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Abstract: In recent years, the interest of industry towards condition-based maintenance, 

substituting traditional time-based maintenance, is growing. Indeed, condition-based maintenance 

can increase the system uptime with a consequent economic advantage. In this paper, a solution to 

detect the health state of a variable displacement axial-piston pump based on vibration signals is 

proposed. The pump was tested on the test bench in different operating points, both in healthy and 

faulty conditions, the latter obtained by assembling damaged components in the pump. The 

vibration signals were acquired and exploited to extract features for fault identification. After the 

extraction, the obtained features were reduced to decrease the computational effort and used to train 

different types of classifiers. The classification algorithm that presents the greater accuracy with 

reduced features was identified. The analysis has also showed that using the time sampling raw 

signal, a satisfying accuracy could be obtained, which will permit onboard implementation. Results 

have shown the capability of the algorithm to identify which fault occurred in the system (fault 

identification) for each working condition. In future works, the classification algorithm will be 

implemented onboard to validate its effectiveness for the online identification of the typical 

incipient faults in axial-piston pumps. 
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1. Introduction 

The online condition monitoring of components and systems is moving toward changing the 

paradigm in terms of maintenance, which is nowadays mainly founded on a time-based approach. 

The time-based maintenance acts in a preventive manner without considering the real state of the 

components. Scheduled inspections or substitutions are the fundamentals of the time-based 

approach, and therefore system downtimes could occur when not required, while a condition-based 

maintenance approach suggests action only when it is actually necessary. A well-scheduled 

condition-based maintenance depends on an efficient prognostics and health management (PHM) 

system in order to detect “if and when” maintenance is needed. In the last few years, the interest of 

the researchers in the PHM field has resulted in several industrial applications. The PHM can lead to 

significant advantages in terms of productivity, security, and reliability of the system. In the field of 

fluid power systems, PHM could be applied to circuits and components (valve, pumps, and motors), 

and it would become essential when interruption causes revenue losses, for instance in oil and gas 

plants and in chemical industries. Moreover, an unexpected failure can involve critical security 

issues, such as in the aircraft hydraulic systems [1,2]. This paper is focused on improving the 
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reliability of a variable displacement pump used in hydraulic circuits by analyzing the potential of a 

PHM approach. Diagnostics and prognostics have different objectives: the former is aimed at 

identifying the health state of the system and is the first essential step for the latter, which tries to 

evaluate the remaining useful life (RUL) of the component. Diagnostic and prognostic processes can 

be developed with different methodologies that fall in two main categories: data-driven and model-

based approaches [3]. 

The model-based method requires developing a complex mathematical model, able to replicate 

the functioning of the machine in both healthy and faulty conditions. However, in many cases, this 

task is very difficult to accomplish, therefore a data-driven approach is often preferred. 

This paper is focused on the diagnostics that involve fault detection and fault identification 

(FDI), while prognostic issues are not yet considered, but are the final target of the research in 

progress. A data-driven approach is presented: it requires that sensors are installed on the systems 

to collect data that can contain the signature of the faults. In the field of fluid power systems, a few 

parameters can easily be monitored such as fluid pressure, fluid temperature, and vibrations. An 

important signal is the delivery pressure that can be utilized for developing effective diagnostic 

algorithms [4–7]. The pump delivery pressure can be measured through low-price sensors, but only 

faults involving the system fluid dynamics can be detected. In the field of hydraulic pumps, the 

literature reports other investigations: in particular, the measured fluid temperature was used for 

monitoring the overall efficiency of an external gear pump [8,9] and of a variable displacement axial-

piston pump [10]. Other important signals, often used for diagnostics purpose, are vibrations 

measured by means of accelerometers; these signals can convey a lot of information about the health 

status of the system. 

The literature reports some applications where the acceleration signals are used. In References 

[11,12], an internal combustion engine was monitored with acceleration sensors, and a lot of vibration 

sources were detected due to the motion of the internal components, combustion, and so on. In 

general, since all pieces of information are merged, a careful analysis is necessary to find reliable data. 

