa · sn

The flow behavior index of fracturing fluid, n 0.53
Dynamic viscosity index, m 2.0
Fluid pump rate, Q0 0.001 m2/s
Pore pressure, P0 5 MPa
Maximum horizontal stress, σH 5 MPa
Minimum horizontal stress, σh 5 MPa

The corresponding crack propagation paths are as shown in Figure 5. It is obvious that fracture
diversion occurs near the tips of the NF in all cases. In Figure 5a, when the HF intersects with the
NF, the fracturing fluid flows into the opened NF. In the lower parts of the NF, the opened NF firstly
propagates along a vertically downward path for a certain length, and it is then diverted along a
new direction; in the upper parts of the NF, the opened NF is directly diverted at the upper tip of the
original NF. In Figure 5b, both the lower and upper parts of the NF firstly extend vertically downward
and upward for a short distance, respectively, and are then diverted to the right-hand side of the graph.
However, the length of the lower parts of the diverted fracture (DF) is longer than that of the upper
parts of the DF, corresponding to the red line in Figure 1. In Figure 5c, in the upper parts of the NF,
the opened fracture can only propagate vertically upward, and cannot be diverted near the tip of
the NF; in the lower parts of the NF, the opened fracture can be diverted away from the original NF.
By making use of the data in Figure 5, the length of the DF propagation in the upper parts is calculated
from the upper tip of the original NF. When the upper length of NF, i.e., Lupper, is equal to 4, 5, and 6 m,
the corresponding length is 3.14, 2.15, and 1.14 m, respectively. If Lupper is increased by 2 m, the upper
length of the DF will decrease by 2 m. Therefore, it is shown that the longer the upper parts of the
original NF are, the more difficult it is for the opened NF to be diverted away from the upper tip of the
NF under the conditions of an isotropic stress state, while the lower parts of the original NF is more
easily diverted to the right-hand side than the upper parts of the original NF under this circumstance.
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Figure 5. The crack propagation paths at different lengths of lower and upper parts of the NF. In this
figure, the black, blue, and red dotted lines, respectively, denote the original HF, the initial NF, and the
diverted fracture (DF).

The Von-Mises stress distributions are shown in Figure 6, where a blue color represent a relative
stress value, while a yellow or red one represent a higher stress value. For all cases of the model,
it is shown that there is a small region of stress concentration near the two tips of the original NF,
which indicates that a higher pressure is required to divert the opened NF away from the original NF.
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Figure 6. Von-Mises stress distributions at different lengths of lower and upper parts of the NF.

The fracture aperture and net pressure curves of the diverted fracture are shown in Figures 7 and 8,
respectively. With the decrease of Llower, both curves have revealed an asymmetrical characteristic,
which peak at the diverted point in the lower parts. In addition, at the intersection point between HF



Energies 2018, 11, 3035 11 of 28

and NF, their corresponding values take second place. The fracture aperture and net pressure in the
lower parts of the DF are much greater than those in the upper parts. By comparison, in the case of
Llower = 3 m and Llower = 4 m, their curves are nearly symmetrical. This indicates that, under the
combined action of remote stress and local crack-tip stress, the variation tendency of the fracture
aperture and the net pressure is quite different from that in the case of only a single HF.
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Figure 7. The fracture aperture curves of the DF along the fracture length at different lengths of the
lower and upper parts of the NF. The distance in the x-axis is along the direction from the lower parts
to the upper parts of the DF.
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Figure 8. The net pressure curves of the DF along the fracture length at different lengths of the lower
and upper parts of the NF. The distance in the x-axis is along the direction from the lower parts to the
upper parts of the DF.

The flow rate in the diverted fracture is shown in Figure 9. When fluid flows into the intersection
point between HF and NF, it will flow upward and downward, respectively. If the value of the flow
rate is negative, fluid will flow upward; otherwise, it will flow downward. It is shown that the flow
rate in the lower parts of the DF is much greater than that in the upper parts. Therefore, the fracture
aperture and net pressure in the lower parts of the DF is greater than that in the upper parts under the
condition of the same fluid viscosity. With the decrease of Llower, fluid flows downward more easily.
Thus, the lower parts of the original NF is more easily diverted than the upper parts of the original NF.
This may explain the results in Figure 5.
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Figure 9. The flow rate curves in the DF along the fracture length at different lengths of the lower and
upper parts of the NF. The distance in the x-axis is along the direction from the lower parts to the upper
parts of the DF.

3.3. Effect of Horizontal Stress Differences on the Diversion of Fracture Network Propagation

Based on input parameters in Table 1, the effect of the remote stress difference on the diversion
of fracture network propagation is numerically simulated at different levels of minimum horizontal
stresses σh: 5, 4, and 0 MPa; the maximum horizontal stress σH is kept constant (5 MPa) in all cases of
this model. At the same time, Llower = 3 m, Lupper = 4 m, and the NF–HF intersection angle is equal
to 90◦.

