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Abstract: Soil-water characteristic curve (SWCC) is a significant prerequisite for slope stability
analysis involving unsaturated soils. However, it is difficult to measure an entire SWCC over a wide
suction range using in-situ or laboratory tests. As an alternative, the Arya and Paris (AP) model
provides a feasible way to predict SWCC from the routinely available particle-size distribution (PSD)
data by introducing a scaling parameter. The accuracy of AP model is generally dependent on the
calibrated database which contains test data collected from other sites. How to use the available test
data to determine the scaling parameter and to predict the SWCC remains an unresolved problem.
This paper develops a Bayesian approach to predict SWCC from PSD. The proposed approach not
only determines the scaling parameter, but also identifies fitting parameters of the parametric SWCC
model. Finally, the proposed approach is illustrated using real data in Unsaturated Soil Database
(UNSODA). Results show that the proposed approach provides a proper prediction of SWCC by
making use of the available test data. Additionally, the proposed approach is capable of predicting
SWCC in the high suction range, allowing engineers to obtain a complete SWCC in practice with
reasonable accuracy.

Keywords: soil-water characteristic curve; particle-size distribution; Bayesian approach; unsaturated
soils; UNSODA

1. Introduction

Determination of soil-water characteristic curve (SWCC) is a necessary requirement for slope
stability analysis involving unsaturated soils, which can be measured from different tests (e.g., [1,2]).
However, it is well recognized that a limited number of discrete data points are typically obtained
from direct measurements (e.g., [2,3]), instead of an entire curve of SWCC over a wide suction range
(i.e., from 0 to 106 kPa). As an alternative to direct measurements, prediction of SWCC from the
other soil properties (e.g., particle-size distribution (PSD)) has gained growing popularity in the past
decades (e.g., [4–11]).

A considerable number of approaches have been developed to predict the SWCC, which can
be classified into two categories (e.g., [12–14]), namely, statistical approach and physico-empirical
model. For the statistical approach, empirical functions are developed to relate water content or SWCC
model parameters to other common soil properties (e.g., [12,15–17]). These empirical functions are
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usually referred to as pedotransfer functions (PTFs), whose accuracy outside the calibrated database is
essentially unknown, implying that the predictability of PTFs is highly dependent on their calibrated
database (e.g., [11,18,19]). In comparison with PTFs, the physical background in SWCC and PSD are
considered in physico-empirical models, which are formulated conditioned on the similarity principle
of SWCC shape and PSD shape. Arya and Paris [6] proposed the first physico-empirical model
(i.e., AP model) to predict SWCC from PSD by introducing a scaling parameter to translate particle
radius into the corresponding pore radius for each fraction contained in PSD. There is a growing interest
in applying AP model to predict SWCC from PSD due to its conceptual simplicity (e.g., [5,8,20,21]).

Consider, for example, AP model with different values of scaling parameter (i.e., αAP = 1.05, 1.55,
2.05, and 2.55) are applied to predict the SWCC using PSD data of soil code 4180 in Unsaturated
Soil Database (UNSODA). Figure 1 compares the predicted SWCC obtained from AP model with
the 9 data points in UNSODA. It is shown that the predicted SWCC is sensitive to the choice of
scaling parameter, indicating that the determination of scaling parameter affects the accuracy of AP
model significantly. The scaling parameter with a constant value of 1.38 is initially suggested by
Arya and Paris [6], which has been progressively improved by many researchers (e.g., [5,20,21]).
Vaz et al. [21] and Antinoro et al. [20] proposed two empirical relationships to estimate the scaling
parameter using the available soil properties. Nevertheless, the accuracy of AP model is usually
dependent on the calibrated database that contains a large amount of test data collected from other
sites [4], which may give rise to misleading estimates of SWCC for soils outside the calibrated database.
As a result, the applicability and efficiency of AP model in the prediction of SWCC are limited to the
calibrated database in practice. How to use the available test data to determine the scaling parameter
of AP model and to estimate the SWCC remains an unresolved problem.