Also, diagnostics of bearings exploits vibration signals, as reported in References [13,14]. In some 

cases, vibrations appear when cavitation occurs, detecting abnormal working conditions in kinetic 

pumps [15,16]. In positive displacement pumps, an additional structure-borne noise is generated by 

the extremely high pressure oscillations in the delivery volume due to the back flow in conditions of 

incomplete filling of the variable chambers [17,18]. The characteristic mark of such a critical operating 

condition has been identified in the acceleration signals by Buono et al. [19] for a lubricating gerotor 

pump. Even the vibrations of hydraulic pumps can convey a lot of information about different faults; 

for this reason, many researchers have proposed diagnostics solutions based on an accelerometer 

installed on the case of the machine [20–24]. The methodology presented in Reference [25] is applied 

to experimental signals measured by two accelerometers mounted on the pump housing; the 

outcomes show that features highlighting the presence of the considered fault can be extracted by the 

proposed method for the analysis of the acceleration signals. Once a set of features sensible to the 

faults is extracted, it can be used to train an automatic algorithm whose purpose is to correlate the 

features to the faults. This automatic algorithm is used to perform a classification and is called a 

“classifier.” The classifier is trained offline and is then used online to compute the diagnosis. Many 

algorithms are presented in the literature for this classification task. 

In many applications, a neural network (NN) is used as a classifier. The NN is a powerful tool 

that is used not only for diagnostics and prognostics, but also for many other tasks, as demonstrated 

in the review reported in Reference [26]. Other studies on condition monitoring exploit vibration 

signals for training NNs and to make the diagnosis [27–29]. Many examples of the application of NNs 

for the diagnostics of hydraulic circuits [30] and positive displacement pumps [31,32] are available. 

Apart from the NN, many other algorithms are available for the classification task. Torrika [33] 

presented an interesting comparison of several algorithms for the case study of an axial-piston pump; 

in detail, a NN is compared to the following algorithms: naïve Bayes classifier, support vector 

machine (SVM), k nearest neighbor algorithm, and decision tree. In Reference [33], the higher 

classification rate is reached by the SVM. Another example of application of the SVM is presented in 
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Reference [34] for the case study of a centrifugal pump. For the same component, in Reference [24], a 

decision tree algorithm was developed for the fault identification. An approach based on the use of 

a dynamic Bayesian network is presented in Reference [35] for the diagnostics, and also the 

prognostics, of a hydraulic circuit. In different studies [36–38], Helwig proposed the use of the 

Mahalanobis distance classifier for the diagnostics of hydraulic circuits. The same author also 

proposed the use of linear discriminant analysis (LDA) for the reduction of the number of features 

and the identification of the most relevant features to use as inputs of the classification algorithm. A 

theory worthy of note is the fuzzy logic. In References [7,21,39], the fuzzy logic is exploited to create 

inference systems for the fault classification. In many applications [31,40], the fuzzy logic is combined 

with the use of an NN for the classification task. 

This paper reports the analysis of vibration signals acquired through two accelerometers 

installed on the pump case for identifying the health state of the pump. Tests were carried out, both 

in flawless and faulty conditions, where the faulty cases have been reproduced by intentionally 

assembling defective components into the pump. Vibration signals have been exploited to obtain the 

features used to train the classification algorithm where features reduction techniques and different 

classifiers have been evaluated to identify the best classification algorithm. The results show that it is 

possible not only to detect the faulty condition, but also to identify the type of fault. 

2. Analysis Procedure 

In this work, a vibration signal was used to evaluate the health state of the pump. A generic 

acceleration signal �[�] could be decomposed in two main components particularly suitable for the 

further analysis, as shown in Equation (1): 

�[�] = �[�] + �[�] (1) 

 �[�] predictable part of the signal (CS1) the periodic part; 

 �[�] is the remaining noise containing all contributions not included in �[�]. This term can also 

incorporate CS2 contributions that are related to cyclic frequencies not contained in the periodic 

part CS1. 

The CS1 and CS2 components are the most significant in acceleration signals, since usually, 

contributions at higher orders are negligible. In case of a gearbox [41,42], the contributions due to 

meshing of the gears are CS1, hence included in �[�], while the contributions related to the ball 

bearings are CS2, therefore included in �[�]. 

The Fourier spectrum can be used effectively for analyzing the periodic part of the signal, while 

the CS2 part can be analyzed with specific analytical tools such as spectral correlation density, cyclic 

modulation spectrum, and cyclic spectral coherence. In order to avoid misleading results, it is 

essential to extract the predictable part of the signal before analyzing the CS2 part [43]. 