The corresponding crack propagation paths are shown in Figure 10, in which the deflection
angle is defined the angle between NF and DF at the tips of the original NF. According to the data in
Figure 10, the deflection angle in the upper parts is calculated. When the horizontal stress difference is,
respectively, equal to 0 and 5 MPa, the corresponding deflection angle is 59.2◦ and 90◦, respectively.
If the stress difference is increased by 5 MPa, the deflection angle in the upper parts is increased by
30.8◦. The higher the horizontal stress difference is, the greater the deflection angle is. In Figure 10c,
i.e., ∆σ = 5 MPa, the opened NF firstly diverts and propagates along the direction of minimum
horizontal stress and finally tends to extend along the preferred fracture plane (PFP) direction in
petroleum engineering. By contrast, when the stress state is approximately isotropic, crack propagation
in both the lower and upper parts will extend along the minimum horizontal stress direction for some
length. This indicates that crack propagation of the opened NF is a complex mechanical process under
the combined action of the local crack-tip and the remote stress state.

As shown in Figure 11c, there is a lower Von-Mises stress region (corresponding to blue area
on the contour) located on the right of DF for 5 MPa stress difference. This propagates the diverted
fracture along the PFP. In Figure 11a,b, both cases correspond to a lower stress difference, and the
lower stress region is mainly near the two crack tips. The local stress distribution is an explanation to
interpret crack paths in Figure 10.

The fracture aperture and net pressure curves of DF are shown in Figures 12 and 13, respectively.
The fracture aperture curve reveals an asymmetrical characteristic, while the net pressure curve reveals
a nearly symmetrical characteristic. The fracture aperture peaks at a global maximum value at the
inflection point, where the opened fracture in the upper parts diverts to the right side in Figure 10;
at the NF–HF intersection point, the fracture aperture takes the second place; at the inflection point in
the lower parts, it takes the third place. The net pressure reaches a maximum at the intersection point,
and there are two inflection points on this curve. This means that the opened fracture diverts to the
right side. The higher the stress difference is, the greater the net pressure it requires, which leads to a
greater fracture aperture.
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Figure 10. The crack propagation paths at different levels of remote horizontal principle stress difference.

The flow rate in the DF is shown in Figure 14. It is obvious that the flow rate in the upper parts
is much greater than that in the lower parts. Therefore, the fracture aperture and net pressure in the
upper parts are greater than those in the lower parts for the same fluid viscosity. This might explain
the results of fracture aperture and net pressure in Figures 12 and 13.
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Figure 11. Von-Mises stress distributions at different levels of remote horizontal principle stress difference.
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Figure 12. The fracture aperture curves of the DF along the fracture length at different levels of remote
horizontal principle stress difference. The distance in the x-axis is along the direction from the lower
part to the upper part of the DF.
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Figure 13. The net pressure curves of the DF along the fracture length at different levels of remote
horizontal principle stress difference. The distance in the x-axis is along the direction from the lower
part to the upper part of the DF.
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3.4. Effect of the NF–HF Intersection Angle on the Diversion of Fracture Network Propagation

Based on the input parameters in Table 1, the effect of the NF–HF intersection angle on the
diversion of fracture network propagation is numerically simulated at different levels of intersection
angles β: 75◦, 60◦, and 45◦; both the maximum and minimum horizontal principle stresses are equal to
5 MPa in all cases of this model. Meanwhile, Llower and Lupper are, respectively, 3 m and 4 m.

The corresponding crack propagation paths are as shown in Figure 15. Under the condition of
isotropic stress state, the NF–HF intersection angle will have a significant impact on the propagation
direction of the primary HF, i.e., the black dotted line in Figure 15, when HF is approaching NF.
With the decrease of the intersection angle, the primary HF deflects from the horizontal line. When the
NF–HF intersection angle is greater than 60◦ (in Figure 15a,b), the opened NF in the upper parts is
more easily diverted away from the original NF than that in the lower parts under the combined
action of remote stress and the crack-tip stress field. However, the intersection angle is less than 60◦

(in Figure 15c). The opened NF in the lower parts is more easily diverted away from the original
NF than that in the upper parts under the combined action of remote stress and the crack-tip stress
field. By making use of the data in Figure 15, the deflection angle for the primary HF was calculated.
When the intersection angle is decreased from 75◦ to 45◦, the corresponding deflection angle is
increased from 0◦ to 61.2◦. This indicates that the NF–HF intersection angle will have a significant
impact on the diversion propagation of the primary HF and the secondary opened NFs.