Figure 1. Comparison of the predicted soil-water characteristic curve (SWCC) obtained from Arya and
Paris (AP) model applying different values of scaling parameter.

This paper aims to propose a Bayesian approach for predicting SWCC from PSD by making
use of the available test data. It is able to determine the scaling parameter of AP model and fitting
parameters of SWCC model simultaneously. The paper starts with development of Bayesian approach
for estimating SWCC from PSD, followed by summarization of implementation procedure. Finally,
the Bayesian approach is illustrated using test data contained in the Unsaturated Soil Database
(UNSODA) database.
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2. Bayesian Approach for Estimating SWCC from PSD

2.1. Theory of the Arya-Paris Model

The AP model proposed by Arya and Paris [6] is derived based on the shape similarity between
the SWCC and PSD. The basic idea of AP model is to divide the PSD into a number of particle fractions,
and then translate particle radius into the corresponding pore radius for each fraction by introducing
a scaling parameter. Subsequently, the volumetric water content can be evaluated by summing the
pore volumes which are assumed to be filled with water, and the pressure head is calculated using
capillary equation. Finally, SWCC data points can be obtained by pairing the calculated volumetric
water content with pressure head (or equivalently, matric suction).

Following Arya and Paris [6], the PSD is divided into NP size fractions. For each particle radius Ri
(i = 1, 2, . . . , NP), the corresponding pore radius ri can be calculated as [6]:

ri = Ri

√
2en(1−αAP)

i /3 (1)

where αAP is the scaling parameter which relates the ideal pore length to natural pore length; e is the
void ratio; ni is the number of spherical particles in i-th fraction and is written as [6]:

ni = 3Wi/(4πR3
i ρs) (2)

where Wi is the solid mass determined by employing a PSD model to fit the test data [20]; ρs is the
particle density. Numerous mathematical models have been proposed to characterize the PSD curve,
the Fredlund et al. [22] model is adopted in this study by virtue of its flexibility over a wide range of
particle sizes [23], which can be expressed as:

P(d) =
1{

ln
[
e + (agr/d)ngr

]}mgr

1−
[

ln(1 + dr/d)
ln(1 + dr/dm)

]7 (3)

where P(d) is the percentage of mass of particles passing a particular particle diameter d; agr, ngr and
mgr are fitting parameters; dr is the residual particle size; dm is the minimum allowable particle size.
According to Equation (3), the solid mass Wi can be estimated as:

Wi =

{
P(d1) i = 1
P(di) − P(di−1) i = 2, 3, · · · , NP

(4)

Although the Fredlund model (i.e., Equation (3)) is adopted in this study to fit the measured PSD
data, it can be extended to use other mathematical models to characterize the PSD with relative ease.
Substituting Equations (2)–(4) into Equation (1) gives the pore radius ri. Subsequently, the equivalent
pressure head hi can be estimated using the capillary equation [6]:

hi =
2γ cos β
ρwgri

=
0.18

Ri

√
en(1−αAP)

i

(5)

where γ is the surface tension at air-water interface; β is the contact angle; ρw is the density of water;
and g is the acceleration of gravity (9.8 m/s2). The number of 0.18 denotes a composite constant with
the unit of cm2, and interesting readers are referred to Arya et al. [5] for more detailed explanations.
Assuming that the pore volumes are filled with water, the volumetric water content θi is expressed as [6]:

θi = θs

i∑
j=1

W j, j = 1, 2, · · · , NP (6)
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where θs is the saturated volumetric water content. The pressure head hi and its corresponding
volumetric water content θi for each fraction are referred to as the data points of SWCC. For more
details on AP model, the interested readers can refer to Arya and Paris [6] and Arya et al. [5].

