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Abstract: In the dynamic point-the-bit rotary steerable system (DPRSS), a high dynamic stiffness
toolface control method is desired to ensure the stabilized platform traces the directional command
accurately and quickly. A three-loop compound toolface control method using the Model-based Active
Disturbance Rejection Control (MADRC) algorithm is presented, and a load torque estimator and an
outer housing speed estimator are designed based on system model to obtain the external disturbances.
The proposed toolface control method was verified by numerical simulation and DPRSS prototype
testing, and its speed loop frequency responses are analyzed. The results reveal that this method
is effective in disturbance rejection and robust against parameter uncertainties, and the MADRC
shows better performance compared with the conventional ADRC and the proportional-integral (PI)
controller. The proposed method has the potential to be used in harsh drilling conditions.

Keywords: dynamic point-the-bit rotary steerable system (DPRSS); model-based active rejection
control (MADRC); disturbance estimator; toolface control

1. Introduction

Directional drilling technology is the science of deviating a borehole along a predefined path.
With the growing demands of new oil and gas drilling technology, the traditional drilling equipment
has difficulty in covering these demands. The rotary steerable system (RSS) is the latest technology
that improves drilling accuracy and increases the rate of penetration [1,2].

As can be seen in Figure 1, the downhole drilling equipment consists of the drill string, the
measurement while drilling (MWD) instrument, the RSS, and the drilling bit. The drill string applies
the drilling torque and the weight on bit (WOB), the MWD is used for real-time drilling parameters
measurement, and the RSS connects to the bit and changes the bit orientation directly.

The bit direction is described by an angle named the toolface. Generally, the RSS has two essential
parts: the first one, named the bit steering unit, is used to apply steering force to the bit; the other one,
named the geostationary unit, is used to determine the toolface while the drilling string is rotating.
Two kinds of steering units are used, the first one applies a side force to the borehole by three pads,
which is known as ‘push-the-bit,’ and the second one uses a dual-eccentric ring to change the bit
steering directly, which is called ‘point-the-bit.’ The second one is of particular interest because its
performance is independent of formation quality. There are also two kinds of geostationary units, the
first one having an independent outer housing which does not rotate or rotates very slowly relative
to the drilling string, called ‘static RSS’, and the second one is known as ‘dynamic RSS’, having a
closed-loop-controlled stabilized platform which is geostationary while the drilling string is rotating [3].
Based on the combination of the steering units and geostationary units, four kinds of directional
drilling tools are developed.
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Figure 1. Schematic of the directional drilling system. 

The bit direction is described by an angle named the toolface. Generally, the RSS has two 
essential parts: the first one, named the bit steering unit, is used to apply steering force to the bit; the 
other one, named the geostationary unit, is used to determine the toolface while the drilling string is 
rotating. Two kinds of steering units are used, the first one applies a side force to the borehole by 
three pads, which is known as ‘push-the-bit,’ and the second one uses a dual-eccentric ring to change 
the bit steering directly, which is called ‘point-the-bit.’ The second one is of particular interest because 
its performance is independent of formation quality. There are also two kinds of geostationary units, 
the first one having an independent outer housing which does not rotate or rotates very slowly 
relative to the drilling string, called ‘static RSS’, and the second one is known as ‘dynamic RSS’, 
having a closed-loop-controlled stabilized platform which is geostationary while the drilling string 
is rotating [3]. Based on the combination of the steering units and geostationary units, four kinds of 
directional drilling tools are developed.  

This paper focuses on the dynamic point-the-bit rotary steerable system (DPRSS), its 
geostationary unit is a motor-driven stabilized platform, and the steering unit is fixed at one end of 
the platform. Hence, the toolface is operated by changing the stabilized platform angular position [4]. 
The steering accuracy of DPRSS is determined by the performance of the stabilized platform control 
system. However, the downhole disturbances, such as the load torque and the outer housing speed, 
create additional challenges to the controller design [3,5–9]. 

The structure of the RSS toolface control method is summarized in Figure 2, and it is also suitable 
for our DPRSS. The control method consists of four loops from inside to outside, namely, the current 
loop, the motor speed loop, the stabilized platform speed loop, and the toolface loop. The motor is 
described by the transfer function, where s  is the Laplace operator, L  and R  are the motor stator 
resistance and inductance, mK  is the torque constant, eK  is the coefficient of counter electromotive 
force, J  is the total inertia of the stabilized platform and the motor, and B  is the viscous 
coefficient. ϕ , mω  and i denote the toolface, motor speed, and motor current, respectively. The 
load torque LT  is the disturbance of the motor speed loop, and the outer housing rotary speed hω  
is the disturbance of the stabilized platform speed loop. Both the current loop and motor speed loop 
are designed to improve motor performance. The stabilized platform speed loop is to suppress outer 
housing speed fluctuations, and the toolface loop is used to track the toolface reference. 
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Figure 1. Schematic of the directional drilling system.