The predictable term �[�] is the periodic part (CS1) that corresponds to its expected value: 

�[�] = �{�[�]} (2) 

The expected value operator � refers to the ensemble average that is calculated by averaging 

diverse repetitions of the same stochastic process. The periodic part of the signal �[�] , can be 

computed through the operator �, which extracts all the periodic components of the signal under the 

hypothesis of cycloergodicity. For a cyclostationary and cycloergodic signal �[�] , the ensemble 

average is equivalent to the infinite cycle average [43]: 

�[�] = �{�[�]} = �{�[�]} = lim
�→�

1

2� + 1
� �[� + ��]

�

����

 (3) 

with � being the cycle length and � the number of cycles. Equation (3) extracts only the periodic 

components that are multiples of the cycle, which, in turn, is known a priori. For rotating machines, 

like the hydraulic pump investigated, the basic cycle corresponds to one revolution of the shaft. 



Energies 2019, 12, 953 4 of 18 

 

The method used for estimating the predictable part �̂[�] is the synchronous average (SA) 

[43,44]. Assuming a signal �[�] of finite-length L corresponding to � cycles of � samples each, the 

SA is given by Equation (4): 

�̂[�] = �{�[�]} =
1

�
��[� + ��]

���

���

 (4) 

The variable � is reset at the end of every cycle and is limited in the range [0, � − 1]: 

� = � − �
�

�
�� (5) 

The SA is the cycle average calculated for a finite number of cycles. In the frequency domain, the 

expression is reported in Equation (6) [42]: 

�̂[�] = �{�[�]} = � ������� �⁄
1

�
� �[�]�������� �⁄

���

���

⌈���⌉

���

 (6) 

Equation (4) shows that the predictable parts are extracted at frequencies that are integer 

multiples of the cycle. As reported in Equations (4) and (6), the mathematical implementation of the 

SA requires a precise evaluation of the cycle length �  and that both �  and �  are integers; 

furthermore, in Equation (4), � is an integer. When the samples come from an angular sampling, the 

conditions are all satisfied and � is a known integer, since it depends on the acquisition system. 

Conversely, when angular sampling is not possible, resampling methods [44] can be applied to make 

� an integer and to use Equation (4) for computing the SA, assuming available a sample per cycle to 

correct angular velocity fluctuations in the signal. Some limitations of resampling techniques, when 

a tachometric signal is not available, are presented in Reference [45]. Furthermore, in rotating 

machines, the angular velocity is often not exactly constant over the time; therefore, it could be 

impossible to resample starting from the time domain. Finally, an angular sampling, or an angular 

resampling (one sample per cycle), is needed for a suitable analysis of the signals. 

The proposed methodology decomposes the measured signal in several components that require 

analysis with apposite tools. Figure 1 illustrates a block diagram of the proposed procedure. The first 

step consists of acquiring an acceleration signal � as a function of the shaft position �, where it is 

possible to obtain this signal with two different methods. With the technique used in this work, since 

a relative encoder was available, the signal �(�) was directly obtained through an angular sampling. 

Figure 1 also reports an alternative approach that can be used if an encoder were not available. In this 

case, a time sampling of the acceleration signal �(�) is performed, and subsequently, an angular 

resampling is necessary, but a tachometric signal T(t) is required. 
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Figure 1. Flow chart of the suggested methodology for analyzing the acceleration signals. 

The synchronous average �(�) can be obtained with Equation (6) from the signal �(�) in the 

angular domain. The SA contains the CS1 components of the signal and it can be analyzed with either 

the fast Fourier transform (FFT) or the Power Spectral Density (PSD) tools. The residual signal �(�) 

is calculated by subtracting the Synchronous Average (SA) from the acceleration signal �(�). The 

residual signal includes both the CS2 components and the higher order cyclostationary component, 

which can be analyzed with either FFT tools or other advanced methods, such as the spectral 

correlation density (SCD) or the cyclic spectral coherence (CSC). It is important to subtract the SA 

from the raw signal before analyzing the CS2 components, since the results of the CS2 analysis can 

be altered by the presence of periodic components. The residual signal contains also the background 

noise, which could make the results of the CS2 analysis less clear. 

Once the components have been separated, the extraction of the features from the acceleration 

signal is carried out. After the feature reduction, the reduced features are used to train different 

classifiers and a distinct set of data is exploited to validate each classification algorithm. By evaluating 

the performance of each trained classifier, the best classification algorithm can be detected. 

3. Experimental Activity 

The research activity was supported using experimental tests carried out at the laboratory of the 

Engineering and Architectural Department of the University of Parma. A couple of accelerometers 

were installed on a pump that was tested in both healthy and faulty conditions for extracting suitable 

parameters for the diagnostics. Pictures of the tested pump (a) and of the experimental layout (b) are 

reported in Figure 2. The hydraulic pump was a swash plate axial-piston type with a maximum 

displacement of 84 cm3/rev, equipped with a hydro-mechanical load-sensing regulator. 