The Von-Mises stress distributions at different levels of NF–HF intersection angle are shown in
Figure 16. In Figure 16a, there is a stress concentration region near the diversion point in the upper
parts of the NF, which indicates that it will require a high net pressure to divert the opened fracture
upward. In Figure 16b, the Von-Mises stress in the upper parts is greater than that in the lower parts,
which causes the subsequent fracture to easily divert upward. In Figure 16c, the Von-Mises stress on
the left of the NF is greater than that on the right, so it is more easily diverted downward.

The fracture aperture and net pressure curves of the DF are shown in Figures 17 and 18,
respectively. In the case of β = 75◦, the fracture aperture and net pressure in the upper parts is
greater than that in the lower parts. In particular, the fracture aperture and net pressure near the
diversion point in the lower parts is close to zero, and this is consistent with the results of Von-Mises
stress at this point. In the other two cases, the maximum values of the fracture aperture and the net
pressure are at the diversion point in the lower parts. The smaller the intersection angle is, the greater
the net pressure it requires to divert the fracture.

The flow rate in DF is shown in Figure 19. It is obvious that, in the case of β = 45◦, the flow rate in
the upper parts is much greater than that in the lower parts. This indicates that it is easy for fracturing
fluid to flow upward when the intersection angle is small. This is a possible reason for explaining the
results in Figures 17 and 18.

3.5. Effect of Fluid Viscosity on the Diversion of Fracture Network Propagation

Based on the input parameters in Table 1, the effect of the viscosity of fracturing fluid on the
diversion of fracture network propagation is numerically simulated at different levels of viscosity
µ : 100 mPa·s, 10 mPa·s, and 1 mPa·s [62]. In this model, the maximum and minimum horizontal
stresses are kept constant (5 MPa) for all cases. Meanwhile, the NF–HF intersection angle is equal
to 90◦.

The corresponding crack propagation paths are shown in Figure 20. By making use of the data
in Figure 20, the length of DF is calculated. When the fluid viscosity is increased from 100 mPa·s to
1 mPa·s, the length of DF is increased from 14.29 to 5.23 m. It is clear that the smaller the viscosity
is, the more difficult the opened fracture diverts into a new direction. When the viscosity is equal to
1 mPa·s, artificial fracture will propagate along the NF direction under given conditions. This indicates
that more energy is required to divert the opened NF upward and downward.



Energies 2018, 11, 3035 17 of 28

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
6

8

1 0

1 2

1 4

1 6

1 8

y (
m)

x  ( m )

 H F
 D F
 N F

(a) Intersection angle β = 75◦

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
8

1 0

1 2

1 4

1 6

1 8

y (
m)

x  ( m )

 H F
 D F
 N F

(b) Intersection angle β = 60◦

0 2 4 6 8 1 0 1 2 1 4 1 6
6

8

1 0

1 2

1 4

1 6

1 8

y (
m)

x  ( m )

 H F
 D F
 N F

(c) Intersection angle β = 45◦

Figure 15. The crack propagation paths at different levels of intersection angle between HF and NF.
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Figure 16. Von-Mises stress distributions at different levels of intersection angle between HF and NF.
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Figure 17. The fracture aperture curves of the DF along the fracture length direction at different levels
of intersection angle between HF and NF. The distance in the x-axis is along the direction from the
lower part to the upper part of the DF.
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Figure 18. The net pressure curves of the DF along the fracture length direction at different levels of
intersection angle between HF and NF. The distance in the x-axis is along the direction from the lower
part to the upper part of the DF.
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Figure 19. The flow rate curves of the DF along the fracture length direction at different levels of
intersection angle between HF and NF. The distance in the x-axis is along the direction from the lower
part to the upper part of the DF.
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(c) Viscosity µ = 1 mPa ·s

Figure 20. The crack propagation paths at different levels of viscosity of fracturing fluid.

The Von-Mises stress distributions at different levels of fluid viscosity are shown in Figure 21.
In Figure 21c, there is a lower Von-Mises stress area on the right of the NF, which makes the opened
NF propagate along the original NF direction. This is consistent with the results in Figure 20.

The fracture aperture and net pressure curves of the DF are shown in Figures 22 and 23,
respectively. They are close to symmetrical about the axis of the original HF under the condition of
an isotropic stress state. In the cases of µ = 100 mPa ·s and µ = 10 mPa ·s, there are two inflection
points on the curves, which correspond to the diversion point in the lower and upper parts of the NF.
The greater the fluid viscosity is, the greater the fracture aperture and net pressure are.

The flow rate in the DF is as shown in Figure 24. Obviously, the greater the viscosity is, the greater
the flow rate is, and thus the easier it is for the secondary fracture to divert. This might explain the
results in Figures 20 and 21 [63].
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Figure 21. Von-Mises stress distributions at different levels of viscosity of fracturing fluid.
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Figure 22. The fracture aperture curves of the DF along the fracture length at different levels of viscosity
of fracturing fluid. The distance in the x-axis is along the direction from the lower part to the upper
part of the DF.