This paper focuses on the dynamic point-the-bit rotary steerable system (DPRSS), its geostationary
unit is a motor-driven stabilized platform, and the steering unit is fixed at one end of the platform.
Hence, the toolface is operated by changing the stabilized platform angular position [4]. The steering
accuracy of DPRSS is determined by the performance of the stabilized platform control system.
However, the downhole disturbances, such as the load torque and the outer housing speed, create
additional challenges to the controller design [3,5–9].

The structure of the RSS toolface control method is summarized in Figure 2, and it is also suitable
for our DPRSS. The control method consists of four loops from inside to outside, namely, the current
loop, the motor speed loop, the stabilized platform speed loop, and the toolface loop. The motor
is described by the transfer function, where s is the Laplace operator, L and R are the motor stator
resistance and inductance, Km is the torque constant, Ke is the coefficient of counter electromotive
force, J is the total inertia of the stabilized platform and the motor, and B is the viscous coefficient.
ϕ, ωm and i denote the toolface, motor speed, and motor current, respectively. The load torque TL is
the disturbance of the motor speed loop, and the outer housing rotary speed ωh is the disturbance
of the stabilized platform speed loop. Both the current loop and motor speed loop are designed to
improve motor performance. The stabilized platform speed loop is to suppress outer housing speed
fluctuations, and the toolface loop is used to track the toolface reference.Energies 2019, 12, x FOR PEER REVIEW 3 of 21 
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Figure 2. Structure of the RSS toolface control method.

Different structures in Figure 2 have been used in RSS, e.g., a three–loop structure without a
stabilized platform speed loop was suggested by Tang [10] and Zhang [11]. The performance of the
three–loop and four–loop structure using proportional-integral (PI) controllers was compared in [12],
with the help of stabilized platform speed loop, the four–loop system has better outer housing speed
rejection performance, but the four–loop structure is complex since there are four controllers that need
to be tuned.
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The control algorithm is another key factor for system performance. Controllers based on
PID [3,7,10,13], sliding mode control [5,14] and intelligent control [11] have been studied in the other
types of RSS drilling system, however, the DPRSS disturbances are time-varying with uncertainties,
the traditional PID algorithm cannot achieve high performance, and the others are too dependent on
mathematical models or too complex to implement on the downhole hardware.

The ADRC is an emerging technology proposed by Han [15]. It has been adopted by the motor control
system to cope with vast uncertainties [16–18] and it is easy for downhole hardware implementation.
The ADRC can be designed model–independent, which is called conventional ADRC (CADRC).
Meanwhile, the model information can also be used in the ADRC algorithm, which is called model–based
active disturbance rejection control (MADRC). In our system, parts of the DRPSS dynamics are known,
which can be separated from the ESO to reduce estimation burden. In this way, the toolface tracking
performance can be improved.

In this paper, a three-loop compound toolface control system using the MADRC algorithm is
proposed. The stabilized platform is driven by a permanent magnet synchronous motor (PMSM), and
the field–oriented control (FOC) technique is applied. The theoretical model of the stabilized platform
is studied, a load torque estimator and an outer housing speed estimator are presented, based on the
system model, and the toolface MADRC controller and motor speed MADRC controller are designed.
The proposed toolface control method was verified by simulation and tested by a DPRSS prototype under
several typical drilling modes, including normal drilling, sticking, and the stick-slipping. The controller
robustness against parameter uncertainties and the toolface response performance were analyzed and
simulated. For comparison, the CADRC and PI algorithms were also implemented in simulation and
experimental tests. The proposed control method shows satisfactory performance and its application in
actual drilling operation would be explored in future work.

This paper is organized as follows: Section 2 includes the DPRSS working principle description
and stabilized platform modeling. Section 3 provides a short review of the MADRC algorithm and
shows a comprehensive explanation of the proposed toolface control method. Section 4 provides the
simulation and prototype test results. Section 5 provides the conclusion and future work.

2. The DPRSS Working Principle and Modeling of the Stabilized Platform

2.1. DPRSS Working Principle

In Figure 3, plane P is perpendicular to the wellbore axis, point A is the top of plane P, and point B

is the intersection of the bit axis and plane P. The line
↔

OA is named the high side; the angle between
↔

OA

and
↔

OB is the toolface, and it is denoted by ϕ. The toolface is defined between 0 and 360 deg, which
represents the intended drilling direction. The DPRSS consists of four fundamental parts: the outer
housing, the stabilized platform, the bit shaft, and the universal joint. The outer housing connects to
the drill string and rotates at the same speed as it. The drilling torque and the WOB are transmitted
from outer housing to bit through the universal joint. The steering unit is assembled on the stabilized
platform, and the bit shaft connects eccentrically to the steering unit.
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The stabilized platform is the core part of DPRSS, it is equipped with an angular position control
system and remains nearly geostationary while the outer housing is rotating. The desired toolface is
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achieved by changing the stabilized platform angular position. It is clear that the DPRSS bit steering
precision highly depends on the stabilized platform toolface control performance.