As indicated by Equation (5), predicting SWCC from PSD using AP model necessitates
determination of the scaling parameter αAP, which has a significant effect on the prediction accuracy.
However, the scaling parameter αAP is generally calibrated based on a dataset contains a large amount
of test data collected from other sites, leading to the applicability of AP model to be limited to the
calibrated database. In other words, the AP model may become invalid in the prediction of SWCC
for soils outside the calibrated dataset. In such a case, Bayesian approach provides a rational way to
simultaneously identify the scaling parameter of AP model and the fitting parameters of SWCC model
by making use of the available test data, which are discussed in the next subsection.

2.2. Determination of Parameters in SWCC and Arya-Paris Model

Consider that DATAP contains a number NP of data points {(Pm
t , Dt), t = 1, 2, . . . , NP} on

PSD obtained from sieving and hydrometer tests. The percentage passing Pm
t measured from

testing at t-th particle diameter Dt might differ from its corresponding predictions Pt calculated
from the PSD (e.g., Fredlund model shown in Equation (3)) because of measurement and modeling
errors. Such difference is usually regarded as a Gaussian random variable εP ∼ N(0, σ2

εP
) (e.g., [24]).

Accordingly, Pm
t can be written as:

Pm
t = Pt + εP (7)

As mentioned above, apart from the PSD model, determination of the scaling parameter αAP is
also a prerequisite for AP model to predict SWCC. Thus, AP model parameters Γ include not only
the scaling parameter αAP, but also σεP reflecting model fit between the PSD model and test data.
Besides, for convenience, let DATAS denotes NS measured data points {(Sm

e,i,ψs,i), i = 1, 2, . . . , NS}
of SWCC. Generally, there is a discrepancy between the measured effective degree of saturation Sm

e,i
and its corresponding predictions Se,i evaluated from a parametric SWCC model at i-th soil suction
ψs,i. Similarly, this discrepancy can also be regarded as a Gaussian random variable εS ∼ N(0, σ2

εS
)

(e.g., [24,25]). Then, Sm
e,i is written as:

Sm
e,i = Se,i + εS (8)

Several possible SWCCs can be used to describe the test data DATAS, each of which is characterized
by a parametric SWCC model with its corresponding model parameters Θ, such as Fredlund and
Xing [26] model (FX). As indicated by Equation (8), Θ includes the fitting parameters (e.g., α f , n f ,
and m f for FX model) and σεs. Sillers and Fredlund [27] revealed that FX model outperforms the other
parametric models according to the Akaike Information Criterion. Wang et al. [28] found that FX model
performs better than the other three candidate SWCC models in describing the test data in UNSODA.
Thus, the FX model and its associated fitting parameters are used to represent the SWCC in this study.

The plausibility of possible Θ and Γ can be evaluated by the posterior distribution
P(Θ, Γ|DATAS, DATAP) based on the available test data (i.e., DATAP, DATAS) and prior knowledge
under Bayesian framework. According to the Bayes’ theorem, P(Θ, Γ|DATAS, DATAP) is written as
(e.g., [24,29,30]):

P(Θ, Γ|DATAS, DATAP) = K−1P(DATAS, DATAP|Θ, Γ)P(Θ, Γ) (9)

where K = P(DATAS, DATAP) =
∫

P(DATAS, DATAP|Θ, Γ)P(Θ, Γ)dΘdΓ is a normalizing constant;
P(DATAS, DATAP|Θ, Γ) is likelihood function describing the goodness-of-fit of model predictions with
the test data DATAS and DATAP for a given set of Θ and Γ; P(Θ, Γ) is prior distribution of Θ and Γ.
Using the conditional probability formula, P(DATAS, DATAP|Θ, Γ) is expressed as:

P(DATAS, DATAP|Θ, Γ) = P(DATAS|DATAP, Θ, Γ) × P(DATAP|Θ, Γ)

= P(DATAS|Θ) × P(DATAP|Θ, Γ)
(10)
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Assuming that errors of εS and εP in different data points are statistically independent, P(DATAS|Θ)

and P(DATAP|Θ, Γ) can be given by (e.g., [24,25,28]):