Two piezoelectric accelerometers were installed on the pump housing, as shown in Figure 2a, 

and located in orthogonal directions for understanding which position provides the most meaningful 

information. 
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Figure 2. (a) Position on the pump of the two accelerometers. (b) Hydraulic scheme of the 

experimental layout. 

As illustrated in Figure 2a, one accelerometer (sensor 1) was mounted on the case for measuring 

the acceleration in the inlet–outlet flow direction. The second accelerometer (sensor 2) was applied 

on the pump cover for measuring the acceleration in the direction of the piston axes. Both sensors 

were piezoelectric charge accelerometers (Brüel & Kjær type 4370) with an accuracy of ±2 m/s2 and a 

bandwidth up to 10 kHz that can measure a maximum continuous sinusoidal acceleration of 20000 

m/s2. The acquisitions were performed by means of a relative encoder for the angular sampling. The 

angular resolution of the encoder (0.1 deg) led to high sampling frequencies (2000 r/min, 120000 Hz), 

significantly higher than the frequency necessary to exploit the accelerometer’s bandwidth. 

As reported in Section 5, the results obtained by the sensors were comparable, therefore only the 

graphs related to sensor 1 are reported throughout the paper because a future installation of the 

sensor in the position 1 could be more appropriate with respect to the position 2, where the sensor 

could be damaged by accidental collisions. 
In order to investigate the methodological approach, tests in faulty and healthy conditions were 

carried out. The faulty ones were obtained by introducing damaged and worn components in the 

pump. 

The following faults were analyzed: 

 Fault 1: worn port plate (F1) 

 Fault 2: port plate with cavitation erosion (F2) 

 Fault 3: worn slippers (F3) 

 Fault 4: cylinder block damaged on the contact surface with the port plate (F4). 

All four conditions recreated faults that can occur in real applications. The selected faults were 

quite light since the objective of the present study was to exploit the proposed methodology for 

detecting incipient faults that could grow and lead to the complete failure of the pump. For 

confidential reasons, detailed information about the level of damage or worn could not be reported. 

All faulty conditions were tested at a constant displacement of the pump (50 cm3/rev), equivalent 

to a swash plate angle of 12.8°, with different values of the delivery pressure and of the angular speed, 

as shown in Table 1. 

Table 1. Operating points considered for the acceleration acquisitions in healthy and faulty 

conditions. 

Angular Velocity Swash Angle 
Delivery Pressure 

50 bar 150 bar 250 bar 

500 r/min 12.8 deg   

1500 r/min 12.8 deg    

2000 r/min 12.8 deg    
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For each acquisition, 90,000 samples, corresponding to 25 revolutions, were acquired. In order 

to have more data available for the classifier training phase, the tests were repeated 5 times for each 

operating condition. Since 9 operating conditions were considered, and each had been acquired 5 

times, 45 different acquisitions were considered for each fault configuration. 

4. Experimental Results 

In this section, the procedure proposed for the decomposition of the signal that was applied to 

the acceleration signal acquired during the tests is described. The unit was tested in both healthy and 

faulty conditions and the final aim of the analysis was to extract relevant parameters for the pump 

diagnostics. Figure 3 reports the acceleration signals measured with sensor 1 in a healthy condition 

(standard pump) and in faulty condition, in a particular working condition (1500 r/min, 150 bar); all 

signals are plotted over a period of two revolutions (4π rad). 

 

Figure 3. Raw signal for fault 1 (a), fault 2 (b), the flawless pump (c), fault 3 (d), and fault 4 (e) for the 

signal acquired with sensor 1 (1500 r/min, 150 bar). 

For each working condition tested, the raw signal was decomposed in two different 

contributions: the periodic part (SA) and the remaining noise (residual). The periodic part (SA) was 

extracted from the raw signal by considering 25 revolutions, while the residual part was calculated 

by subtracting the SA from the raw signal. Figure 4 shows how the signal acquired for the standard 

pump with sensor 1 in a specific working condition (1500 r/min, 150 bar) was decomposed. 
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Figure 4. (a) Raw signal, (b) synchronous average, and (c) residual signal of the signal measured by 

sensor 1 for the standard pump (1500 r/min, 150 bar). 