In drilling engineering, the toolface is monitored by the field engineer, and the desired toolface
is updated based on the formation characteristics. According to the field engineer experience, the
DPRSS toolface tracking error should be less than ±15 deg, otherwise the bit cannot reach the target
reservoir successfully.

2.2. The Stabilized Platform Modeling

In the synchronous d–q frame, the PMSM mathematical model is: ud = Ld
.
id + Rsid − pnλωmLqiq

uq = Lq
.
iq + Rsiq + pnλωm(Ldid +ψ f )

(1)

where ud and uq, id and iq, Ld and Lq denote the stator voltage, stator current, and the stator winding
inductance of the d–axis and q–axis, respectively. Rs is the stator winding resistance,ψ f is the permanent
magnet flux, and pn is the number of pole pairs.

The PMSM is a complex nonlinear system with multi-variables and strong coupling. By applying
the field oriented control (FOC) technique, the id controller is designed to keep id nearly zero, and then
the torque- and flux-producing components are approximately decoupled; the PMSM electromagnetic
torque Te is only related to the q–axis motor current [19]:

Te = Kmiq (2)

where Km is the motor torque constant. In this case, the PMSM model is simplified, and its torque can
be controlled by an iq controller.

Based on Newton’s 2nd law for rotation, the stabilized platform kinematic equation is:

Te − TL − Bλωm − T f = Jλ
.
ωm (3)

where Te, TL, B, T f , and J are the PMSM electromagnetic torque, load torque, friction factor, static
friction torque, and total inertia, respectively, λ = 2π/360 is a unit transform factor, and the term Bλωm

denotes the viscous friction torque.
Considering the toolface is determined by the outer housing speed ωh and motor speed ωm, from

the DPRSS structure shown in Figure 3, we can obtain:

.
ϕ = ωm +ωh (4)

Considering B, T f , and J are constants, the toolface is linearly related to ωm and iq, the drilling
dynamics are considered in terms of the load torque and the outer housing speed, which are nonlinear
and time-varying. The load torque and outer housing speed are difficult to measure immediately,
hence, they are treated as disturbances in the control system design.

3. DPRSS Toolface Control Method

The q–axis current, motor speed, and toolface are controlled separately using a three–loop
compound structure. In this way, we reduce the stabilized platform to three first–order objects, and
then, the MADRC algorithm is applied in the motor speed loop and toolface loop to achieve high
dynamic performance in the overall operating range.

3.1. MADRC Framework and Algorithm

The MADRC diagram is shown in Figure 4, and consists of four items: the tracking differentiator
(TD), the extend state observer (ESO), the state error feedback (SEF) control law, and the model–based
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compensation (MC). The ESO is used to estimate the total unknown disturbances; the SEF generates u0

to restrain the residual error and achieve the desired control goal; the TD is to arrange the transition
process, and it can be omitted in the first-order system. The three items mentioned above constitute
the CADRC [15]. The MC, which generates the estimation of available disturbance value f0, is an
improvement of the CADRC, and it needs to be designed based on the object model.
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Considering a typical first–order single–input single–output system:{ .
x1 = F(x1, t) + W(t) + b(t)u
y = x1

(5)

where y(t) ∈ R is the output, the F(x1, t) is the real–valued function of the state x1 ∈ R, W(t) ∈ R is the
external disturbance, u(t) ∈ R is the control input. Owing to uncertainties, it is hard to fully know the
F(x1, t) and the W(t), but we can separate the known part from them. Rewrite (5) as

.
x1 = (F(x1, t) − F0(x1, t) + W(t) −W0(t) + (b(t) − b0)u) + (F0(x1, t) + W0(t)) + b0u

= f + f0 + b0u
(6)

where f = F(x1, t) − F0(x1, t) + W(t) −W0(t) + (b(t) − b0)u represents the unknown object dynamics
and external disturbances, which are called total unknown disturbances, the parameter uncertainties
are also included in f . f0 = F0(x1, t) + W0(t) denotes the known dynamics and external disturbances,
and is obtained by the MC.