P(DATAS|Θ) = (2π)−
NS
2 σ−NS

εS
exp
[
−

NS
2σ2
εS

JS(Θ|DATAS)

]
= (2π)−

NS
2 σ−NS

εS
exp
[
−

1
2σ2
εS

NS∑
i=1

(Se,i − Sm
e,i)

2
] (11)

P(DATAP|Θ, Γ) = (2π)−
NP
2 σ−NP

εP
exp
[
−

NP
2σ2
εP

JP(Θ, Γ|DATAP)

]
= (2π)−

NP
2 σ−NP

εP
exp
[
−

1
2σ2
εP

NP∑
t=1

(Pt − Pm
t )

2
] (12)

where JS(Θ|DATAS) and JP(Θ, Γ|DATAP) are the goodness-of-fit function. Substituting Equations (11)
and (12) into Equation (10), P(DATAS, DATAP|Θ, Γ) is reformulated as:

P(DATAS, DATAP|Θ, Γ) = (2π)−
NS
2 σ−NS

εS
exp
[
−

1
2σ2
εS

NS∑
i=1

(Se,i − Sm
e,i)

2]×

(2π)−
NP
2 σ−NP

εP
exp
[
−

1
2σ2
εP

NP∑
t=1

(Pt − Pm
t )

2
] (13)

The P(Θ, Γ) indicates the available information on Θ and Γ when test data is lacking (e.g., [30]).
For illustration, a joint uniform distribution of Θ and Γ is adopted as the prior distribution in this study
which requires determination of the ranges of Θ and Γ. Thus, P(Θ, Γ) is expressed as:

P(Θ, Γ) =


1 Θi ∈ [Θmin

i , Θmax
i ], i = 1, 2, . . . , Na

(Θmax
i −Θmin

i )(Γmax
j − Γmin

j ) Γ j ∈ [Γmin
j , Γmax

j ], j = 1, 2, . . . , Nb

0 others

(14)

where the superscript “max” and “min” denote the maximum value and minimum value, respectively;
Θi represents the i-th element in Θ; Γj represents the j-th element in Γ; Na and Nb are the number of
elements in Θ and Γ, respectively.

After deriving the likelihood function and prior distribution, solving the posterior distribution
P(Θ, Γ|DATAS, DATAP) is of primary concern. Generally, it is a non-trivial task to calculate
P(Θ, Γ|DATAS, DATAP) using direct numerical integration method, which involves a multi-dimensional
integration with respect to Θ and Γ (i.e., Equation (9)). In such a case, Markov chain Monte Carlo
simulation (MCMCS) method offers a viable way to solve the posterior distribution in an efficient
manner, which has been widely used in geotechnical engineering for parameter identification and model
comparison (e.g., [31,32]). Among several MCMCS algorithms and their variants, Metropolis–Hastings
(M–H) algorithm (e.g., [33,34]) has gained popularity in geotechnical engineering due to its conceptual
simplicity (e.g., [29,35]).

The preliminary stage of M–H algorithm is to generate a Markov Chain that contains a sequence
of random samples of target variables (e.g., Θ and Γ) generated from a predefined proposal probability
density function (PDF), where candidate samples are selected or not according to the accept ratio.
When the Markov chain satisfies its stationary condition, the associated MCMCS samples can be
applied to portray the target PDF (e.g., P(Θ, Γ|DATAS, DATAP)). Details of the M–H algorithm are
omitted here for the sake of brevity, which can be referred to Wang and Cao [31]. The major merit
of M–H algorithm is that there is no need to calculate a multi-dimensional integration underlying K,
thus bypassing the computational complexity encountered in calculating the posterior distribution
under Bayesian framework. Thus, the M–H algorithm is used in this study to identify the AP model
parameters Γ and the SWCC model parameters Θ.
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A large number of MCMCS samples of Θ and Γ are firstly generated from the posterior
distribution (i.e., Equation (9)) using M–H algorithm, and subsequently conventional statistical
analyses are conducted to evaluate the posterior statistics (e.g., mean values and standard deviations)
and distributions (e.g., PDFs) of Θ and Γ. The implementation procedure described above is discussed
in the next section.