The decomposition methodology was applied, both in healthy and faulty conditions, for each 

acquired test. In order to highlight the difference between the standard and faulty pump, the signal 

was processed in the frequency domain instead of in the angular domain. The extraction of features 

in the frequency domain was performed by separately computing the fast Fourier transform (FFT) of 

the considered signal (raw signal, SA, residual). The computation of the FFT returns many frequency 

features that can be used in the diagnostic algorithm; the considered features can be exploited to train 

a classifier. In this case, to train a classifier, the FFT coefficients were used as features. For each 

acquisition, obtained at different working conditions, the FFT coefficients for the raw signal, SA, and 

residual were calculated. Each FFT was composed of 13000 coefficients. Figure 5 shows the FFT of 

the acceleration signal, SA average, and residual signal for the acquisitions with sensor 1 in the case 

of a flawless pump (1500 r/min, 150 bar). 

 

Figure 5. FFT of (a) acceleration signal, (b) synchronous average, and (c) residual signal for the signal 

acquired with sensor 1 in the case of flawless pump (1500 r/min, 150 bar). 
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Figures 6 and 7 report a comparison of the FFT of the raw signal for the different healthy and 

faulty condition. 

 

Figure 6. FFT of the raw signal for (a) the standard pump, (b) fault 1, and (c) fault 2 pump for the 

signal acquired with sensor 1 (1500 r/min, 150 bar). 

 

Figure 7. FFT of the raw signal for (a) the standard pump, (b) fault 3, and (c) fault 4 pump for the 

signal acquired with sensor 1 (1500 r/min, 150 bar). 

By observing Figures 6 and 7, it is possible to notice how faults 1 and 2 present a similar trend 

with respect to the standard pump case, while faults 3 and 4 (Figure 7) show different trends. In 

particular, the FFT of the raw signals of faults 1 and 2 show repeatable peaks for multiples of nine, 

corresponding to the number of pistons. The FFT comparison of the synchronous average is also 

shown (Figures 8 and 9) for evaluating the contribution of the periodic part of the acceleration signal. 
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Figure 8. FFT of the synchronous average for (a) the standard pump, (b) fault 1, and (c) fault 2 pump 

for the signal acquired with sensor 1 (1500 r/min, 150 bar). 

 

Figure 9. FFT of the synchronous average for (a) the standard pump, (b) fault 3, and (c) fault 4 pump 

for the signal acquired with sensor 1 (1500 r/min, 150 bar). 

Figures 8 and 9 show that the spectrum of the SA signals and the obtained results are comparable 

to the cases calculated with the raw signal reported in Figures 6 and 7. Therefore, it is difficult to 

highlight from the graphs significant advantages in using the FFT of the decomposed signal rather 

than the FFT of the raw signal. 

In the following section, the FFT’s coefficients will be used as features to train various classifiers 

in order to verify whether the use of the decomposed signals with respect to the raw data improves 

the accuracy of classification for obtaining a reliable fault detection. 
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5. Classifier Comparison 

The main aim of this paper is to detect the optimal solution for online condition monitoring in 

an axial piston pump, and consequently, to identify the best classification algorithm, the position of 

the accelerometer, and whether it is necessary to preprocess the acquired data. 

Comparing a classifier performance on both the training set and the test set permits evaluation 

of the degree of generalization of the learning process. A wide range of different classifier types can 

be used for computing the diagnosis; in this work, a selection of seven classifiers were tested in order 

to find the optimal one. Table 2 shows the classifiers selected (right column) for the analysis and the 

category to which they belong. The classifier types used in this work were: decision trees, ensemble 

classifier, discriminant analysis, k nearest neighbor classifier (KNN), and support vector machine 

(SVM). 

With the decision trees category, a tree structure is built for the classification models; in 

particular, a dataset is broken down into smaller and smaller subsets, while an associated decision 

tree is incrementally developed at the same time. The final outcome is a tree with decision and leaf 

nodes. The discriminant analysis classification method is grounded on the concept of finding a linear 

combination of predictors (variables) that best separates targets (classes). An ensemble classifier 

melds into one high-quality ensemble model the results coming from many weak learners, and 

qualities are a function of the algorithm choice. With the simple algorithm KNN, all available cases 

are stored and new cases based on a similarity measure are classified (e.g., distance functions). 

Finally, with SVM, the classification is performed by finding the hyperplane that maximizes the 

margin between the two classes; the vectors (cases) defining the hyperplane are the support vectors. 

Typically, only one classifier was chosen for each classifier type, where exceptions include KNN 

and SVM with several kernel functions that have been considered twice [33]. 

Table 2. Different types of classifiers tested. 