Considering f as an augmented state, we can write Equation (6) as:
.
x1 = x2 + f0 + b0u
.
x2 = h
y = x1

(7)

In Equation (7), the x2 = f is the augmented state, according to [20], the states of the augmented
first–order system in Equation (7) are observable. Then, the unique ESO for Equation (7) is:

e = z1 − y
.
z1 = z2 − β1e + b0u + f0
.
z2 = −β2 f al(e,α, δ)

(8)

where z1 and z2 are the estimation values of y and f , and β1 and β2 are the observer gains. Compared
with the CADRC, which treats all dynamics and external disturbances as unknown, the MADRC
separates f0 from the ESO output z2, which lightens the ESO burden. This is helpful to reduce the ESO
estimation error. The nonlinear function f al(e,α, δ) is [15]:

f al(e,α, δ) =
{ e

δ1−α = kee |e| ≤ δ
sign(e)|e|α |e| > δ

(9)
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The f al function plays an important role in the ADRC framework, it has both linear and nonlinear
region, its linear region is to prevent high–frequency chattering. It is obvious that Equation (8) is in
the form of classical Luenberger observer when α = 1, and it is in the form of a variable structure
observer when α = 0. Generally, the ADRC adopts 0 < α < 1, in this case, the ESO does not converge
to sliding mode but to the ‘self–stable region’, it also yields relatively high gain when the error is small
and small gain when the error is large [21]. The gains β1 and β2 are determined based on observer
cut–off frequency ω0 [22,23]: {

β1 = 2ω0

β2 = ω0
2 (10)

With the ESO properly designed, z2 is expected to converge to the unknown disturbance f ,
Equation (5) can now be dynamically compensated with:

u =
(−z2 − f0 + u0)

b0
(11)

Substituting Equation (7) into Equation (6):

.
y= ( f + f0 − z2 − f0) + u0 ≈ u0 (12)

It is clear that the object is reduced to an approximate unit–gain integrator transfer function, which
is easy to be controlled by the following SEF:{

ec = y∗ − z1

u0 = Kp f al(ec,α, δ)
(13)

where y∗ is the reference, Kp is determined by closed loop cut–off frequency. The nonlinear function
f al generates a large equivalent controller gain while ec is small, and vice versa. The nonlinear control
law has been proved to be more efficient than the linear one [21].

3.2. Load Torque and Outer Housing Speed Estimators

The typical value of total inertia, friction factor, and static friction are determined based on the motor
parameter and the DPRSS structure, but the load torque and outer housing speed are immeasurable
and need to be estimated.

Considering the iq and ωm are obtained by sensors, the load torque TL can be estimated by:

TL = Kmiq − Jλ
.
ωm − Bλωm − T f (14)

A low–pass filter is used to suppress the high–frequency noise, and then, the estimator is shown as:

T̂L(s) =
Kmiq(s)−Jλsωm(s)−Bλωm(s)−T f

T0s+1

=
Kmiq(s)−(B−

J
T0

)λωm(s)−T f

T0s+1 −
Jλ
T0
ωm(s)

(15)

where T0 is the time constant of low pass filter. The discrete load observer using the backward Euler’s
method is: 

B = B− J/T0

TL(k) = (TL(k− 1) + (Kmiq(k) − T f )h/T0 − Bhλωm(k)/T0)/(1 + h/T0)

T̂L(k) = TL(k) − Jλωm(k)/T0

(16)

where T̂L is the estimator output, h is the sample period, k is the kth sample time, B and TL are two
intermediate variables. Although the larger T0 leads to better estimation performance in the steady
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state, the observer dynamic response becomes slow. T0 depends on the application requirements; in
our application, T0 is 0.001 s.

In addition to the load torque, the outer housing speed is still unknown. Owing to the limitation
of DPRSS structure, it is hard to install sensors on the outer housing. Considering that

.
ϕ is easily

obtained by installing a gyro inside the stabilized platform sensor package, we utilize Equation (4) to
estimate the outer housing speed ω̂h:

ω̂h =
.
ϕ−ωm (17)

3.3. Design of the DPRSS Toolface Control Method

The toolface control method block diagram is shown in Figure 5. Considering that the id current
loop can be designed the same as the iq controller, the id current loop is omitted in Figure 5. The PMSM
is also described by transfer function to meet an agreement with Figure 2, and the coefficient of counter
electromotive force Ke is pnψ fλ. The subscripts m and t denote the speed loop terms and toolface loop
terms, respectively.
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Figure 5. The scheme of the toolface control method.

The iq current loop controller adopts the PI algorithm, its controller parameters were tuned
by the frequency domain design method. The motor speed loop and the toolface loop adopt the
MADRC algorithm.