3. Implementation Procedure

Generally, the implementation of the proposed approach involves 5 steps. Details of each step
and the corresponding equations are summarized as follows:

(1) Obtain the available PSD test data DATAP = {(Pm
t , Dt), t = 1, 2, . . . , NP } and DATAS = {(Sm

e,i,
ψs,i), i = 1, 2, . . . , NS} from direct measurements;

(2) Determine possible ranges of model parameter Θ and Γ from previous literatures, which are
needed in Equation (14) to specify the prior knowledge;

(3) Use M–H algorithm to simulate a number NMH of MCMCS samples of Θ and Γ based on
Equation (9);

(4) Calculate the posterior statistics (e.g., the most probable values (MPVs) and distributions
(e.g., marginal PDFs) of Θ and Γ of interest with the aid of conventional statistical analyses;

(5) Estimate SWCC using the parametric model with its corresponding MPVs of Θ.
The five steps summarized above can be programmed as a user function or toolbox in commonly

used software (e.g., MATLAB (R2014a, The MathWorks, Inc, Natick, MA, USA)), so as to facilitate
its application in geotechnical engineering practice. The proposed approach and its implementation
procedure described above are illustrated using real test data contained in UNSODA, as discussed
in the next section.

4. Illustration Using Test Data Contained in UNSODA

In this section, the proposed approach is employed to predict SWCC using the test data in the
unsaturated soil hydraulic database of UNSODA. The UNSODA established by U.S. Department of
Agriculture (USDA) contains a total of 790 soil samples, which can be categorized into 12 soil classes by
virtue of the USDA soil conservation service classification scheme. It plays a significant role in sharing
the measured hydraulic data to public, which contains various types of test data measured from in-situ
and/or laboratory tests, such as hydraulic data (i.e., volumetric water content, hydraulic conductivity,
and soil water diffusivity), particle-size distribution data, bulk density, and organic matter content
(e.g., [36,37]). In this study, the test data of particle-size distribution and volumetric water content are
used in the proposed approach.

The typical ranges of model parameters required in the definition of prior distribution are
tabulated in Table 1. These typical ranges are determined from the published literatures (e.g., [1,20]).
The standard deviations of σεS and σεP are deemed to vary from 0 to 1, which are the theoretical bounds
of the effective degree of saturation and percentage passing. As mentioned in the preceding section,
it is necessary to determine the hypothetical number of fractions firstly when using AP model to predict
the SWCC. Arya and Paris [6] suggested that it is reasonable to use NP = 20, with the boundaries at
particle diameters of 1, 2, 3, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 600, 800, 1000, 1500, and 2000
µm. Following Arya and Paris [6], NP = 20 is used in this study.

Table 1. Typical ranges of model parameters.

Model Parameters Typical Ranges

αf (0 kPa, 20 kPa]
nf (0, 10]
mf (0, 20]
αAP (1, 5]

σεS , σεP (0, 1]
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Based on the available test data (i.e., DATAP and DATAS) and the prior knowledge, M–H algorithm
is conducted to generate 500,000 random samples of Θ and Γ. Then, these MCMCS samples can be
used to evaluate the posterior statistics and distributions of interest. Firstly, the proposed approach
is validated using the test data of soil code 3190 in UNSODA. Secondly, the performance of the
proposed approach, Arya et al. [5] model, Vaz et al. [21] model, Mohammadi and Vanclooster [9]
model, Arya and Heitman [4] model in predicting SWCC are compared based on three sets of test data
(i.e., soil code 2201, 3190, and 4180). Thirdly, the accuracy of the proposed approach in high soil suction
range is explored. Finally, the proposed approach is applied to determine the scaling parameter using
test data of each soil sample in UNSODA.