Classifier Category Classifier 

Decision Trees Coarse tree 

Discriminant Analysis  Linear discriminant 

Ensemble Classifier  Bagged trees 

K Nearest Neighbor Classifier 
Weighted KNN 

Medium KNN 

Support Vector Machine 
Fine Gaussian SVM 

Linear SVM 

The first step was to compare the classification accuracy and training time for the different 

classification algorithms, considering as features all the FFT coefficients calculated in the orders 

domain (dimensionless frequencies). The classification accuracy was used as a synthetic parameter 

for evaluating the performance of a classifier [33]. Figure 10 shows the classification accuracy and 

training time obtained using all FFT coefficients for the raw signal for sensor 1 (13,000 features). 



Energies 2019, 12, 953 12 of 18 

 

 

Figure 10. Classifier accuracy (A) and training time (B) with 13000 features (raw signal, sensor 1). 

All the tested classifiers had a classification accuracy of 1, which means a percentage of 100% 

correct classification, except the coarse tree algorithm, which had a percentage of correct classification 

close to 50%. Besides, the training time was similar for the different classifiers except for medium 

KNN and weighted KNN. Both classifiers were nearest neighbor classifiers, which are algorithms 

that require less training time as they converge faster to the solution. These results are interesting but 

not suitable for online condition monitoring because they require a high run time and high memory 

space for saving data; therefore, it is necessary to reduce the number of features used for computing 

the diagnosis. A feature extraction phase was conducted by means of principal component analysis 

(PCA), obtaining 50 features instead of 13,000. PCA is a methodology employed for emphasizing 

variation and to bring out strong patterns in a dataset [46]. It is often used to make data easy to be 

explored and visualized. Once the features extraction had been carried out, the obtained features 

could be used to retrain the selection of different classifiers. Figure 11 reports the classification 

accuracy and training time for the raw signal considering only 50 main features. 

 

Figure 11. Classifier accuracy (A) and training time (B) with 50 features (raw signal, sensor 1). 

Graphs reported in Figure 11 show a reduction in classification accuracy compared to the case 

without features reduction, with the exception of the bagged trees, and a training time reduction. In 

order to highlight where the algorithm failed to correctly identify the healthy condition of the pump, 

the confusion matrix (Figure 12) is shown for each different classification algorithm. 
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The classification accuracy is a synthetic parameter that allows for only evaluating the overall 

performance of the algorithm, but not to highlight the critical issues in classifying the data. These 

issues could be investigated with the confusion matrix. 

The confusion matrix, also called error matrix, gives a representation of the accuracy of statistical 

classification. Each column of the matrix indicates the predicted class, while each row represents the 

real values. The confusion matrix associated with an N-class classifier is a square N×N matrix whose 

element Aij represents the number (frequency, if normalized by the number of samples of class i) of 

patterns belonging to class i classified as belonging to class j. The name comes from the fact that 

shows whether two classes are confused (i.e., commonly mislabeling one for another). 

Figures 12 and 13 show which classifiers make it possible to correctly classify the state of health 

of the machine. In particular, the confusion matrix allows for observing in detail which fault 

configurations are classified correctly. From the analysis of the matrices, significant considerations 

can be done. In general, fault 3 was the simplest to be detected, with the exception of the coarse tree 

(Figure 12A), with a success rate of only 66.7%. The linear SVM (Figure 12C) failed in identifying the 

fault 4 twice out of three times; moreover, there were many false alarms. Roughly, for all four 

algorithms in Figure 12, in 50% of the cases, they were not able to detect a failure condition. Fault 3 

was always predicted correctly by all classifiers in Figure 13, but also fault 1 was likely to be detected. 
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installed in different positions. The comparison revealed that both sensors gave the same results, 

therefore both installation locations were functional for the diagnosis. 

The achieved accuracy and robustness in test bench measurements will be further validated with 

measurements in an onboard application. 
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Abbreviations 

BCS Blind Component Separation 

BSE Blind Signal Extraction 

BSS Blind Source Separation 

CS1 First-Order Cyclostationary 

CS2 Second-Order Cyclostationary 

CSC Cyclic Spectral Coherence 

FDI Fault Detection and Identification 

KNN K Nearest Neighbors 

PCA Principal Component Analysis 

PHM Prognostics and Health Management  

PSD Power Spectral Density 

RUL Remaining Useful Life 

SA Synchronous Average 

SCD Spectral Correlation Density 

STD Standard 

SVM Support Vector Machine 
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