Define states xm1 = ωm and xm2 = fm, we rewrite Equation (3) as:
.
xm1 = fm0(T̂L,ωm) + xm2 + bm0i∗q
.
xm2 =

.
f m

ym = xm1

(18)

where bm0 = Km/Jλ is a constant. iq in Equation (3) is replaced by the current loop reference i∗q, and fm
denotes the total unknown disturbances. fm0(T̂L,ωm) is the speed loop MC, which is designed as:

fm0(T̂L,ωm) = −
1
Jλ

(T̂L + Bλωm + T f ) (19)

By applying the linear formation of f al, where f al(e, 1, δ) = e, the speed loop ESO is:
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emo = zm1 −ωm
.
zm1 = zm2 + fm0(T̂L,ωm) − 2ωmoemo + bm0i∗q
.
zm2 = −ω2

moemo

(20)

Let emi = xmi − zmi(i = 1, 2), then, the error equation of Equation (20) is:[ .
em1
.
em2

]
=

[
−2ωmo 1
−ω2

mo 0

][
em1

em2

]
+

[
0
1

]
.
f m (21)

The roots of the characteristic polynomial of
[
−2ωmo 1
−ω2

mo 0

]
are −ωmo, which are all in the left half

plane, considering fm comes from a physical system which varies continuously, the
.
f m is bounded, then,

it is obvious that the speed loop ESO is bounded–input bound–output stable, the fm can be estimated.
The linear formation of f al is also used in the speed loop SEF design, which is given by:{

emc = ω∗m − zm1

i∗q = (Kmpemc − zm2 − fm0(T̂L,ωm))/bm0
(22)

Once the speed loop MADRC controller is designed, we use ωmr instead of ωm. Define states
xt1 = ϕ, xt2 = ft, and then, the state equation of Equation (4) is:

.
xt1 = xt2 + ft0(ω̂h) + bt0ωmr
.
xt2 =

.
f t

yt = xt1

(23)

where the bt0 = 1 is a constant. The MC of the toolface MADRC controller is:

ft0(ω̂h) = ω̂h =
.
ϕ−ωm (24)

Remark 1. Equation (24) combines gyro measurements in the toolface loop, comparing with the direct use of
gyro measurements, for example, the stabilized platform speed control loop [12], the gyro turns into an auxiliary
measurements in the proposed toolface control loop, the gyro drift is lumped in the unknown disturbance and
estimated by ESO, and then the gyro drift effect is reduced.

The nonlinear f al is applied in the toolface loop to improve control performance, the ESO and
SEF are given by: 

eto = zt1 −ϕ
.
zt1 = zt2 + ft0(

.
ϕ,ωm) − βt1eto +ωmr

.
zt2 = −βt2 f al(eto, 0.5, 0.5)
etc = ϕ∗ − zt1
ωmr = Ktp f al(etc, 0.5, 2) − zt2 − ft0(

.
ϕ,ωm)

(25)

Assuming
.
f t ≤

.
f t is bounded, which is reasonable in the DRPSS application because its

disturbances can be treated as continuously varying, then, referring to [24], the steady–state errors of

the toolface loop ESO are |zt1 − xt1| ≤ (
.
f t/ωt0

2)
2

and |zt2 − xt2| ≤ 2ωt0(
.
f t/ωt0

2)
2
, it is obvious that the

ESO estimation errors are bounded.
For DPRSS applications, the reference signal mainly remains constant, the disturbances come

from the physical system and varies continuously, then, the external disturbances, the reference signal,
and their derivatives are all bounded; hence, the toolface control system is convergent [23,25], but its
performance depends on the controller parameters.
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4. Simulation and DPRSS Prototype Experiment

The numerical simulation and DPRSS prototype experiments were performed to verify the
controller performance, besides the proposed toolface control method, the CADRC strategy and the PI
algorithm were also used for comparison. The CADRC strategy was realized by deleting the fm0 and
ft0 terms in the MADRC.

The control method simulation was carried out, the controller robustness against parameter
uncertainties and the toolface response performance in the presence of various disturbances were
presented. Then, the control method was implemented on the DPRSS prototype to test its capability.
The typical values of PMSM parameter, which were used in the simulation, load torque estimator, and
speed loop MADRC controller, are shown in Table 1.

Table 1. Specification of the PMSM.

Rated Power 452 W Rated Voltage 48 V

Rated Current 4.7 A Pole Pairs 4

Stator Inductance 0.0021383 H Stator Resistance 1.52 Ohm

Rated Speed 2280 RPM Total Inertia 1.4490 × 10−5 kgm2

Rated Torque 0.69 Nm Torque Constant 0.12887 Nm/Apeak

Static Friction 0.0115 Nm Viscous Coefficient 0.00008 Nms

4.1. Toolface Control Method Simulation

As shown in Figure 6, the control method was simulated by Simulink software. The current loop
and PMSM were combined in one block. The speed loop control algorithm and the toolface loop
control algorithm were performed by different blocks. The load torque disturbance TL was simulated
as follows [11]:

TL = TLS + TLC sinϕ (26)

where TLS is the steering torque, and TLC sinϕ denotes the eccentric torque which is caused by the
eccentrically located receptacle of steering unit.
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Figure 6. Simulation diagram of the toolface control method.