4.1. Validity of the Proposed Approach

To validate the accuracy of the proposed approach, the cross-validation technique is used in this
study, where the available test data are divided into two subsets. One subset used to calibrate the
proposed approach and the other subset used to test the proposed approach [38], which are referred to
as training dataset and testing dataset, respectively. For illustration, a soil sample, namely soil code
3190 in UNSODA, is used herein. The soil sample belongs to loam and has 11 data points. Choose
a training dataset containing 9 data points from these data, and the other two data points are regarded
as testing dataset. Subsequently, the proposed approach is performed to determine the SWCC based on
the training dataset and prior knowledge. The estimated SWCC obtained from the proposed approach
is then compared with the testing dataset to explore the validity of the proposed approach. In this
example, five possible combinations of the training dataset and the testing dataset are investigated.

Figure 2 plots the results obtained from cross-validation using test data of soil code 3190
in UNSODA. It is shown that the estimated SWCC, namely the most probable FX model (i.e., FX model
with its corresponding MPVs of Θ), obtained from the proposed approach (see red line) agrees well
with the training dataset (see open circles). This implies that the proposed approach portrays the
SWCC of the training dataset reasonably well in this example, and properly determines the SWCC
using the available test data. For validation, Figure 2 also includes the testing dataset (see open
triangles) selected from the test data. It is found that the most probable FX model obtained from
the proposed approach provides accurate estimates of the SWCC compared with the testing dataset.
For five different cases shown in Figure 2, the most probable FX model is generally consistent with the
training dataset and the testing dataset. Such agreement validates the proposed approach.
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Figure 2. Cross-validation results of soil code 3190 in Unsaturated Soil Database (UNSODA).

4.2. Comparison with Different Methods

To further validate the proposed approach, a comparative study is conducted in this section to
explore the effectiveness of the proposed approach with Arya et al. [5] model, Vaz et al. [21] model,
Mohammadi and Vanclooster [9] model (MV), and Arya and Heitman [4] model (AH). For illustration,
three sets of test data are selected from UNSODA, namely soil code 2201, 3190, and 4180, which are
belongs to sand, loam, and silt loam, respectively. For soil code 2201 of sand, Arya et al. [5] suggested
a constant value of 1.285 of the scaling parameterαAP for sand. SubstitutingαAP = 1.285 into Equation (5)
provides the pressure head, and the corresponding volumetric water content is subsequently obtained
using Equation (6), as shown in Figure 3a. It is found that there is a significant discrepancy between
the real test data (see open circles) and the corresponding predictions obtained from Arya model.
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This discrepancy may be due to the variability of αAP for different soil samples, indicating that the
constant value of 1.285 is not applicable for all sand soils. Under such circumstances, a mathematical
equation proposed by Vaz et al. [21] is used to relate the αAP to the volumetric water content θ
(i.e., αAP = 0.947 + 0.427 exp(−θ/0.129)), so as to avoid treating αAP as a constant. Figure 3a also plots
the predictions of SWCC using Vaz model (i.e., the mathematical equation), it is shown that Vaz model
tends to underestimate the SWCC. This may be attributed to the fact that the accuracy of Vaz model is
highly dependent on the database used for calibration, leading to misleading estimates of SWCC for
soils outside the calibrated database. To bypass the difficulty in determining the empirical coefficients
(e.g., αAP), two conceptual models are developed by Mohammadi and Vanclooster [9] and Arya and
Heitman [4]. Their corresponding estimates of SWCC are included in Figure 3a, the results seem
to be unsatisfactory compared with the test data. Such unsatisfactory performance may be caused
by the simplified soil structure assumption underlying the MV model and AH model. In contrast,
the proposed approach is able to provide proper estimates of SWCC by making use of available test
data, as shown in Figure 3a with solid black line.

Figure 3. Comparison of different indirect methods for predicting SWCC.