0 3 6 9 1 2 1 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

Ne
t p

res
su

re 
of 

DF
 (M

Pa
)


�����	��������������	��������������

�µ�����������
�µ����������
�µ���������

Figure 23. The net pressure curves of the DF along the fracture length at different levels of viscosity of
fracturing fluid. The distance in the x-axis is along the direction from the lower part to the upper part
of the DF.
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Figure 24. The flow rate curves of the DF along the fracture length direction at different levels of
viscosity of fracturing fluid. The distance in the x-axis is along the direction from the lower part to the
upper part of the DF.
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4. Conclusions

This paper investigates the diversion mechanisms of a fracture network in tight formations with
frictional NFs by means of the XFEM technique. The effects of some key factors such as the location of
the NF, the intersection angle between the NF and HF, the horizontal stress difference, and the fluid
viscosity on the mechanical diversion behavior of the HF were analyzed in detail. The following main
conclusions can be drawn:

(1) Fracture diversion propagation will occur near the two tips of the opened NF after an HF is
intersecting with an NF. The numerical results show that some key factors such as the NF position,
the NF–HF intersection angle, the horizontal stress differences, and the fluid viscosity have a
significant impact on the diversion propagation in the upper and lower parts of the opened NF.

(2) For a constant length of NF (7 m), the upper length of the DF decreases by about 2 m with
a 2 m increment of the upper length of the NF (Lupper), while the length of the DF increases
9.06 m, with the fluid viscosity increased from 1 to 100 mPa.s; (2) the deflection angle in the upper
parts increases by 30.8◦ with the stress difference increased by 5 MPa, while the deflection angle
increases by 61.2◦ with the intersection angle decreased from 75◦ to 45◦.

(3) The longer the upper parts of the original NF are, the more difficult it is for the opened NF to
divert away from the upper tip of the NF under the conditions of an isotropic stress state, while
the lower parts of the original NF is more easily diverted to the right-hand side than the upper
parts of the original NF. The NF–HF intersection angle will have a significant impact on the
diversion propagation of the primary HF and the secondary opened NFs.

(4) In general, the distributions of fracture aperture, net pressure, and flow rate reveal asymmetrical
characteristics for the secondary hydraulically driven fractures. For the distribution of Von-Mises
stress, there is usually a concentrated stress zone area near the turning point of the secondary
cracks, which corresponds to the inflection points on the curves of the fracture aperture and
net pressure.

(5) The diversion mechanisms of the fracture network are the results of the combined action of all
factors. This will provide a new perspective on the mechanisms of fracture network generation.
Future work should determine the primary and secondary relations of various factors by means
of experiments and numerical calculation.
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Appendix A

The result of XEFM is here compared with results of analytical solutions. As is known, depending
on the dimensionless fracture toughness, the analytical solutions of the Kristianovich-Geertsma-de
Klerk (KGD) model have different expressions. The dimensionless fracture toughness can be written as

Km = 4

√
2
π

KIC(1− ν2)

E
(

E
12µQ0(1− ν2)

)1/4, (A1)

where Km denotes the dimensional fracture toughness; KIC denotes the rock fracture toughness;
µ denotes the viscosity of fracturing fluid; Q0 denotes the injection rate; E denotes the rock Young’s
modulus; ν denotes the Poisson’s ratio of the rock matrix. If Km is greater than 4, the fracture
propagation regime is toughness dominated; if Km is less than 1, the fracture propagation regime is
viscosity dominated, which is much more common in most hydraulic fracturing treatments.

The input parameters of the verification model are listed in Table A1. According to Equation (A1),
the dimensionless fracture toughness is equal to 0.313, which indicates that the fracture propagation
regime is viscosity-dominated. In this model, the HF is located at the center of a symmetrical model
with a length of 100 m and 180 m along the x- and y-direction directions, respectively. The domain is
divided into 3080 bilinear quadrilateral elements.

Table A1. Input parameter values of hydro-fracturing.

Input Parameter Value

Young’s Modulus, E 20 GPa
Poisson’s ratio, ν 0.2
Fracture toughness, KIC 0.1 MPa ·m 1

2

The consistency index of fracturing fluid, K 0.84 Pa · sn

Injection rate, Q0 0.001 m2/s
Viscosity, µ 0.1 Pa · s
Dimensionless fracture toughness, Km 0.313
Injection time, t 30 s

The initial half-length of the HF is equal to 1.25 m, and it is assumed that a constant fluid pressure
acting on the fracture wall is equal to 3.9 MPa. The curves of fluid pressure at the injection point
and the fracture width at 30 s are shown in Figure A1a,b, respectively, which is compared with the
corresponding analytical solutions. There is very good agreement between the numerical results and
analytical solutions, which indicates that the XFEM model can obtain reliable results.
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Figure A1. Cont.
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Figure A1. Results of the XFEM technique and of the analytical solutions.
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