The outer housing speed is the primary disturbance and it is time-varying. Particularly, the
stick-slip condition which is a periodic stopping (sticking) and overshooting (slipping) of the angular
velocity is considered, it is caused by the drilling assembly stick-slip torsional vibration. Typically, the
stick-slip baseband frequency is less than 3.14 rad/s [26], and the peak bit rotation rate may be several
times that of the operating rotation rate.

The controllers were tuned based on the method presented in [22]. bt0 = 1 is a constant, and
bm0 = Km/Jλ can be calculated using the motor parameter, the other parameters need to be tuned
based on the disturbance characteristics. The ESO gains cannot be smaller than the closed loop cut–off
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frequency, and it is known that the higher bandwidth leads to better controller tracking performance.
However, it cannot be too large to ensure the control signal under physical limits, such as the motor
rated current and rated speed limitations. Considering the toolface loop bandwidth should be larger
than 3.14 rad/s to suppress stick-slip disturbance, and the motor speed loop cut–off frequency can be
selected 10–20 times that of the toolface loop, we selected the Kmp = ωmo = 31.4 as the initial values,
then, the Kmp and ωmo were increased step by step until the control signal reached the physical limits.
Following such a tuning procedure, the toolface loop controller was tuned by setting Ktp = ωto = 3.14
as the initial values. The final controller parameters are shown in Table 2.

Table 2. Controller parameters.

Kmp 555 Ktp 40

ωmo 555 ωto 65

bm0 509,831 bt0 1

4.1.1. The Motor Speed Loop Simulation

The motor speed loop was simulated firstly. The motor speed controller sampling time was 0.5 ms.
The CADRC and a well–tuned PI controller were also employed for comparison, and the CADRC uses
the parameters in Table 2.

The simulation process was carried out as follows: (1) the ω∗ = 1800deg/s step reference change
is added at t = 0 s; and (2) the steering load torque step change is added at t = 0.25 s. Considering
the stabilized platform mechanical characteristics, the TLC is 0.0014 Nm. Due to the steering torque
TLS is linear related to the WOB [27], based on the DPRSS mechanical structure [4] and the field WOB
data [28], we assumed a set of TLS data which is calculated by:

TL = 0.2 + 0.048 sin(πt) + 0.0014 sinϕ (27)

The motor speed responses of MADRC, CADRC, and PI are shown in Figure 7. It is observed
that all three controllers can track the reference step change and reject the load torque disturbance.
The MADRC and CADRC take 0.023 s to suppress the disturbance, but the PI controller needs 0.103 s.
The maximum speed tracking errors in the presence of load torque disturbance for the MADRC, the
CADRC, and the PI controller are 622 deg/s, 1116 deg/s, and 1243 deg/s, respectively. The results reveal
that the MADRC is more effective, which shows the best reference tracking and disturbance rejection
performance in the motor speed loop simulation.
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The ESO estimated unknown disturbances of MADRC and CADRC are shown in Figure 8. It can
be seen that the unknown disturbance of MADRC is much smaller than that of CADRC, which means
the ESO estimation burden is reduced as desired. The load observer output is also compared with the
load torque in Figure 9, and the observer output follows the load torque well.
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4.1.2. The Toolface Control Method Simulation

The toolface control method was simulated with various outer housing speed disturbances.
The toolface controller sampling time was 10 ms. The CADRC was used to compare response
performance, and the parameter uncertainties of the load torque estimator were studied.

The load disturbance was the same as the one in motor speed simulation, and four typical outer
housing speed disturbances are shown in Figure 10. The outer housing is stationary in the first part,
which represents the ‘making a connection’ drilling process, meanwhile, the toolface reference changes
from 0 to 180 deg. Then, a 720 deg/s speed step is applied, which represents the drilling equipment
starts to drill. The third part is a negative step, which occurs while the bit is sticking, and the fourth
part is a typical outer housing speed under stick-slip vibration; the rotation speed comes from a set of
raw data which acquired from the drilling site.