Similar observations are also found for the soil code 3190 and 4180, as shown in Figure 3b,c.
In general, the proposed approach outperforms the other four methods (i.e., Arya, Vaz, MV, and AH
model) in predicting the SWCC. The accuracy of Arya model and Vaz model depends on the calibrated
database used for calibration, which limits their applicability to the soils outside the calibrated database.
Although MV model and AH model are no longer rely on empirical parameters, the simplified soil
structure assumption weakens their validity in practical applications. In such a case, the proposed
approach offers a rational way to systemically combine information from available test data for properly
predicting the SWCC.
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4.3. Predicting SWCC in the High Suction Range

Generally, a limited number of data points instead of a complete SWCC are typically obtained from
direct measurements. Thus, it is difficult to perform a complete measurement of SWCC over a wide
range of soil suction (i.e., 0–106 kPa) in engineering practice. To explore the predictive capability of the
proposed approach in the high soil suction range, three sets of test data in UNSODA are used herein
for illustration, namely soil code 2622, 2743, and 4620. Rahimi and Rahardjo [39] found that SWCC
within the soil suction range of 100 kPa is available for most direct measurements. Therefore, the soil
suction equaling to 100 kPa is regarded as a critical value in this example for dividing the test data into
two parts. One part used for calibration and the other part used for validation. For soil code 2622,
it belongs to clay and has a total of 11 data points, in which seven data points in the suction range of
0–100 kPa and the remaining four data points beyond the 100 kPa. Thus, the seven data points are used
as training dataset and the other four data points are regarded as testing dataset. Figure 4 a compares
the predictions of SWCC calculated from the proposed approach with the corresponding test data.
It is shown that the results evaluated from the proposed approach agree well with the testing data
points (see open circles), implying that the proposed approach is able to provide reasonably accurate
estimates of SWCC in the high suction range (i.e., >100 kPa).

Figure 4. Prediction of SWCC in the high suction range.

Likewise, divide the test data of soil code 2743 and 4620 into training dataset and testing dataset.
Then, the proposed approach is applied to determine the SWCC using the training dataset, and the
estimated SWCC are compared with the testing dataset, as shown in Figure 4b,c. Similar observations
are also found for the soil code 2743 and 4620. This indicates that the proposed approach is capable of
predicting SWCC in the high suction range, thus bypassing the difficulty in measuring SWCC over
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the entire range of soil suction. The proposed approach assists engineers in predicting the SWCC
in a relatively rational way and obtaining a complete SWCC in practice.

4.4. Ranges of Scaling Parameter for Different Soil Types in UNSODA

To further investigate the possible ranges of scaling parameter αAP for different soil types,
the proposed approach is applied to determine the scaling parameter of each soil sample in UNSODA.
In this subsection, a total of 639 soil samples and 3753 PSD data points are retrieved from different
types of soils in UNSODA. Table 2 tabulates the number of soil samples and the total number of data
points for 12 soil types. For each soil type in UNSODA, data points of different soil samples are used to
determine the scaling parameter separately in this study. Consider, for example, the sand soil contains
a total of 152 soil samples. For each soil sample, the proposed approach is performed to identify the
model parameters Θ and Γ, including scaling parameter and the associated fitting parameters of SWCC
model (i.e., FX).

Table 2. Ranges of scaling parameter for 12 soil types in UNSODA.

Soil Type Number of
Soil Samples

Number of PSD
Data Points

Range of Scaling Parameter αAP

Lower Bound Upper Bound

sand (S) 152 1022 1.002 1.852
loamy sand (lS) 54 358 1.003 1.892
sandy loam (sL) 98 521 1.004 1.864