As can be seen in Figure 11. At t = 0 s, the 180 deg step reference is added, the CADRC and
MADRC response curves are similar, but the MADRC shows better disturbance rejection performance
at the beginning of the second part. In the following part, the negative step disturbance is added,
the maximum toolface errors for CADRC and MADRC are 20 deg and 4.5 deg, respectively, and the
MADRC reduces 77.5% tracking error of the CADRC. In the last part, sustained oscillations can be
observed: the MADRC tracking error is 1.1 deg, but that of the CADRC is 4.9 deg. In Figure 12, the
ESO estimated unknown disturbance of CADRC follows the outer housing speed variation, but the
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one of MADRC is nearly zero, which reveals the MADRC disturbance estimation burden was reduced,
and the disturbance rejection performance was improved as desired.
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4.1.3. Robustness and Disturbance Rejection Performance Analysis

The DPRSS is operated in harsh drilling conditions, the parameter uncertainties in Equation (16)
and the disturbance rejection performance in the presence of various disturbances need to be considered.



Energies 2019, 12, 1831 13 of 20

Since the stabilized platform is sealed inside the outer housing, the total inertia is mainly affected by
bit inertia variation, such as the bit balling, which increases the bit inertia, and the bit wear, which
decrease the bit inertia. The friction factor is mainly affected by the bearing friction which is related to
temperature and bearing load. The motor torque constant is reduced with the increasing of temperature.
Considering bit wear [29], bit balling, bear friction variation and motor flux linkage variation [30], the
error of J, B and Km was assumed to be ±20%, −90% to +100%, and −40% to 0%, respectively. Note
that the controller parameters were the same during the simulation.

Considering the parameter uncertainties and load torque disturbance are included in the speed
loop, its tracking and disturbance rejection performances in the presence of parameter uncertainties
are analyzed.

Since the speed loop MADRC is a linear controller, its frequency response can be obtained by its
transfer function. Additionally, since the transient of the current loop is negligible compared with
that of the speed loop, for the sake of simplicity, we use i∗q instead of iq in the derivation, and the static
friction torque is omitted. The MADRC transfer function is derived based on the CADRC transfer
function which was initially presented in [31]. By converting the MADRC algorithm to the frequency
domain using the Laplace transform, it is possible to obtain Equation (28) from Equations (15), (19),
(20), and (22):

i∗q(s) =
G2(s)ω∗m(s) −G3(s)ωm(s) −G4(s) fm0(s)

G1(s)
(28)

where G1(s), G2(s), G3(s), and G4(s) are listed in the Appendix A, specifically. If G4(s) is set to 0, the
MADRC is equivalent to the CADRC. The block diagram shown in Figure 13 is derived to obtain the
closed–loop transfer function.

Gcl(s) =
ωm(s)
ω∗m(s)

=
KmGr(s)Gc(s)Gp(s)
1 + KmGc(s)Gp(s)

, Gd(s) =
ωm(s)

Gp(s)TL(s)
=

1
1 + KmGc(s)Gp(s)

(29)

where Gr(s), Gc(s), and Gp(s) are listed in the Appendix A. Then, the closed–loop transfer function Gcl(s)
and the disturbance transfer function Gd(s) can be obtained. Note that the load torque disturbance is
considered in the form of its motor speed response.
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We assumed two extreme conditions to analyse the frequency response in the presence of parameter
uncertainties, the first one changed J, B, and Km to 20%, 100%, and 0% of their normal values, and
the second one reduced the J, B and Km to −20%, −90%, and −40% of their normal values. The Bode
diagrams of Gcl(s) and Gd(s), along with the two extreme conditions, are shown in Figure 14. For the
normal condition without uncertainties, the –3 dB bandwidth of the speed loop is about 520 rad/s,
which agrees with Kmp. Although the parameter uncertainties affect closed–loop frequency response,
the low–frequency tracking responses are almost the same, which guarantees the tracking requirement
of the toolface controller output. Figure 14b proves the disturbance rejection ability of the speed
control loop since the magnitude responses are under 0 dB within controller baseband, the disturbance
frequency responses are almost unchanged with the parameter uncertainties, in addition, with the
help of the MC, the MADRC has better disturbance rejection performance, which shows agreement
with Figure 7.
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Figure 14. Frequency response of the speed–loop. (a) the frequency response of Gcl(s); and (b) the
frequency response of Gcl(s) with parameter uncertainties.

Due to the nonlinearity of the f al function in the toolface loop, it is difficult to analyze the
toolface response using frequency domain method. Because the tracking error can show the toolface
tracking performance directly, we performed simulations in the presence of various possible parameter
uncertainties and disturbances, and the tracking errors are evaluated using the root mean square error
(RMSE) index.

Figure 15 shows the toolface tracking RMSEs with parameter uncertainties, the toolface response
data shown in Figure 11 was used as the standard value. The toolface RMSE is small and negligible, which
reveals that the DPRSS control system is robust in the presence of the possible parameter uncertainties.
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Figure 16 shows the toolface tracking RMSEs with various load torque disturbance, the possible
load torque magnitude and frequency are varied based on (27), it is observed that the toolface is
insensitive to the load torque variation.

For the sake of simplicity, the sinusoidal wave shown in (30) was used to simulate stick-slip, and
then, the toolface tracking RMSEs in the presence of outer housing speed disturbance were obtained:

ωh =

{
Ass sin(Ωsst) ωh > 0

0 ωh ≤ 0
(30)
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where Ass and Ωss denote the amplitude and frequency of the stick-slip, respectively. As can be seen in
Figure 17, although the errors increase as the stick-slip becomes more extreme, the controller performs
well in rejecting these disturbances.
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Although the proposed control method has shown satisfactory performance, there are still a large
number of factors, such as model error, sensor error, and measurement delay, which cannot be well
considered by simulation, the DPRSS prototype experiments will be performed in the following section.

4.2. DPRSS Prototype Experiment

The DPRSS prototype is shown in Figure 18. The outer housing is connected to the outer housing
motor by a spline coupling, and the outer housing motor acts as the upper drilling string which
drives the outer housing. The stabilized platform which driven by the PMSM is assembled inside the
outer housing. A sensor package, including a gyro, accelerometer, and microprocessor, is installed
on the stabilized platform [32]. The proposed controllers are implemented in a TMS320F28335 DSP.
The high-speed CAN bus is used for data exchange between the DSP, the microprocessor, and the
USB-CAN analyzer. The analyzer acquires all data. The motor speed is measured by a resolver, and
the toolface is measured in the way shown in [30].

The outer housing speed disturbance was added by changing the outer housing motor speed, and
the load torque disturbance was tested by the equipment shown in Figure 19. The PMSM connects to
the torque motor by a spline coupling, the constant load torque is generated by a torque motor and
measured by the torque sensor. In the DPRSS prototype experiment, all the controller parameters were
the same as the ones used in the simulation.
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4.2.1. The Motor Speed Loop Test

Figure 20 shows the motor speed step response curve. The MADRC and CADRC controllers have
larger overshoot than the PI algorithm before t = 0.3 s, but their speed fluctuation is much smaller.
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Figure 20. Speed loop step response curves.

Owing to the torque motor limitation, only the constant 0.25 Nm load torque was tested. The load
torque disturbance rejection performance is shown in Figure 21. The test results meet an agreement
with the simulation in Figure 7, with the load torque being compensated in MADRC, its tracking error
is the smallest among the three algorithms. Figure 22 shows the load torque observer output and the
torque sensor measurements, the torque estimation error is larger than the one in the simulation, but it
follows the real torque tendency as desired.
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Figure 22. Comparison of the load torque observer and the torque sensor.

4.2.2. The Toolface Loop Test

Figure 23 shows the toolface loop response curves of MADRC and CADRC. The outer housing
speed disturbances consist of the four parts which have been introduced in Figure 10. Comparing the
simulation results shown in Figure 11, the prototype toolface tracking errors are larger, but MADRC still
shows better disturbance rejection performance. In the second and third parts, the MADRC maximum
error is 10 deg, the CADRC maximum error is 17 deg, which is 70% larger than the MADRC. In the
fourth part, the stick-slip disturbance is tested, the CADRC maximum tracking error is 7 deg, and the
MADRC maximum tracking error is 4.5 deg, which reduces 36% errors of the CADRC.

Figure 24 shows the real outer housing speed, and the ESO estimated unknown disturbances
of the MADRC and CADRC. Due to the model errors, which were not considered in the simulation,
the ESO output magnitude in prototype test is larger than the simulation, but the ESO-estimated
disturbance of MADRC is still smaller than that of CADRC, thus, the ESO burden is reduced as desired.

In the previous research [12], the best maximum tracking error was 15 deg based on the four–loop
PI control method, where the performed stick-slip magnitude was 720 deg/s. By applying the proposed
control method, the toolface tracking error was reduced to 4.5 deg with 1400 deg/s stick-slip magnitude.
It is clear that the proposed control method has largely improved the DPRSS toolface control precision,
and these results show the potential of the proposed method to be used in harsher drilling conditions.
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5. Conclusions

In this paper, a DPRSS toolface control method using the MADRC algorithm was proposed
and verified, to our knowledge, it is the first time that the MADRC has been used for DPRSS.
The frequency responses and the simulation results reveal that the proposed method is robust against
parameter uncertainties: the RMSEs in the presence of various external disturbances are less than 1 deg.
The experimental results also indicate that the toolface control system satisfies the field requirements; its
maximum tracking errors are less than 10 deg under the four typical drilling conditions. Furthermore,
the MADRC shows better disturbance rejection performance than the CADRC and PI algorithms. This
work demonstrated that the MADRC has the potential to guarantee the DPRSS steering performance in
harsher drilling conditions. Stabilized platform toolface control performance testing in actual drilling
processes are considered for future work.
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Appendix A
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