loam (L) 65 363 1.000 1.595
silt loam (SiL) 114 745 1.001 1.693

silt (Si) 3 18 1.067 1.174
sandy clay loam (scL) 47 243 1.019 1.789

clay loam (cL) 28 117 1.001 1.536
silt clay loam (sicL) 22 122 1.002 1.466

sandy clay (sC) 3 17 1.500 1.589
silt clay (siC) 14 64 1.010 1.516

clay I 39 163 1.004 1.682

Figure 5a compares the predicted effective degree of saturation Se obtained from the proposed
approach with the corresponding test data in UNSODA. For reference, the 1:1 line (i.e., predicted
Se versus measured Se) and linear regression line are also plotted in Figure 5a. It is shown that the
majority of data points are gathered around the 1:1 line, indicating that the SWCC can be predicted
reasonably well using the proposed approach. Besides, the coefficient of determination (i.e., R2) is
applied to evaluate the performance of the proposed approach in predicting SWCC. The R2 value
of the regression line is 0.939, the high value of R2 implies that the proposed approach can provide
relatively accurate estimates of SWCC (e.g., [40,41]). Besides, a few data points deviate from the 1:1
line, such deviation may be attributed to the possible inconsistency between the test data of PSD and
SWCC due to measurement errors. As a result, it is hard to strike a balance between them, namely,
a set of model parameters (i.e., Θ and Γ) to portray both of them well.
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Figure 5. Cont.
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Figure 5. Comparison of the predicted SWCC obtained from the proposed approach and its
corresponding measured values in UNSODA.

Similarly, the scaling parameters for the remaining 11 types of soils are also calculated, as shown
in Table 2. In general, good agreements are also observed between the predicted and measured values
of Se, as shown in Figure 5b–l. The R2 values of the regression line range from 0.833 (see Figure 5f) to
0.992 (see Figure 5k), indicating again that the proposed approach is able to provide relatively accurate
predictions of SWCC for different soil types in UNSODA. Table 2 also summarizes the ranges of scaling
parameter for each soil type obtained from the proposed approach. It is shown that the range of scaling
parameter for a given soil type (e.g., αAP ∈ [1.002, 1.852], as shown in Table 2) is generally narrower
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than those used in this study for defining the joint uniform prior distribution (i.e., αAP ∈ (1, 5], as shown
in Table 1). These ranges of 12 soil types not only can be used to determine the prior distribution
of scaling parameter for further updating when new test data are available, but also offer engineers
insights into the possible values of scaling parameter for different soil types.

5. Summary and Conclusions

This paper proposed a Bayesian approach to predict soil-water characteristic curve (SWCC) from
particle-size distribution (PSD) based on the available test data and prior knowledge. The proposed
approach identifies, simultaneously, scaling parameter in Arya and Paris (AP) model and fitting
parameters of parametric SWCC model. Cross-validation technique was first used to investigate the
validity of the proposed approach, and a comparative study was then performed. The predictive
capability of the proposed approach in the high soil suction range was also explored. Finally,
the proposed approach was applied to determine the scaling parameter of each soil sample in UNSODA.
Major conclusions drawn from this study are given below:

(1) The proposed approach provides a proper prediction of SWCC by making use of the available
test data and prior knowledge. The main advantage of the proposed approach lies in its facility
in predicting SWCC based on the available test data, instead of collecting a large amount of test data
from other sites for calibration. Thus, the proposed approach offers a viable way to systemically
combine information from available test data for predicting SWCC with reasonable accuracy.

(2) The proposed approach is able to provide reasonably accurate estimates of SWCC in the
high suction range (i.e., >100 kPa). Direct measurements of SWCC in the high soil suction range are
generally time-consuming and costly. The proposed approach, as an alternative to direct measurements,
is capable of predicting SWCC in the high suction range, bypassing the difficulty in measuring SWCC
over the entire range of soil suction. It can assist engineers in obtaining a complete SWCC for
geotechnical analyses involving unsaturated soils in practice.

(3) The predicted effective degree of saturation obtained from the proposed approach is generally
in good agreement with the test data in UNSODA, indicating that the proposed approach can provide
relatively accurate estimates of SWCC for different soil types in UNSODA. Besides, the ranges of
scaling parameter for 12 soil types are also provided, which are narrower than those used in this study
for defining the joint uniform prior distribution. These ranges not only can be used to determine the
prior distribution of scaling parameter for further updating when new test data are available, but also
offer practitioners insights into the possible values of scaling parameter for different soil types.
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